مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams"

Transcript

1 مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان

2 eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا به صورت خطی با تغيير می کند. ρ 0, ρ در انتهای آزاد : 0, PL در تکيه گاه : 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

3 eer Johnston DeWolf الف- تير سرآويز ب- نيروهای تکيه گاهی الف ج- نمودار لنگر خمشی در هر نقطه ای که لنگر خمشی صفر است انحنا برابر صفر است. يعنی دو انتها و نقطه E. ( ) بين نقاط و E لنگر خمشی دارای عالمت مثبت و تقعر تير به سمت باالست. بين نقاط E و D لنگر خمشی دارای عالمت منفی و تقعر تير به سمت پايين است. ب ج در نقطه که گشتاور ماکزيمم است انحنای سطح تير ماکزيمم است )شعاع انحنا مينيمم است(. کند می مشخص را آن طول د معادله ای که شکل تير در منحنی االستيک نام دارد. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

4 eer Johnston DeWolf از رياضيات داريم: d d d d d d d d ( ) معادله فوق را معادله ديفرانسيل منحنی االستيک و جمله 0 d 0 d d 0 مرتب سازی و انتگرال گيری: را صالبت خمشی می گويند. شيب تير در هر نقطه را مشخص می کند. خيز تير در هر نقطه را مشخص می کند. d d d d 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

5 eer Johnston DeWolf ثوابت معادله با استفاده از شرايط مرزی تعيين می شوند: 0 d 0 d Simpl supported beam 0, 0 سه نوع تير معين استاتيکی: تير با تکيه گاه ساده Overhanging beam 0, 0 تير سرآويز antilever beam تير طره ای 0, 0 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-5

6 eer Johnston DeWolf نکته: () برای مختلفی توابع تير مختلف های قسمت برای پيچيده های بارگذاری در با به انتگرال برای عبارت مختلف تعيين تير گيری ديگر اين از ثابت ممکن کدام هر های شرايط است از زيادی مرزی ناپيوسته معادالت وجود دقت بايد باشند گشتاور داشته کرد و دو به که ثابت تعداد اگرچه گيری انتگرال زيادی شرط برشی نيروی به مرزی و نياز وجود خواهد لنگر است. نياز خمشی اما خيز و شيب تير دارای گسستگی نيستند. است. آمد. نقاط در 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-6

7 eer Johnston DeWolf برای يک تير تحت بار توزيعی :w() d d V d d dv d w معادله ديفرانسيل مرتبه چهارم منحنی االستيک: d d d d w چهار بار انتگرال گيری: d d d w d 6 ثوابت معادله با استفاده از شرايط مرزی بدست می آيند. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-7

8 eer Johnston DeWolf با تکيه گاه ثابت و تکيه گاه غلتکی را درنظربگيريد. تير از دياگرام آزاد مشخص است که چهار نيروی مجهول وجود دارد. شرايط تعادل استاتيکی: F 0 F 0 0 سه معادله و چهار مجهول لذا تير از نظر استاتيکی نامعين است. در مقاومت مصالح ديديم که برای تعيين نيروهای تکيه گاهی در سازه های نامعين استاتيکی بايد تغيير شکل های سازه را هم درنظرگرفت )معادالت سازگاری(. 0 d 0 d t 0, 0 0 t L, 0 معادله خيز تير: در نتيجه سه معادله و دو مجهول اضافه می شود. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-8

9 eer Johnston DeWolf W 68 P 50kips I 7in L 5ft E 90 a ft 6 psi برای قسمت از تير سرآويز فوالدی الف- معادله منحنی االستيک ب- محل خيز ماکزيمم ج- مقدار خيز ماکزيمم مطلوبست: 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-9

10 eer Johnston DeWolf حل: الف- منحنی االستيک - نيروهای تکيه گاهی Pa a R R P L L - با استفاده از تعادل گشتاور در قسمت :D a P 0 L L - معادله ديفرانسيل منحنی االستيک: d d P a L 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-0

11 eer Johnston DeWolf دو بار انتگرال گيری و اعمال شرايط مرزی: d d a P L a P 6 L at 0, 0 : 0 at L, 0 : 0 a P L 6 L L 6 PaL d d a P L a P 6 L 6 6 PaL PaL d d PaL 6 L جايگذاری: منحنی االستيک PaL 6 L L 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

12 eer Johnston DeWolf ب- محل خيز ماکزيمم خيز ماکزيمم در نقطه E که شيب صفر است رخ می دهد. d d 0 PaL 6 m L m L L ج- مقدار خيز ماکزيمم PaL ma ma PaL ma kips8in80in 6 0 psi 7in 6 9 ma 0.8in 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

13 eer Johnston DeWolf برای تير مطلوبست: الف- واکنش در تکيه گاه ب- معادله منحنی االستيک ج- شيب در انتهای 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

14 eer Johnston DeWolf R D R 0 w0 L حل: توجه: تير ناميعن استاتيکی درجه اول است. w0 6L 0 الف- نيروی تکيه گاهی معادله گشتاور معادله ديفرانسيل منحنی االستيک d d R w0 6L 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

15 eer Johnston DeWolf d d 6 R R 5 w0 0L w0 L دو بار انتگرال گيری اعمال شرايط مرزی: at 0, 0 : 0 at L, 0 : R L w0l 0 at L, 0 : 6 R L w0l 0 L 0 حل معادله جهت تعيين نيروی تکيه گاه : R L 0L w 0 0 R w 0 L 0 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-5

16 eer Johnston DeWolf ب- معادله منحنی االستيک R و و جايگذاری 6 0 w 0 L 5 w 0 0L 0 w 0 L w 5 0 L 0L L ج- شيب در انتهای مشتق گيری برای پيدا کردن شيب d d w 0L L L at = 0, w L The cgraw-hill ompanies, Inc. ll rights reserved. 9-6

17 eer Johnston DeWolf اصل ترکيب :)Superposition( تغيير شکل تيرها يک از بارگذاری ها. )خيز و شيب( ناشی از چند بارگذاری برابر است با ترکيب خطی تغيير شکل ناشی از هر 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-7

18 eer Johnston DeWolf برای تير مقابل شيب و خيز در انتهای را بدست آوريد. و درنظر می گيريم. حل: بارگذاری را به صورت برآيند بارگذاری 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-8

19 eer Johnston DeWolf Loading I: wl 6 I I wl 8 Loading II: wl 8 II II wl 8 در قسمت لنگر خمشی صفر است و لذا محنی االستيک برای اين قسمت به صورت يک خط راست است. II II wl 8 II wl 8 wl 8 L 7wL 8 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-9

20 eer Johnston DeWolf ترکيب حل ها: I II wl 6 wl 8 7wL 8 I II wl 8 7wL 8 wl 8 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-0

21 eer Johnston DeWolf برای تحليل يک تير نامعين استاتيکی می توان از روش ترکيب استفاده کرد. ابتدا يکی از تکيه گاه ها را )که تکيه گاه زائد ناميده می شود( حذف کرده و نيروی تکيه گاهی آنرا عنوان بار مجهول درنظرمی گيريم. تغييرشکل های ناشی از بار مجهول و بارهای وارده را جداگانه حساب کرده و سپس ترکيب می کنيم. تغيير شکل ناشی از ترکيب بارگذاری ها بايد با وضعيت تکيه گاه های تير اصلی سازگار باشد. به 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

22 eer Johnston DeWolf برای تير داده شده مطلوبست: الف واکنش در هر تکيه گاه ب- شيب در انتهای حل: تکيه گاه زائد را حذف می کنيم. اصل ترکيب )نيروی گسترده w و نيروی مجهول )R اعمال شرط سازگاری با توجه به تير اصلی )جابجايی در نقطه بايد صفر باشد(. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

23 eer Johnston DeWolf اثر بارگذاری توزيعی: w w L L L L L wl 0.0 اثر نيروی تکيه گاه زائد: R R L L L R L الف- واکنش در تکيه گاه ها شرط سازگاری: wl R L 0 w R R wL از تعادل استاتيکی: R 0.7wL R 0. 0wL 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

24 eer Johnston DeWolf ب- شيب در انتهای w wl wl R wL 6L L L L wl w R wl wl wl The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

25 eer Johnston DeWolf در اين قسمت برای تعيين شيب و خيز از خواص منحنی االستيک تير استفاده می کنيم. d d d d d d d d D D d قضيه اول ممان مساحت: )سطح زير منحنی // بين نقاط و D( D / 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-5

26 eer Johnston DeWolf P مماس های وارده از نقاط P و از نقطه را در نقاطی که به فاصله بر منحنی االستيک محور از هم قرار دارند قطع عمودی گذرا می کنند. dt dθ کوچک dt. d t / D D dt d d قضيه دوم ممان مساحت: انحراف مماسی نقطه نسبت به نقطه D منحنی زير سطح اول نقاط ( /D t( برابر است با ممان / بين و D نسبت به محور عمودی گذرا از نقطه. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-6

27 eer Johnston DeWolf ديديم که قضيه دوم ممان مساحت فاصله عمودی نقطه از منحنی االستيک )( تا مماس وارده از نقطه ديگر )D( را نشان می دهد. يک يک ثابت تير طره ای مماس مماس مرجع. عنوان به گاه تکيه از وارده 0 D D / D td / شيب در D با کمک قضيه اول ممان- مساحت خيز در D با کمک قضيه دوم ممان- مساحت تير با تکيه گاه ساده تحت بارگذاری متقارن: از مرکز به عنوان مماس مرجع. وارده مماس 0 D D / D td / t / c شيب در D با کمک قضيه اول ممان- مساحت خيز در D با کمک قضيه دوم ممان- مساحت 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-7

28 eer Johnston DeWolf t D/ زاويه تعيين برای معموال مماسی انحراف است بهتر θ D/ و صورت به وارده بارهای از يک هر برای را مذکور های جمله بيابيم. جداگانه جداگانه طور به بار هر برای را نمودار منظور اين برای / کنيم. می رسم های منحنی زير مساحت جبری مجموع از را زاويه D/ يابيم. می مختلف مماسی انحراف مذکور سطوح اول های ممان مجموع از t D/ را نقطه D يابيم. می از گذرا عمودی محور به نسبت نمودار طور به وارده بار هر برای طريق اين به که را / آيد می بدست جداگانه نمودار چندقسمتی می گويند. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-8

29 eer Johnston DeWolf برای تير داده شده شيب و خيز در سر E را بيابيد. 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-9

30 eer Johnston DeWolf حل: - تعيين نيروهای تکيه گاهی R R D wa / رسم - نمودارهای نيروی برشی لنگر خمشی و wa L wa wa L a wa 6 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9-0

31 eer Johnston DeWolf شيب در سر E: E E E wa L wa E L a wa 6 خيز در سر E: E t E t D L a wa L wa L 6 a L wa 8 wa L 6 E wa L 8 a 00 The cgraw-hill ompanies, Inc. ll rights reserved. 9 -

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ 1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s. معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود. ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn. خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd

Διαβάστε περισσότερα

آزمایش 2: تعيين مشخصات دیود پيوندي PN

آزمایش 2: تعيين مشخصات دیود پيوندي PN آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر تئوری رفتار مصرف کننده : می گیریم برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر فرض اول: مصرف کننده یک مصرف کننده منطقی است یعنی دارای رفتار عقالیی می باشد به عبارت دیگر از مصرف کاالها

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

t a a a = = f f e a a

t a a a = = f f e a a ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۴-۱ گزارش کار راهاندازي و تنظيم سرعت موتورهايي DC (شنت) استاد درياباد نگارش: اشکان نيوشا ۱۶ ا ذر ۱۳۸۷ ي م به نام خدا تي وري ا زمايش شنت است. در اين ا زمايش

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

را بدست آوريد. دوران

را بدست آوريد. دوران تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل

Διαβάστε περισσότερα

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه بخش غیرآهنی هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه رفتار شبه کشسان )Pseudoelasticity( که به طور معمول ابرکشسان )superelasticity( ناميده می شود رفتار برگشت پذیر کشسان ماده در برابر تنش اعمالی است

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم

Διαβάστε περισσότερα

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

و حذف هارمونیک های ژنراتورهای سنکرون مغناطیس دايم در سیستمهای تبديل انرژی باد

و حذف هارمونیک های ژنراتورهای سنکرون مغناطیس دايم در سیستمهای تبديل انرژی باد شبیه سازی و حذف هارمونیک های ژنراتورهای سنکرون مغناطیس دايم در سیستمهای تبديل انرژی باد اردشیر آرش ابراهیم صادقی منصور همتی میثم روشن چشم احمد اصغری ا-دکترای تبديل انرژی 2 -دانشجويی ارشد برق 3- دانشجويی

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

ﻦﺘﻓﺮﮔﺮﻈﻧ رد ﺎﺑ ﺎﻫ ﻊﻳﺎﻣ رد رﺎﺸﻓ ﻪﺒﺳﺎﺤﻣ ــ١٠ــ ٥ اﻮﻫ رﺎﺸﻓ :ﺲﻳﺭﺪﺗ یﺎﻤﻨﻫﺍﺭ

ﻦﺘﻓﺮﮔﺮﻈﻧ رد ﺎﺑ ﺎﻫ ﻊﻳﺎﻣ رد رﺎﺸﻓ ﻪﺒﺳﺎﺤﻣ ــ١٠ــ ٥ اﻮﻫ رﺎﺸﻓ :ﺲﻳﺭﺪﺗ یﺎﻤﻨﻫﺍﺭ ٥ ١٠ محاسبه فشار در مايعها با در نظرگرفتن فشار هوا راهنمای تدريس: اينبخششاملدوقسمتاستکهبايد به ترتيبی که در کتاب آمده است تدريس شود. قسمت اول: محاسبهی فشار در مايعها در حضور يك نيروی خارجی اضافی: مطابق

Διαβάστε περισσότερα

جلسه ی ۴: تحلیل مجانبی الگوریتم ها

جلسه ی ۴: تحلیل مجانبی الگوریتم ها دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا

Διαβάστε περισσότερα

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد دردینامیک علت حرکت یا سکون جسم تحت تاثیر نیروهای وارد بر آن بررسی میشود. تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد مانند اصطکاک یا

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند. فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در فصل اول حرکت شناسی در دو بعد گالیلئوگالیله: در سال 1581 میالدی به دانشگاه پیزا وارد شد اما در سال 1585 قبل از آن که مدرکی بگیرد از آنجا بیرون آمد. پیش خودش به مطالعه آثار اقلیدس و ارشمیدس پرداخت و به زودی

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود. ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ

Διαβάστε περισσότερα

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه 2 1* فرانک معتمدی فرید شیخ االسالم 1 -دانشجوی دانشکده برق

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

پنج ره: Command History

پنج ره: Command History هب انم زیدان اپک فهرست مطا ل ب مع ر ف ی رنم ازفار م تل ب:... 11 آش نا ی ی با محی ط ا صل ی رنم ازفار م تل ب:... 11 11... پنج ره: Command History وه ارجای د ست ورات رد م تل ب:... 11 نح نو شت ن د ست ورات

Διαβάστε περισσότερα

»رفتار مقاطع خمشی و طراحی به روش تنش های مجاز»

»رفتار مقاطع خمشی و طراحی به روش تنش های مجاز» »رفتار مقاطع خمشی و طراحی به روش تنش های مجاز» نمونه هایی از شکست خمشی مقاطع بتنی * بررسی مقاطع بتن آرمه تحت لنگر خمشی و طراحی آن مقاطع از مباحث اولیه و بسیار مهم سازه های بتنی است برای این بررسی یک تیر

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y=

رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y= رياضي و رياضي و تابع تعريف تابع: متغير y را تابعي از متغير در حوزه تعريف D گويند اگر به ازاي هر از اين حوزه يا دامنه مقدار معيني براي متغير y متناظر باشد. يا براي هر ) y و ( و ) y و ( داشته باشيم ) (y

Διαβάστε περισσότερα

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی دانشگاه فنی و حرفه ای کرمانشاه زمستان 39 فرمت نمایش اعداد : با توجه به دقت و تعداد ارقام اعشاری قابل قبول در محاسبات می

Διαβάστε περισσότερα

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩ فصل ٣ کار و توان هدف های رفتاری: در پايان اين فصل از هنرجو انتظار می رود: ١ کار الکتريکی را با ذکر رابطه شرح دهد. ٢ توان الکتريکی را با ذکر روابط شرح دهد. ٣ ضريب بهره (راندمان) را با ذکر رابطه توضيح دهد.

Διαβάστε περισσότερα

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر: آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم« 3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون مقدمه دراغلب شاخه های صنایع حالتی پدید می آید که دو نقطه دور از هم بایستی دارای سرعت یکسانی باشند. پل های متحرک دهانه سد ها تسمه ی نقاله ها جرثقیل

Διαβάστε περισσότερα

چکیده با روش کوادراتور دیفرانسیلی گسسته شده و مقادیر بدست آمده از حل معادالت استاتیکی در دستگاه معادالت گسسته شده

چکیده با روش کوادراتور دیفرانسیلی گسسته شده و مقادیر بدست آمده از حل معادالت استاتیکی در دستگاه معادالت گسسته شده دوره 47 شماره زمستان 1394 صفحه 71 تا 8 Vol. 47, No., Wintr 015, pp. 71-8 نشریه علمی ی امیرکبیر )مهندسی مکانیک( AmirKabir Jounrnal of Scinc & Rsarch (Mchanical Enginring) (ASJR-ME) تحليل عددي و تجربي ارتعاشات

Διαβάστε περισσότερα

بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال قدرت دوچرخه با هدف تعديل در دامنه نوسان شتاب حاصل از رکابزدن

بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال قدرت دوچرخه با هدف تعديل در دامنه نوسان شتاب حاصل از رکابزدن Vol. 4, No. 2, Winter 2014, pp. 2- نشريه علمي پژوهشي اميرکبير )مهندسي مکانيک( Amirkabir Journal of Science & Research (Mechanical Engineering) (AJSR - ME) بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

تحلیل خستگی مهاربندی سازه SPM با توجه به طول خطوط مهار و جهت برخورد امواج

تحلیل خستگی مهاربندی سازه SPM با توجه به طول خطوط مهار و جهت برخورد امواج تحلیل خستگی بندی سازه SPM با توجه به طول وط و جهت برخورد امواج مهرداد يزدان دوست روزبه پناهی rpanahi@modares.ac.ir - دانشجوی کارشناسی ارشد سازههای دريايی دانشگاه تربیت مدرس - استاديار گروه سازههای دريايی

Διαβάστε περισσότερα

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که :

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که : فصل سوم جبر بول هدف کلی: شناخت جبر بول و اتحادهای اساسی آن توابع بولی به شکل مجموع حاصل ضرب ها و حاصل ضرب جمع ها پیاده سازی توابع منطقی توسط دروازه های منطقی پایه و نقشة کارنو هدف های رفتاری: در پایان

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

گروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران

گروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران و ۱ دسترسي در سايت http://jnrm.srbiau.ac.ir سال دوم شماره ششم تابستان ۱۳۹۵ شماره شاپا: ۱۶۸۲-۰۱۹۶ پژوهشهاي نوین در ریاضی دانشگاه آزاد اسلامی واحد علوم و تحقیقات دستهبندي درختها با عدد رومي بزرگ حسين عبدالهزاده

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ].

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ]. آنالیز کامپیوتری مسیر حرکت اسپرم و استخراج بعد فرکتال نویسندگان : ٣ ٢ ١ مریم پنجه فولادگران محمدحسن مرادی وحیدرضا نفیسی ٤ روشنک ابوترابی تهران دانشگاه آزاد اسلامی واحد علوم و تحقیقات دانشکده مهندسی پزشکی

Διαβάστε περισσότερα

نکته و تست شیمی سال دوم فصل 1 شماره 3( ) کنکور 69 دکتر رضا بابایی برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری(

نکته و تست شیمی سال دوم فصل 1 شماره 3( ) کنکور 69 دکتر رضا بابایی برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری( نکته و تست 2 شیمی سال دوم فصل 1 و شماره 3( ) برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری( 2( فصل 1 و 2 دوم کنکور 69 دکتر رضا بابایی 1 متن کتاب 1- نخستین بار دالتون ادعا کرد عنصر را به گونه

Διαβάστε περισσότερα

شکل 1: شماتيک اتصال دو فلز طال و آلومينيوم با دو تابع کار متفاوت. این مقدار در حد ميکرو ولت است و به جنس فلز و دمای اتصال بستگی دارد.

شکل 1: شماتيک اتصال دو فلز طال و آلومينيوم با دو تابع کار متفاوت. این مقدار در حد ميکرو ولت است و به جنس فلز و دمای اتصال بستگی دارد. پدیده ترموالکتریک و دماسنجی با ترموکوپل هدف آزمایش: آشنایی با پدیده ترموالکتریک بررسي بستگي اختالف پتانسيل ترمو الکتریک به تغييرات دما مشاهده اثر پلتيه. ساخت و کاليبراسيون ترموکوپل سرد سازی با استفاده

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن 4 فصل : 9 سیستم مدار بسته خطی : عنصر اندازه گیری مثل ترموکوپل - Set point + فرآیند عنصرکنترل نهایی کنترل کننده load بار i proce خطوط انتقال مقدار مطلوب m عنصر اندازه گیری مقدار مقرر تعریف : et point عبارت

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

1. یک مولد 5000 هرتز می توان بصورت نیروی محرکه الکتریکی ثابت با مقدار 200 ولت مؤثر باا امدادان

1. یک مولد 5000 هرتز می توان بصورت نیروی محرکه الکتریکی ثابت با مقدار 200 ولت مؤثر باا امدادان تمرین های سری سری یک درس ماشین 2 )رضاییان( 1. یک مولد 5000 هرتز می توان بصورت نیروی محرکه الکتریکی ثابت با مقدار 200 ولت مؤثر باا امدادان 31 اهم در نظر گرفت این مولد برای تغذیه بار مقاومتی به مقدار 0.65

Διαβάστε περισσότερα

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم

Διαβάστε περισσότερα

فصل اول پیچیدگی زمانی و مرتبه اجرایی

فصل اول پیچیدگی زمانی و مرتبه اجرایی فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت جزوه تکنیک پالس فصل چهارم: مولتی ویبراتورهای ترانزیستوری فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار

Διαβάστε περισσότερα

تحلیل تغییر شکل نانولوله کربنی تک جداره: یک تئوری پوسته بر پایه پتانسیل بین اتمی

تحلیل تغییر شکل نانولوله کربنی تک جداره: یک تئوری پوسته بر پایه پتانسیل بین اتمی Vol. 46, No., Winter 4, pp. - نشريه علمي پژوهشي اميرکبير مهندسي مکانيک( mirkbir Journl of Science & eserch (Mechnicl Engineering (JS - ME تحلیل تغییر شکل نانولوله کربنی تک جداره: یک تئوری پوسته بر پایه

Διαβάστε περισσότερα

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول بسم الله الرحمن الرحیم ریا ض ی 7 دورۀ متوسطۀ اول فهرست سخنی با دانش آموز فصل 1 راهبردهای حل مسئله فصل 2 عددهای صحیح معرفی عددهای عالمت دار جمع و تفریق عددهای صحیح )1 ) جمع و تفریق عددهای صحیح )2 ) ضرب

Διαβάστε περισσότερα