Κεφάλαιο 4: Επιλογή σημείου παραγωγής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 4: Επιλογή σημείου παραγωγής"

Transcript

1 Κεφάλαιο 4: Επιλογή σημείου παραγωγής

2 Κ4.1 Μέθοδος ανάλυσης νεκρού σημείου για την επιλογή διαδικασίας παραγωγής ή σημείου παραγωγής Επιλογή διαδικασίας παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή διαδικασίας παραγωγής αναγνωρίζει και επιλέγει την διαδικασία με το χαμηλότερο συνολικό κόστος για δεδομένο όγκο. Αν για παράδειγμα έχουμε τρεις διαφορετικές διαδικασίες: 1) Διαδικασία Α: Μικρός όγκος, μεγάλη ποικιλία ) Διαδικασία Β: Μέτριος όγκος, μέτρια ποικιλία 3) Διαδικασία Γ: Μεγάλος όγκος, μικρή ποικιλία τότε αν και αναμένεται να έχουν τρία διαφορετικά κόστη για οποιονδήποτε όγκο, μόνο μία θα έχει το χαμηλότερο κόστος για δεδομένο όγκο, όπως φαίνεται στο παρακάτω σχήμα: Κόστος σε Ευρώ ΣΚ Α ΣΚ Β ΣΚ Γ Σταθερό κόστος Γ Σταθερό κόστος Β Σταθερό κόστος Α Όγκος (μονάδες ανά περίοδο) Επιλογή σημείου παραγωγής Η μέθοδος ανάλυσης νεκρού για την επιλογή σημείου παραγωγής έχει τα εξής βήματα: Υπολογίζονται τα σταθερά και μεταβλητά κόστη κάθε εναλλακτικής θέσης εγκατάστασης του εργοστασίου, Σχεδιάζεται γραφική παράσταση με τα κόστη στον κάθετο άξονα και τον ετήσιο όγκο πωλήσεων στον οριζόντιο άξονα, Επιλέγεται η θέση με το χαμηλότερο συνολικό κόστος για τον αναμενόμενο όγκο πωλήσεων.

3 Αριθμητικό Παράδειγμα 4.1 Ένας παραγωγός καρμπυρατέρ εξετάζει τρεις θέσεις για την εγκατάσταση ενός νέου εργοστασίου, Α) στην Εθνική Οδό Αθηνών-Λαμίας στο ύψος της Κάτω Κηφισιάς, Β) στην Εθνική Οδό Αθηνών-Λαμίας στο ύψος των Οινοφύτων και Γ) στη Θήβα. Μελέτες έχουν δείξει ότι τα σταθερά ετήσια κόστη και τα μεταβλητά κόστη ανά μονάδα παραγωγής δίνονται από το παρακάτω πίνακα: Θέση Σταθερό κόστος ( /έτος) Μεταβλητό κόστος ( /μονάδα) Α Β Γ Η αναμενόμενη τιμή πώλησης των καρμπυρατέρ είναι 40 ανά μονάδα. Ο παραγωγός θέλει να επιλέξει την πιο οικονομικά συμφέρουσα θέση για το νέο εργοστάσιο για έναν αναμενόμενο όγκο πωλήσεων.000 μονάδων ανά έτος. Λύση: Τα συνολικά κόστη για έναν αναμενόμενο όγκο πωλήσεων.000 μονάδων ανά έτος για τις τρεις υποψήφιες θέσεις διαμορφώνονται ως εξής : Θέση Σταθερό + Μεταβλητό κόστος ( /έτος) Α (150)(.000) = Β (90)(.000) = Γ (50)(.000) =

4 Για έναν αναμενόμενο όγκο πωλήσεων.000 μονάδων ανά έτος η θέση Β έχει το χαμηλότερο αναμενόμενο συνολικό κόστος. Το αναμενόμενο κέρδος είναι: Συνολικά έσοδα- Συνολικό κόστος= 40 (.000) = /έτος Η γραφική απεικόνιση τριών εναλλακτικών φαίνεται στο παρακάτω σχήμα: ΝΣ Β,Γ Συν. κόστος θέσης ΝΣ Α,Β Συν. κόστος θέσης Α ΝΣ Γ,Α Συν. κόστος θέσης Όγκος Πωλήσεων 1.0 Από το παραπάνω διάγραμμα φαίνεται ότι η επιλογή της θέσης εξαρτάται από τον όγκο πωλήσεων. Στο παραπάνω διάγραμμα ορίζονται τρία διαφορετικά ΝΣ: 1. ΝΣ Α,Β που αντιστοιχεί στο ΝΣ των εναλλακτικών Α και Β,. ΝΣ Α,Γ που αντιστοιχεί στο ΝΣ των εναλλακτικών Α και Γ, 3. ΝΣ Β,Γ που αντιστοιχεί στο ΝΣ των εναλλακτικών Β και Γ. Έτσι, ανάλογα με τον όγκο πωλήσεων η μια θέση υπερτερεί των υπολοίπων:

5 Προτιμάται η θέση Α αν 0 όγκος πωλήσεων < 1000 (που αντιστοιχεί στο ΝΣ Α,Β), Προτιμάται η θέση Β αν όγκος πωλήσεων <.500 (που αντιστοιχεί στο ΝΣ Β,Γ), Προτιμάται η θέση Γ αν.500 όγκος πωλήσεων.

6 Κ4. Μέθοδος ελαχιστοποίησης κόστους μεταφοράς Η μαθηματική τεχνική που εφαρμόζεται για να βρεθεί η θέση ενός εργοστασίου ή μίας αποθήκης που προμηθεύει έναν αριθμό καταναλωτικών κέντρων (ή/και προμηθεύεται από έναν αριθμό κέντρων προμήθειας πρώτων υλών) με στόχο την ελαχιστοποίηση του κόστους μεταφοράς από το εργοστάσιο στα καταναλωτικά κέντρα ονομάζεται μέθοδος ελαχιστοποίησης κόστους μεταφοράς. Ορίζουμε ως: Θ: την θέση του εργοστασίου, k i: το καταναλωτικό κέντρο ή/και κέντρο προμηθειών i, i=1,,...,, d(θ, k i): την απόσταση από το εργοστάσιο στο k i, V i : τον όγκο των μεταφερόμενων προϊόντων ή/και πρώτων υλών προς/από το k i, C i: το μοναδιαίο κόστος (ανά όγκο και απόσταση) μεταφοράς προϊόντων ή/και πρώτων υλών προς/από k i, w i : ο συντελεστής που εκφράζει το κόστος μεταφοράς επί τον μεταφερόμενο όγκο (w i= = V i C i ) προς/από το k j. Το συνολικό κόστος υπολογίζεται από: f(θ) = w i d(θ, k i ) i=1 Υπάρχουν τρεις προσεγγιστικές μέθοδοι για τον υπολογισμό της βέλτιστης θέσης ενός εργοστασίου που βασίζονται στον υπολογισμό της απόστασης του εργοστασίου από τα σημεία κατανάλωσης ή/ και σημεία προμήθειας Περίπτωση Α : Υπολογισμός βέλτιστου σημείου με τις ορθογώνιες αποστάσεις Οι ορθογώνιες αποστάσεις του βέλτιστου σημείου εγκατάστασης ενός εργοστασίου δίνονται από: όπου: d(θ, k i ) = x a i + y b i (x, y) = οι συντεταγμένες του σημείου Θ που πρέπει να υπολογιστούν, (a i, b i) = οι συντεταγμένες του k i (καταναλωτικό κέντρο ή/και σημείο προμήθειας).

7 Το πρόβλημα ορίζεται ως: in f(x, y) = in x w i x a i + in w i y b i y i=1 i=1 Μέθοδος επίλυσης του μισού αθροίσματος Από τα παραπάνω προκύπτουν δύο ξεχωριστά προβλήματα ελαχιστοποίησης: ένα ως προς το x και ένα ως προς το y. Ιδιότητες της βέλτιστης λύσης (x*,y*): (x*,y*) = (a i,b i ) για κάποιο i,i, όπου a i,b i είναι κάποια τεταγμένη και κάποια τετμημένη που αντιστοιχούν σε αυτές των k i, (x*,y*) είναι θέση "μισού αθροίσματος" δηλαδή η θέση όπου όχι περισσότερη από τη μισή κίνηση (άθροισμα συντελεστών i w i ) είναι προς τα αριστερά (κάτω) της θέσης και όχι περισσότερη από τη μισή κίνηση είναι προς τα δεξιά (πάνω) της θέσης. Αριθμητικό Παράδειγμα 4. Να βρεθεί η θέση εγκατάστασης ενός εργοστασίου που πρόκειται να τροφοδοτεί πέντε καταναλωτικά κέντρα με 5,, 41, και 34 τόνους προϊόντων την ημέρα, αντίστοιχα. Οι συντεταγμένες σε χιλιόμετρα ορθογωνίων. αποστάσεων των καταναλωτικών κέντρων είναι (0,0), (3,16), (18,), (8,18) και (0,) αντίστοιχα. Το κόστος C i ανά τόνο και χιλιόμετρο είναι το ίδιο προς όλες τις κατευθύνσεις. Λύση: Υπολογισμός της βέλτιστης τετμημένη x*: Ταξινόμηση των καταναλωτικών κέντρων κατά αύξουσα τετμημένη a i Κέντρο i a i V i w i Σ w i *C i 5* C i

8 3 *C i 7* C i 3 8 *C i 87* C i *C i 18* C i *C i 16* C i Συνολική κίνηση μεταφερομένων τόνων = 16 τόνοι/ημέρα Μισή συνολική κίνηση μεταφερομένων τόνων είναι 16 / = 81 τόνοι/ημέρα. Έστω C i = 1 Άρα, η βέλτιστη τετμημένη είναι x*=8 χιλιόμετρα, αφού το άθροισμα της κίνησης ξεπερνά το 81 για πρώτη φορά στο x = 8. Πράγματι, η κίνηση αριστερά του x = 8 είναι 5 + = 7 < 81, ενώ η κίνηση δεξιά του x = 8 είναι = 75 < 81. Υπολογισμός της βέλτιστης τεταγμένης y*: Ταξινόμηση των καταναλωτικών κέντρων κατά αύξουσα τεταγμένη b i Κέντρο i b i V i w i Σ w i * C i 5* C i 3, (41+34)* C i 80* C i 16 * C i 10* C i 4 18 * C i 16* C i Με τη μέθοδο μισού αθροίσματος βρίσκουμε τη βέλτιστη τεταγμένη y*=16 χιλιόμετρα. Άρα, το βέλτιστο σημείο εγκατάστασης του εργοστασίου για την τροφοδότηση των 5 καταναλωτικών κέντρων είναι το (8,16).

9 4.. Περίπτωση Β : Υπολογισμός βέλτιστου σημείου με βάση τις ευθείες αποστάσεις Οι ευθείες αποστάσεις του βέλτιστου σημείου εγκατάστασης ενός εργοστασίου δίνονται από: Το πρόβλημα ορίζεται ως: d i = d(θ, k i ) = [(x a i ) + (y b i ) ] 1 in f(x, y) = w i [(x a i ) + (y b i ) ] 1 i=1 Μέθοδος λύσης με διαδοχικές προσεγγίσεις (Cooper, 1963): Για την ελαχιστοποίηση θέτουμε τις παραγώγους της f(x,y) ίσες με το μηδέν: f(x, y) x = w i(x a i ) = 0 d i i=1 f(x, y) y = w i(x b i ) = 0 d i i=1 Η λύση του παραπάνω συστήματος εξισώσεων είναι: x = wiai i=1 d i w i i=1 d i και y = wibi i=1 d i w i i=1 d i Για να λύσουμε ως προς x και y χρησιμοποιούμε τον εξής επαναληπτικό αλγόριθμο του Cooper: 1. Ξεκινώντας από δύο οποιεσδήποτε τιμές των x και y βρίσκονται τα d i, i=1,,...,.. Δεδομένων των d i, i=1,,...,, ξαναϋπολογίζονται τα x και y. 3. Επαναλαμβάνεται το 1o βήμα του αλγόριθμου Cooper μέχρις ότου οι διαφορές ανάμεσα στις διαδοχικές τιμές του x και y είναι αμελητέες. Αριθμητικό Παράδειγμα 4.3 Να λυθεί το παράδειγμα 4. χρησιμοποιώντας τη μέθοδο των ευθείων αποστάσεων.

10 Λύση: Έστω αρχικά (x,y)=(4,4). Γι αυτές τις τιμές υπολογίζουμε τα d i: d 1 = [(4 0) + (4 0) ] 1 = 5,66 d = [(4 3) + (4 16) ] 1 = 1,04 d 3 = [(4 8) + (4 ) ] 1 = 4.47 d 4 = [(4 18) + (4 18) ] 1 = 19,79 d 5 = [(4 0) + (4 ) ] 1 = 16,1 Δεδομένων των παραπάνω τιμών των d i, ξαναϋπολογίζονται οι τιμές των x και y και βρίσκεται (x,y) = (11,87, 10,43). Συνεχίζοντας τη διαδικασία καταλήγουμε ότι για τα νέα (x,y) = (9,98, 13,7), τα επόμενα (x,y) = (9,97, 13,9). Επειδή η διαφορά των τελευταίων δύο διαδοχικών τιμών είναι μικρή σταματάμε τον αλγόριθμο Cooper στις τιμές (x*,y*) == (9,97, 13,9) Περίπτωση Γ : Υπολογισμός βέλτιστου σημείου με βάση τα τετράγωνα αποστάσεων (κέντρο βάρους) Τα τετράγωνα των αποστάσεων του βέλτιστου σημείου εγκατάσταση ενός εργοστάσιου από τα κέντρα κατανάλωσης ή προμήθειας δίνονται από: Το πρόβλημα ορίζεται ως: d(θ, k i ) = (x a i ) + (y b i ) in f(x, y) = w i [(x a i ) + (y b i ) ] i=1

11 Μέθοδος υπολογισμού του κέντρου βάρους: x = i=1 w ia i i=1 w i και y = i=1 w ib i i=1 w i Αριθμητικό Παράδειγμα 4.4 Να λυθεί το παράδειγμα της σελίδας όταν το κόστος μεταφοράς από το εργοστάσιο στα καταναλωτικά κέντρα είναι το κέντρο βάρους των τετραγώνων των αποστάσεων της θέσης του εργοστασίου από τα καταναλωτικά κέντρα. Λύση: x = i=1 w ia i i=1 w i = 1,1 και y = i=1 w ib i i=1 w i = 9,76

12

13 4.3 Μέθοδος προτύπου μεταφοράς Ο σκοπός του προβλήματος προτύπου μεταφοράς είναι να ελαχιστοποιηθεί το κόστος μεταφοράς προϊόντων από έναν αριθμό κέντρων παραγωγής, π.χ. εργοστασίων, σε έναν αριθμό κέντρων κατανάλωσης, όταν κάθε κέντρο παραγωγής έχει μία ορισμένη παραγωγή προϊόντων και κάθε κέντρο κατανάλωσης έχει μία ορισμένη ζήτηση για προϊόντα Μορφοποίηση του προβλήματος προτύπου μεταφοράς υπό τους περιορισμούς: in f(x) = c ij x ij n i=1 j=1 x ij = b j, i=1 n x ij = a i, j=1 j = 1,,, n i = 1,,, x ij 0, i = 1,,, j = 1,,, n n a i = b j i=1 j=1 όπου: a i = η παραγωγή του εργοστασίου i, i=1,,...,, b j = η ζήτηση του κέντρου κατανάλωσης j, j=1,,... n, c ij = το κόστος μεταφοράς και παραγωγής μίας μονάδας προϊόντος από το εργοστάσιο i στο κέντρο κατανάλωσης j, x ij = οι μονάδες προϊόντων που μεταφέρονται από το εργοστάσιο i στο κέντρο κατανάλωσης j Μέθοδος λύσης του προτύπου μεταφοράς Χρησιμοποιούμε την τροποποιημένη μέθοδο κατανομής που έχει τα εξής βήματα: 1. Οργανώνουμε τα στοιχεία του προβλήματος σε ένα πίνακα σαν τον παρακάτω, κάθε κελί το χωρίζουμε σε δύο μέρη. Στο πρώτο βάζουμε την μεταβλητή απόφασης x i,j για κάθε κέντρο παραγωγής i και κάθε κέντρο κατανάλωσης j. Στο δεύτερο μέρος βάζουμε το κόστος μεταφοράς και παράγωγης C i,j. Στην τελευταία γραμμή βάζουμε τη ζήτηση από κάθε κέντρο κατανάλωσης και στην τελευταία στήλη βάζουμε την παραγωγική ικανότητα κάθε εργοστασίου.

14 i \ j 1 n ai 1 x 11 c 11 x 1 c 1... x 1n c a1 1n x 1 c1 x c... x n cn a... x 1 c1 x c... x n cn a bj b1 b... bn a i = b j. Αφού φτιάξουμε τον πίνακα, ξεκινάμε με μία αρχική λύση. Για να βρεθεί μια αρχική λύση, συχνά χρησιμοποιούμε τον κανόνα της "βορειοδυτικής γωνίας" που έχει ως εξής: Επιλέγουμε σαν βασική μεταβλητή (δηλαδή μεταβλητή που παίρνει τιμή μη μηδενική) τη μεταβλητή x 11 (δηλαδή ξεκινάμε από τη "βορειοδυτική γωνία" του πίνακα). Στη συνέχεια, αν η x ij ήταν η τελευταία βασική μεταβλητή που επιλέχτηκε, τότε η επόμενη μεταβλητή που επιλέγεται είναι η x i,j+1, δηλαδή μετακινούμαστε μία στήλη δεξιότερα, αν το εργοστάσιο i έχει κάποια υπόλοιπη παραγωγή να διαθέσει. Αλλιώς, η επόμενη μεταβλητή που επιλέγεται είναι x i+1,j, δηλαδή μετακινούμαστε μια γραμμή πιο κάτω. 3. Για κάθε γραμμή i του πίνακα υπολογίζουμε μία τιμή u i και για κάθε στήλη j του πίνακα υπολογίζουμε μία τιμή v j. Οι υπολογισμοί αυτοί γίνονται ως εξής: Θέτουμε u i + v j = c ij για εκείνα τα κελιά που είναι σε χρήση δηλαδή σε κελιά που αντιστοιχούν σε βασικές μεταβλητές x ij Αφού σημειώσουμε τις παραπάνω εξισώσεις, θέτουμε για οποιαδήποτε μεταβλητή u i = 0 (Επιλέγουμε μια τυχαία ). Ο λόγος που θέτουμε τυχαία u i = 0 είναι ότι οι εξισώσεις u i + v j = c ij που έχουμε δημιουργήσει είναι λιγότερες από τις άγνωστες μεταβλητές u i, v j. Λύνουμε το σύστημα των εξισώσεων για τις u i και τις v j. Υπολογίζουμε τον συντελεστή βελτίωσης για κάθε τετράγωνο σε αχρησία (που αντιστοιχεί σε μη βασική μεταβλητή x ij). Ο συντελεστής βελτίωσης υπολογίζεται από τον τύπο: Συντελεστής = c ij-u i-v j. 4. Αν όλοι οι συντελεστές είναι μεγαλύτεροι ή ίσοι του μηδενός, έχουμε φτάσει στην βέλτιστη λύση και ο αλγόριθμος σταματάει αλλιώς πάμε στο βήμα Επιλέγουμε μία μη βασική μεταβλητή για να εισέλθει στη βάση και μία βασική μεταβλητή για να εξέλθει από τη βάση. Η μη βασική μεταβλητή που εισέρχεται στη βάση αντιστοιχεί στο κελί με τον μεγαλύτερο αρνητικό συντελεστή. Αν υπάρχουν παραπάνω από μία με τον μεγαλύτερο αρνητικό

15 συντελεστή, επιλέγουμε αυτή που έχει το μικρότερο μοναδιαίο κόστος μεταφοράς και παραγωγής. Στη μεταβλητή που εισέρχεται στη βάση δίνουμε τη μεγαλύτερη δυνατή τιμή θ, διορθώνοντας ταυτόχρονα τις τιμές των άλλων μεταβλητών που επηρεάζονται από αυτή την τιμή, έτσι ώστε να μην ξεπεράσουμε την παραγωγική ικανότητα των εργοστασίων, ενώ παράλληλα συνεχίζουμε να ικανοποιούμε την ζήτηση. Η διόρθωση αυτή γίνεται αφαιρώντας και προσθέτοντας διαδοχικά την τιμή θ από τις τιμές των βασικών μεταβλητών που αντιστοιχούν σε τετράγωνα που σχηματίζουν ένα κλειστό βρόγχο που ξεκινάει και καταλήγει στο τετράγωνο της μη βασικής μεταβλητής που εισέρχεται στη βάση. Με τη διόρθωση αυτή μία βασική μεταβλητή μηδενίζεται. Η μεταβλητή που μηδενίζεται είναι αυτή που εξέρχεται από τη βάση. Αν δύο ή παραπάνω βασικές μεταβλητές μηδενίζονται επιλέγουμε εκείνη με το μεγαλύτερο μοναδιαίο κόστος μεταφοράς για να εξέλθει απο την βάση, ενώ οι υπόλοιπες θεωρούνται εκφυλισμένες βασικές μεταβλητές με μηδενική τιμή. Ανά πάσα στιγμή ο αριθμός των βασικών μεταβλητών είναι +n Εφαρμογή του προτύπου μεταφοράς στο πρόβλημα προσθήκης εργοστασίου Ο σκοπός του προβλήματος προσθήκης εργοστασίου είναι να προσδιορισθεί η θέση εγκατάστασης ενός νέου εργοστασίου ανάμεσα σε κάποιες εναλλακτικές θέσεις, που συνδιαζόμενη με τις θέσεις άλλων υπαρχόντων εργοστασίων να ελαχιστοποιήσει το κόστος διανομής των προϊόντων από τα εργοστάσια σε έναν αριθμό κέντρων κατανάλωσης. Η μέθοδος λύσης του προβλήματος προσθήκης εργοστασίου περιλαμβάνει τα παρακάτω δύο βήματα: 1. Για κάθε εναλλακτική θέση εγκατάστασης του νέου εργοστασίου διαμορφώνεται το αντίστοιχο πρόβλημα προτύπου μεταφοράς και βρίσκεται η βέλτιστη λύση του και το αντίστοιχο ελάχιστο συνολικό κόστος διανομής προϊόντων.. Επιλέγεται η θέση που δίνει το ελάχιστο συνολικό κόστος διανομής των προϊόντων. Αριθμητικό Παράδειγμα 4.5 Μία εταιρεία έχει δύο εργοστάσια, ένα στην Αθήνα και ένα στη Θεσσαλονίκη, από τα οποία προμηθεύει καταναλωτικά κέντρα στις πόλεις Πάτρα, Λάρισα, Βόλο, Κοζάνη και Καβάλα. Επειδή έχει αυξηθεί η ζήτηση, η εταιρεία έχει αποφασίσει να δημιουργήσει ένα τρίτο εργοστάσιο η πιθανή θέση εγκατάστασης του οποίου έχει περιοριστεί σε δύο επιλογές, στην Κατερίνη και στη Λαμία. Ο παρακάτω πίνακας δίνει τα κόστη παραγωγής στα εργοστάσια Αθήνας και Θεσσαλονίκης (προτελευταία στήλη) και το κόστος μεταφοράς προς τα καταναλωτικά κέντρα στην Πάτρα,

16 Λάρισα, Βόλο, Κοζάνη και Καβάλα από Αθήνα και Θεσσαλονίκη καθώς και την παραγωγική ικανότητα των υπαρχόντων εργοστασίων (τελευταία στήλη). Πάτ. Λάρ. Βόλ. Κόζ. Κάβ. Μοναιαίο κόστος παραγ. Μηνιαία ικανότ. παραγ. Αθ Θεσ Ο παρακάτω πίνακας δίνει προβλέψεις της ζήτησης των πέντε καταναλωτικών κέντρων, των κοστών παραγωγής, μεταφοράς καθώς και την παραγωγική ικανότητα των δύο νέων εργοστασίων στη Λαμία και στην Κατερίνη. Πάτ. Λάρ. Βόλ. Κόζ. Κάβ. Μοναιαίο κόστος παραγ. Μηνιαία ικανότ. παραγ. Λαμ Κατ Μην. ζήτηση Για να επιλέξουμε μία από τις δύο θέσεις λύνουμε δύο προβλήματα προτύπου μεταφοράς, το πρώτο με εργοστάσια στην Αθήνα, Θεσσαλονίκη και νέο εργοστάσιο στη Λαμία, και το δεύτερο με εργοστάσια στην Αθήνα, Θεσσαλονίκη και νέο εργοστάσιο στην Κατερίνη. Επιλέγουμε τη θέση της οποίας το αντίστοιχο πρόβλημα προτύπου μεταφοράς δίνει το χαμηλότερο κόστος. Λύση:

17 Πιθανό εργοστάσιο στη Λαμία Αρχική λύση του προβλήματος είναι: i\j Ικαν. Παρ. u i Ζήτ v j 56 - Υπολογισμός των u i και v j: u 1 = 0 v 1 = c 11 u 1 = 0 = v = c 1 u 1 = 0 = u = c v = = 0 v 4 = c 4 u = 56 0 = 56 u 3 = c 34 v 4 = 56 = 8 v 5 = c 35 u 3 = 8 = Υπολογισμός συντελεστών για κάθε μη βασική μεταβλητή: i\j

18 Τον μεγαλύτερο αρνητικό συντελεστή τον έχουν οι μεταβλητές x 3 και x 33. Επιλέγεται η μεταβλητή x 33 για να εισέλθει στη βάση γιατί έχει το μικρότερο κόστος μεταφοράς ( = c 3 > c 33 = ) και επιλέγεται η μεταβλητή x 34 για να βγει από τη βάση γιατί είναι η πρώτη μεταβλητή που μηδενίζεται. i\j Ικαν. Παρ. u i θ 5 + θ θ 30 θ 30 8 Ζήτ v j 56 - η λύση 1 ου προβλήματος i\j Ικαν. Παρ. u i θ 35 +θ θ 30 θ 0 Ζήτ v j 56-3 η λύση 1 ου προβλήματος i\j Ικαν. Παρ. u i

19 30 θ θ θ 40 0 θ 8 Ζήτ v j η και βέλτιστη λύση 1 ου προβλήματος i\j Ικαν. Παρ. u i Ζήτ v j 56 - Άρα η ικανοποίηση της ζήτησης με εργοστάσιο στη Λαμία συνεπάγεται μηνιαίο κόστος (45)()+(5)()+(10)()+(35)(56)+(30)()+(0)()+(40)()= Ευρώ. Πιθανό νέο εργοστάσιο στην Κατερίνη Αρχική λύση του προβλήματος είναι: i\j Ικαν. Παρ. u i θ 5 + θ θ 30 θ 30 4 Ζήτ

20 v j η λύση ου προβλήματος i\j Ικαν. Παρ. u i θ 35 +θ θ 30 θ -4 Ζήτ v j η λύση ου προβλήματος i\j Ικαν. Παρ. u i θ θ θ 40 0 θ 8 Ζήτ v j η και βέλτιστη λύση ου προβλήματος i\j Ικαν. Παρ. u i

21 Ζήτ v j 56 - Άρα η ικανοποίηση της ζήτησης με εργοστάσιο στην Κατερίνη συνεπάγεται μηνιαίο κόστος Ευρώ. Συνεπώς για τη θέση του 3 ου εργοστασίου προτιμάται η Κατερίνη.

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ

ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ (Transportation Problems) Βασίλης Κώστογλου E-mail: vkostogl@it.teithe.gr URL: www.it.teithe.gr/~vkostogl Περιγραφή Ένα πρόβλημα μεταφοράς ασχολείται με το πρόβλημα του προσδιορισμού του καλύτερου δυνατού

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ. ρ Χρήστου Νικολαϊδη ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΣΗΜΕΙΩΣΕΙΣ ΓΡΑΜΜΙΚΗΣ ΑΛΓΕΒΡΑΣ ρ Χρήστου Νικολαϊδη Δεκέμβριος Περιεχόμενα Κεφάλαιο : σελ. Τι είναι ένας πίνακας. Απλές πράξεις πινάκων. Πολλαπλασιασμός πινάκων.

Διαβάστε περισσότερα

Το Πρόβλημα Μεταφοράς

Το Πρόβλημα Μεταφοράς Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού

Διαβάστε περισσότερα

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης

Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις

Διαβάστε περισσότερα

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης

Κεφάλαιο 5: Στρατηγική χωροταξικής διάταξης K.5.1 Γραμμή Παραγωγής Μια γραμμή παραγωγής θεωρείται μια διάταξη με επίκεντρο το προϊόν, όπου μια σειρά από σταθμούς εργασίας μπαίνουν σε σειρά με στόχο ο κάθε ένας από αυτούς να κάνει μια ή περισσότερες

Διαβάστε περισσότερα

3.12 Το Πρόβλημα της Μεταφοράς

3.12 Το Πρόβλημα της Μεταφοράς 312 Το Πρόβλημα της Μεταφοράς Σ αυτή την παράγραφο και στις επόμενες μέχρι το τέλος του κεφαλαίου θα ασχοληθούμε με μερικά σπουδαία είδη προβλημάτων γραμμικού προγραμματισμού Οι ειδικές αυτές περιπτώσεις

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation )

3. ΠΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ 3. ΡΟΒΛΗΜΑΤΑ ΜΕΤΑΦΟΡΑΣ ( Transportation ) Σε αυτή την ενότητα θα ασχοληθούμε με προβλήματα που αφορούν τη μεταφορά αγαθών από διαφορετικά σημεία παραγωγής ή κεντρικής αποθήκευσης

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος

Οργάνωση και Διοίκηση Εργοστασίων. Σαχαρίδης Γιώργος Οργάνωση και Διοίκηση Εργοστασίων Σαχαρίδης Γιώργος Πρόβλημα 1 Μία εταιρεία έχει μία παραγγελία για την παραγωγή κάποιου προϊόντος. Με τις 2 υπάρχουσες βάρδιες (40 ώρες την εβδομάδα η καθεμία) μπορούν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1)

Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Case 12: Προγραμματισμός Παραγωγής της «Tires CO» ΣΕΝΑΡΙΟ (1) Ένα πολυσταδιακό πρόβλημα που αφορά στον τριμηνιαίο προγραμματισμό για μία βιομηχανική επιχείρηση παραγωγής ελαστικών (οχημάτων) Γενικός προγραμματισμός

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας-Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ Υ Κ Ε Ι Ο Υ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Σχολικό έτος : 04-05 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων

Διαβάστε περισσότερα

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ

ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 Ν. ΠΑΝΤΕΛΗ ΔΕΟ 34 ΑΡΧΕΣ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΤΟΜΟΣ 1 ΜΙΚΡΟΟΙΚΟΝΟΜΙΑ ΤΥΠΟΛΟΓΙΟ & ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ ΑΘΗΝΑ ΟΚΤΩΒΡΙΟΣ 2012 1 ΥΠΟΣΤΗΡΙΚΤΙΚΑ ΜΑΘΗΜΑΤΑ ΕΑΠ ΔΕΟ 34 ΚΟΣΤΗ Ν.

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Operations Management Διοίκηση Λειτουργιών

Operations Management Διοίκηση Λειτουργιών Operatons Management Διοίκηση Λειτουργιών Διδάσκων: Δρ. Χρήστος Ε. Γεωργίου xgr@otenet.gr 4 η εβδομάδα μαθημάτων 1 Το περιεχόμενο της σημερινής ημέρας Επιλογή τοποθεσίας εγκατάστασης παραγωγικής µονάδας

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ 1.Τι ονοµάζεται σύνολο; Σύνολο ονοµάζεται κάθε συλλογή αντικειµένων, που προέρχονται από την εµπειρία µας ή την διανόηση µας, είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο.

Διαβάστε περισσότερα

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση

Μιγαδικοί Αριθμοί. Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Μιγαδικοί Αριθμοί Μαθηματικά Γ! Λυκείου Θετική και Τεχνολογική Κατεύθυνση Θεωρία - Μέθοδοι Υποδειγματικά λυμένες ασκήσεις Ασκήσεις προς λύση Επιλεγμένα θέματα «Σας εύχομαι, καλό κουράγιο και μεγάλη δύναμη

Διαβάστε περισσότερα

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση

1 η Εργασία ΕΟ 13 2014-2015. Υποδειγματική λύση 1 η Εργασία ΕΟ 13 014-015 Υποδειγματική λύση (όπως θα παρατηρήσετε η εργασία περιέχει και κάποια επιπλέον σχόλια, για την καλύτερη κατανόηση της μεθοδολογίας, τα οποία φυσικά μπορούν να παραλειφθούν) 1

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου

Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Επαναληπτικό Διαγώνισμα Μαθηματικών Κατεύθυνσης Β Λυκείου Θέμα 1 Α. Να αποδείξετε ότι αν α,β τότε α //β α λβ, λ. είναι δύο διανύσματα, με β 0, Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3

Λυση. και επομένως. Αντικαθιστούμε στη σχέση. Λυση. y = f 3 και y = f 3 Ø ÔØÓÑ Ò ½ Á ÒÓÙ ÖÓÙ ¾¼¼ Ασκηση Δίνεται η συνάρτηση f (x) =x +lnx. Να βρεθεί η εφαπτομένη της C f στοσημείομετετμημένηe. Η εξίσωση της τυχούσας εφαπτομένης της C f είναι y = f (x 0 ) x + f (x 0 ) f (x

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ισχύει: Ρ(Α )=-Ρ(Α) Μονάδες 7 Α. Να ορίσετε το μέτρο διασποράς εύρος ή

Διαβάστε περισσότερα

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j

, 1 0 9 1, 2. A a και το στοιχείο της i γραμμής και j Κεφάλαιο Πίνακες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο ο Τρίμηνο Είδος Α 56 Είδος

Διαβάστε περισσότερα

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό.

Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Μετατόπιση, είναι η αλλαγή (μεταβολή) της θέσης ενός κινητού. Η μετατόπιση εκφράζει την απόσταση των δύο θέσεων μεταξύ των οποίων κινήθηκε το κινητό. Η ταχύτητα (υ), είναι το πηλίκο της μετατόπισης (Δx)

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων

Ελλιπή δεδομένα. Εδώ έχουμε 1275. Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 1275 ατόμων Ελλιπή δεδομένα Στον πίνακα που ακολουθεί δίνεται η κατά ηλικία κατανομή 75 ατόμων Εδώ έχουμε δ 75,0 75 5 Ηλικία Συχνότητες f 5-4 70 5-34 50 35-44 30 45-54 465 55-64 335 Δεν δήλωσαν 5 Σύνολο 75 Μπορεί

Διαβάστε περισσότερα

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας

Κεφάλαιο 1: Στρατηγική Παραγωγικής Διαδικασίας Κ1.1: Αναμενόμενες Χρηματικές Αξίες (ΑΧΑ) Οι ΑΧΑ ορίζονται ως η πιθανότητα ενός ενδεχόμενου επί το καθαρό ή μεικτό κέρδος (ή κόστος) του ενδεχόμενου συν η πιθανότητα του άλλου ενδεχόμενου επί το καθαρό

Διαβάστε περισσότερα

Oικονομικές και Mαθηματικές Eφαρμογές

Oικονομικές και Mαθηματικές Eφαρμογές Το πακέτο ΕXCEL: Oικονομικές και Mαθηματικές Eφαρμογές Eπιμέλεια των σημειώσεων και διδασκαλία: Ευαγγελία Χαλιώτη* Θέματα ανάλυσης: - Συναρτήσεις / Γραφικές απεικονίσεις - Πράξεις πινάκων - Συστήματα εξισώσεων

Διαβάστε περισσότερα

Κεφάλαιο 2 Πίνακες - Ορίζουσες

Κεφάλαιο 2 Πίνακες - Ορίζουσες Κεφάλαιο Πίνακες - Ορίζουσες Βασικοί ορισμοί και πίνακες Πίνακες Παραδείγματα: Ο πίνακας πωλήσεων ανά τρίμηνο μίας εταιρείας για τρία είδη που εμπορεύεται: ο Τρίμηνο ο Τρίμηνο 3 ο Τρίμηνο ο Τρίμηνο Είδος

Διαβάστε περισσότερα

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης:

Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας. Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: Οδηγίες για το SKETCHPAD Μωυσιάδης Πολυχρόνης - Δόρτσιος Κώστας Με την εκτέλεση του Sketchpad παίρνουμε το παρακάτω παράθυρο σχεδίασης: παρόμοιο με του Cabri με αρκετές όμως διαφορές στην αρχιτεκτονική

Διαβάστε περισσότερα

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου

Matrix Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι. Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Matrix Algorithms Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Γ. Καούρη Β. Μήτσου Περιεχόμενα παρουσίασης Πολλαπλασιασμός πίνακα με διάνυσμα Πολλαπλασιασμός πινάκων Επίλυση τριγωνικού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 118 ερωτήσεις θεωρίας με απάντηση 324 416 ασκήσεις για λύση. 20 συνδυαστικά θέματα εξετάσεων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ 118 ερωτήσεις θεωρίας με απάντηση 34 416 ασκήσεις για λύση ερωτήσεις κατανόησης λυμένα παραδείγματα 0 συνδυαστικά θέματα εξετάσεων Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Εισαγωγική ενότητα Το λεξιλόγιο

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6.

ΜΙΓΑ ΙΚΟΙ. 3. Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2. 4. Για κάθε z C ισχύει z z 2 z. 5. Για κάθε µιγαδικό z ισχύει: 6. ΜΙΓΑ ΙΚΟΙ 1 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 1 2 Για κάθε z 1, z 2 C ισχύει z1 z2 z1 z2 3 Για κάθε z 1, z 2 C ισχύει z1 + z2 = z1 + z2 4 Για κάθε z C ισχύει z z 2 z 5 Για κάθε µιγαδικό z ισχύει:

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας

Κεφάλαιο 5. Θεμελιώδη προβλήματα της Τοπογραφίας Κεφάλαιο 5 Θεμελιώδη προβλήματα της Τοπογραφίας ΚΕΦΑΛΑΙΟ 5. 5 Θεμελιώδη προβλήματα της Τοπογραφίας. Στο Κεφάλαιο αυτό περιέχονται: 5.1 Γωνία διεύθυνσης. 5. Πρώτο θεμελιώδες πρόβλημα. 5.3 εύτερο θεμελιώδες

Διαβάστε περισσότερα

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας

Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται

Διαβάστε περισσότερα

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 2 0 1 5 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ 0 Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς o ΘΕΜΑ Π α ν ε λ λ α δ ι κ ε ς Ε ξ ε τ α σ ε ι ς ( 0 ) A. Aν οι συναρτησεις

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 4: Συναρτήσεις Συγγραφή: Ομάδα Υποστήριξης

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Λύκεια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΛΥΚΕΙΑ 6 η Δοκιμασία ο Θέμα Στις ερωτήσεις έως και 4 να επιλέξτε τη σωστή απάντηση αιτιολογώντας την απάντησή σας. Ερώτηση

Διαβάστε περισσότερα

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127

Α. 27 Β. 29 Γ. 45 Δ. 105 Ε. 127 Α - Β Γυμνασίου η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 0. Αν = M = 60, η τιμή του M + N είναι: 5 45 N Α. Β. 9 Γ. 45 Δ. 05 Ε.. Ένα τετράγωνο και ένα τρίγωνο έχουν ίσες περιμέτρους. Το μήκος των τριών

Διαβάστε περισσότερα

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ.

Πίνακας κατανοµής συχνοτήτων και αθροιστικών συχνοτήτων. Σχετ. Λυµένη Άσκηση στην οµαδοποιηµένη κατανοµή Στην Γ τάξη του Ενιαίου Λυκείου µιας περιοχής φοιτούν 4 µαθητές των οποίων τα ύψη τους σε εκατοστά φαίνονται στον ακόλουθο πίνακα. 7 4 76 7 6 7 3 77 77 7 6 7 6

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1.

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; α) Να βρεθεί η τιμή του α, ώστε η τιμή της f στο χ 0 =2 να είναι 1. Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 1.Δίνεται η συνάρτηση f()= 4 1 α) Το σημείο (-1,1) ανήκει στη γραφική παράσταση της f; β) Αν χ=, ποια είναι η τιμή της f; γ) Αν f()=1, ποια είναι

Διαβάστε περισσότερα

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012

ΑΝΑ ΚΕΦΑΛΑΙΟ. geeconomy@yahoo.com. Γ Ι Ω Ρ Γ Ο Σ Κ Α Μ Α Ρ Ι Ν Ο Σ Ο Ι Κ Ο Ν Ο Μ Ο Λ Ο Γ Ο Σ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 1 ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ 2000 2012 ΑΝΑ ΚΕΦΑΛΑΙΟ Στο παρόν είναι συγκεντρωµένες όλες σχεδόν οι ερωτήσεις κλειστού τύπου που

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ ΑΘΑΝΑΣΙΟΣ Χ. ΑΛΕΞΑΝΔΡΑΚΗΣ ΑΝ. ΚΑΘΗΓΗΤΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕΔΟΝΙΑΣ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Β ΤΟΜΟΣ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα και τη σφραγίδα του εκδότη ISBN SET: 960-56-026-9

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 1) Δίνεται η εξίσωση x 2-2(λ + 2) χ + 2λ 2-17 = 0. Να βρείτε το λ ώστε η εξίσωση να έχει μία ρίζα διπλή. Υπολογίστε τη ρίζα. Aσκήσεις στις εξισώσεις Β βαθμού Για να έχει η εξίσωση μία ρίζα διπλή πρέπει:

Διαβάστε περισσότερα

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ

9o Γεν. Λύκειο Περιστερίου ( 3.1) ΚΥΚΛΟΣ. ΚΕΦΑΛΑΙΟ 3 ο : KΩΝΙΚΕΣ ΤΟΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙ 3 ο : KΩΝΙΚΕΣ ΤΜΕΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤ/ΝΣΗΣ Β ΛΥΚΕΙΥ ( 3.) ΚΥΚΛΣ Γνωρίζουµε ότι ένας κύκλος (, ρ) είναι ο γεωµετρικός τόπος των σηµείων του επιπέδου τα οποία απέχουν µια ορισµένη απόσταση ρ από ένα

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη:

Οι κλασσικότερες από αυτές τις προσεγγίσεις βασίζονται σε πολιτικές αναπαραγγελίας, στις οποίες προσδιορίζονται τα εξής δύο μεγέθη: 4. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΑ ΖΗΤΗΣΗ Στις περισσότερες περιπτώσεις η ζήτηση είναι αβέβαια. Οι περιπτώσεις αυτές διαφέρουν ως προς το μέγεθος της αβεβαιότητας. Δηλαδή εάν η αβεβαιότητα είναι περιορισμένη

Διαβάστε περισσότερα

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο

6.1 ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤΟ ΕΠΙΠΕ Ο 6. ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ ΣΤ ΕΠΙΠΕ ΘΕΩΡΙΑ. Σύστηµα καθέτων ηµιαξόνων: Είναι δύο κάθετες µεταξύ τους ηµιευθείες µία οριζόντια και µία κατακόρυφη. Την οριζόντια την ονοµάζουµε και την λέµε ηµιάξονα των ή ηµιάξονα

Διαβάστε περισσότερα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα

Δύο κύριοι τρόποι παρουσίασης δεδομένων. Παράδειγμα Δύο κύριοι τρόποι παρουσίασης δεδομένων Παράδειγμα Με πίνακες Με διαγράμματα Ονομαστικά δεδομένα Εδώ τα περιγραφικά μέτρα (μέσος, διάμεσος κλπ ) δεν έχουν νόημα Πήραμε ένα δείγμα από 25 άτομα και τα ρωτήσαμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τι ονομάζουμε Φυσική; Φυσική ονομάζουμε την επιστήμη η οποία μελετά τα φυσικά φαινόμενα. ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΠΡΟΛΟΓΟΣ Ξ εκινώντας τη προσπάθεια μου να γράψω αυτό το βιβλίο αναρωτιόμουν πως

Διαβάστε περισσότερα

ΤΟ EXCEL ΣΤΟ ΣΧΟΛΕΙΟ - ΙΔΕΕΣ, ΕΦΑΡΜΟΓΕΣ, ΤΕΧΝΙΚΕΣ

ΤΟ EXCEL ΣΤΟ ΣΧΟΛΕΙΟ - ΙΔΕΕΣ, ΕΦΑΡΜΟΓΕΣ, ΤΕΧΝΙΚΕΣ 2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 295 ΤΟ EXCEL ΣΤΟ ΣΧΟΛΕΙΟ - ΙΔΕΕΣ, ΕΦΑΡΜΟΓΕΣ, ΤΕΧΝΙΚΕΣ Νικόλαος Καμπράνης Μαθηματικός Επιμορφωτής Ενδοσχολικής Επιμόρφωσης Μέλος ομάδας ανάπτυξης Εκπαιδευτικής

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές

Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές 3. ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΘΕΜΑΤΟΣ 3. Τι Είναι Απόθεμα Σε βιομηχανικό περιβάλλον η αποθεματοποίηση γίνεται στις εξής μορφές. Απόθεμα Α, Β υλών και υλικών συσκευασίας: Είναι το απόθεμα των υλικών που χρησιμοποιούνται

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

SMART Notebook 11.1 Math Tools

SMART Notebook 11.1 Math Tools SMART Ntebk 11.1 Math Tls Λειτουργικά συστήματα Windws Οδηγός χρήστη Δήλωση προϊόντος Αν δηλώσετε το προϊόν SMART, θα σας ειδοποιήσουμε για νέα χαρακτηριστικά και αναβαθμίσεις λογισμικού. Κάντε τη δήλωση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε

Διαβάστε περισσότερα

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς:

Λύνω τις ασκήσεις. 2. Γράφω δίπλα πώς διαβάζεται καθένας από τους παρακάτω αριθμούς: Λύνω τις ασκήσεις 1. Γράφω δίπλα με ψηφία τους παρακάτω αριθμούς: Εκατόν ενενήντα εννέα:.. Τριακόσια ένα: Τετρακόσια πενήντα οκτώ:... Πεντακόσια εννέα:.. Οχτακόσια ογδόντα οκτώ:.... Εννιακόσια δύο: Εννιακόσια

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 108 Θέματα - 24/1/2015 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Επιμέλεια: Σακαρίκος Ευάγγελος 08 Θέματα - 4//05 Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσανατολισμού Τράπεζα Θεμάτων Β Λυκείου Μαθηματικά Προσαν. Κεφάλαιο

Διαβάστε περισσότερα

Μεταθέσεις και πίνακες μεταθέσεων

Μεταθέσεις και πίνακες μεταθέσεων Παράρτημα Α Μεταθέσεις και πίνακες μεταθέσεων Το παρόν παράρτημα βασίζεται στις σελίδες 671 8 του βιβλίου: Γ. Χ. Ψαλτάκης, Κβαντικά Συστήματα Πολλών Σωματιδίων (Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο,

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3

ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 2 ΑΣΚΗΣΗ 3 ΑΣΚΗΣΗ 1 Δύο επιχειρήσεις Α και Β, μοιράζονται το μεγαλύτερο μερίδιο της αγοράς για ένα συγκεκριμένο προϊόν. Καθεμία σχεδιάζει τη νέα της στρατηγική για τον επόμενο χρόνο, προκειμένου να αποσπάσει πωλήσεις

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ

5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 48 49 5 ΣΥΝΑΡΤΗΣΕΙΣ ΔΥΟ ΜΕΤΑΒΛΗΤΩΝ 5 ΕΙΣΑΓΩΓΗ ΟΡΙΣΜΟΣ: Κάθε συνάρτηση : A B με Α R n και Β R ονομάζεται πραγματική συνάρτηση n μεταβλητών ΠΑΡΑΤΗΡΗΣΕΙΣ: Ι Αν Α R n και Β R n τότε έχουμε διανυσματική συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ

ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 010 ΜΑΘΗΜΑΤΙΚΑ 5 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ: 4 Ιουνίου 010 ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ: 4 ώρες (40 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΒΟΗΘΗΜΑΤΑ Ευρωπαικό τυπολόγιο Μη προγραμματιζόμενος υπολογιστής, χωρίς γραφικά

Διαβάστε περισσότερα

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1)

Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Case 08: Επιλογή Διαφημιστικών Μέσων Ι ΣΕΝΑΡΙΟ (1) Το πρόβλημα της επιλογής των μέσων διαφήμισης (??) το αντιμετωπίζουν τόσο οι επιχειρήσεις όσο και οι διαφημιστικές εταιρείες στην προσπάθειά τους ν' αναπτύξουν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα