:موس لصف یسدنه یاه لکش رد یلوط طباور

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ":موس لصف یسدنه یاه لکش رد یلوط طباور"

Transcript

1 فصل سوم: 3 روابط طولی درشکلهای هندسی

2 درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی زیر را در مثلث قائم الزاویه دیدیم: =.H =.H 3 H =H.H 4 + = 5.=.H اینک به ادامه بحث در مثلث های غیرمشخص می پردازیم. H در کتاب ریاضی )پایه دهم( با تعریف نسبت های مثلثاتی در مثلث قائم الزاویه آشنا شدید. با توجه به تعریف سینوس زاویه در مثلث قائم الزاویه جاهای خالی را پر کنید:... Sin = = Sin... Sin = = Sin... Sin = Sin90 = =... Sin بنابراین داریم: در هر مثلث قائم الزاویه نسبت اندازة هر. به. برابر است با.

3 در کتاب هندسه دیدیم که عمودمنصف های اضالع هر مثلث در یک نقطه همرسند و در این کتاب دیدیم که این نقطه مرکز دایره محیطی مثلث است. دایره محیطی مثلث قائم الزاویه را رسم می کنیم. مرکز این دایره کجاست و چرا قطر آن برابر با وتر مثلث است با توجه به نتیجه قسمت )( می توانیم بگوییم: در هر مثلث قائم الزاویه نسبت اندازة هر ضلع به سینوس زاویة روبه رو به آن برابر است با... دایرة محیطی مثلث. اکنون نشان می دهیم این نتیجه گیری برای هر مثلث غیرمشخص نیز درست است. 3 ( و دایره محیطی آن به مرکز O را در نظر میگیریم. مثلث دلخواه ) 90 < قطر را رسم کرده و را به وصل میکنیم. زوایای Ĉ و ˆ چرا با هم برابرند O اندازه آنها برابر است با نصف... چرا مثلث در رأس قائم الزاویه است 3 با توجه به دو قسمت قبل داریم: Sin = Sin = = =R... R Sin... Sin =, Sin =... 4 به طور مشابه خواهیم داشت: ( را در نظر بگیرید. نقطه دلخواه ʹ روی کمان 5 حال مثلث ) 90 > را به و وصل میکنیم. زوایای Â و Â نسبت به هم چگونهاند چرا = + بنابراین زاویهای حاده است. 3

4 با توجه به آنچه که از مثلثات می دانید جاهای خالی را پر کنید: sin = sin(... ) = در مثلث ʹ طبق نتیجه قسمت )3( می توانیم بنویسیم: = = sin sin بنابراین: در هر مثلث دلخواه نسبت اندازۀ هر. به زاویة روبه رو به آن برابر است با. قضیۀ سینوسها: در مثلث با اضالع = = و = داریم: = = = R Sin Sin Sin که R شعاع دایره محیطی مثلث است. = 0 6 مقدار 3 مثال : در مثلث =0m و =0 º شعاع دایره محیطی مثلث و اندازه زوایای و را بهدست آورید. و حل: به کمک قضیه سینوس ها می توان نوشت: 0 = R = R sin sin0 )= º sin0 º =sin(80 º -60 و sin60 = 3 R = 0 3 = 0 3 R و = = R 3 = sin = = sin sin sin =45 º یا 35 º و = 0 = 45 = 5 مثال : از یک بلوار افقی یک خیابان فرعی باریک با زاویه 60 º جدا شده است. اکنون شهرداری منطقه می خواهد یک خیابان فرعی دیگر به طول 800 متر بنا کند تا با زاویه 45 º از خیابان فرعی اول جدا شده و به بلوار منتهی شود. این خیابان از چه فاصله ای از رأس زاویه 60 º باید شروع شود و با بلوار چه زاویه ای می سازد

5 45 60 حل: با یک شکل مناسب مسئله را مدل سازی می کنیم. اوال با توجه به مجموع ο اندازههای زوایای داخلی مثلث روشن است که = ( + ) = یعنی خیابان فرعی باید با زاویه 75 º از بلوار جدا شود. ثانیا به کمک قضیه سینوس ها در مثلث داریم: = = = = sin sin sin60 sin = 653 / m 3 3 یعنی خیابان فرعی را باید از فاصله تقریبی 653/ متر با زاویه 75 º بنا کنیم. E می خواهیم روی یک رودخانه عمیق بین دو نقطه و در دو طرف رودخانه پلی بنا کنیم. برای انجام محاسبات مربوط به احداث پل باید فاصله ابتدا و انتهای آن )یعنی طول ) را به دست بیاوریم. ام ا امکان اندازه گیری مستقیم )به دلیل وجود رودخانه( وجود ندارد. برای این کار از نقطه در جهتی حرکت می کنیم تا با عبور از قسمت کم عمق رودخانه )E( به نقطه برسیم و طول را اندازه گیری می کنیم. سپس با زاویه یاب )تئودولیت( زاویه دید از نقطه ) ( و زاویه دید از ) ( را اندازه می گیریم. به صورت زیر نشان دهید با داشتن طول و زوایای و می توان فاصله را به دست آورد. = = = sin sin( 80 ) sin() و 60= º به کمک ماشین حساب طول را اگر =3km و =70 º به دست آورید. 5

6 درس دوم قضیۀ کسینوس ها می دانیم که در مثلث قائم الزاویه 90= º ) ).با داشتن طول های دو ضلع )=( و )=( می توانیم اندازه وتر مثلث )=( را بر حسب و به دست آوریم: = + حال می بینیم که اگر مساوی 90 º هم نباشد می توانیم این کار را انجام دهیم. در مثلث غیر مشخص ) 90> º ) ارتفاع H را رسم کرده ایم. با توجه به تعریف نسبت های مثلثاتی در مثلث های قائم الزاویه جاهای خالی را پر کنید. os = H = H = H =. sin = H = H H : = H + H = () + () حال به کمک اتحادهای جبری و اتحاد مثلثاتی = sin +os نشان دهید: = + -.os اکنون در مثلث ) 90< º ) ارتفاع H را در بیرون مثلث رسم می کنیم. اگر زاویه خارجی رأس باشد با توجه به اینکه = 80 داریم:. = os و در مثلث H نیز با توجه به تعریف نسبتهای. = sin و مثلثاتی می توان نوشت: H os = sin و = H = و H= * و H=+H= ΔH: =H +H = (...) +(...) 6

7 و با ساده کردن عبارت ها نشان دهید: = + -.os سؤال: در حالتی که زاویه قائمه باشد این رابطه به چه صورت در می آید قضیة کسینوس ها: در هر مثلث مربع اندازة هر ضلع برابر است با مجموع مربع های اندازه های دو ضلع دیگر منهای دو برابر حاصل ضرب اندازة آن دو ضلع در کسینوس زاویة بین آنها: = + -.os, = + - = Km/h O 0 00 Km/h مثال: دو قایق از یک نقطه در دریاچه ای با سرعت های 60km/h و 00km/h و با زاویه 0 º از هم دور می شوند. نیم ساعت بعد دو قایق در چه فاصله ای از یکدیگر هستند? حل: با توجه به نقطه شروع دو قایق و سرعت های ثابت نیم ساعت بعد مسافت طی شده توسط هر قایق محاسبه می شود: O=60* و 0/5=30 O=00*0/5=50 حال به کمک قضیه کسینوس ها می نویسیم: =O +O -O.O.os0 os0 =os(80-60)=-os60 = = ( ) =4900 =70km در مثلث = و + 6 = و = 60 طول ضلع را به کمک قضیه کسینوسها بهدست آورید. = + - * * * = = و =... 7

8 اندازه هم بیابید. را به کمک قضیه سینوس ها به دست آورید و از آنجا اندازه را sin = sin = 3 sin60 = 80 (+ ) = sin=... و =... ثابت کنید در هر مثلث قائم الزاویه ( 90= º ) با ارتفاع H=h داریم: 0 = + h دو ایستگاه رادار که در فاصله 0 کیلومتری از هم واقع اند هواپیمایی را با زاویه های 30 و 45 درجه رصد کرده اند. فاصله هواپیما را از دو ایستگاه به دست آورید.?? Km 3 یک درخت کج از نقطه روی زمین که در فاصله 30 متری از نوک درخت است به زاویه 60 º دیده می شود. اگر فاصله تا پای درخت 40 متر باشد مطلوب است: الف( طول درخت ب( زاویه ای که درخت با سطح زمین می سازد ج( فاصله نوک درخت از زمین. 30 m m 4 در مثلث متساوی االضالع به ضلع 8 واحد نقطه که به فاصله 7 واحد از رأس قرار دارد از و چه فاصله ای دارد نقطه E که به فاصله 5 واحد از قرار دارد از به چه فاصله ای است اندازه زاویه E چند درجه است x 7? E 5 بندرگاه کشتی 5 یک کشتی از یک نقطه با سرعت 60 کیلومتر در ساعت در یک جهت در حرکت است و یک ساعت بعد با 30 º انحراف به راست با سرعت 40 کیلومتر در ساعت به حرکت خود ادامه می دهد و یک ساعت و نیم پس از آغاز حرکتش در یک بندرگاه پهلو می گیرد. فاصله بندرگاه از مبدأ حرکت کشتی چند کیلومتر است 30 8

9 M را رسم کردهایم ( = M.) M = با نوشتن 6 در مثلث میانه قضیه کسینوسها در دو مثلث M و M و را محاسبه کنید و با جمع کردن دو تساوی حاصل درستی تساوی زیر را ثابت کنید: 80 - M + = M + میانهها) (قضیه در حالت خاص =4 و =6 و =8 طول میانه M را بهدست آورید. 9

10 درس سوم قضیۀ نیمسازهای زوایای داخلی و محاسبۀ طول نیمساز ها قضیه نیمسازهای زوایای داخلی قضیه : در هر مثلث نیمساز هر زاویه داخلی ضلع روبه رو به آن زاویه را به نسبت اندازه های ضلع های آن زاویه تقسیم می کند. : حکم = : فرض = اثبات: مطابق شکل از نقطه خط راستی موازی نیمساز رسم میکنیم تا امتداد را در نقطه E قطع کند. الف( چرا = E و چرا = ب( با توج ه به فرض چه نتیجهای درباره زوایای E و میتوان گرفت مثلث E چه نوع مثلثی است E ج( با توجه به قضیه تالس در مثلث ( E) E نسبت است با توجه به نتیجه قسمت )ب( اثبات را کامل کنید: با کدام نسبت برابر E = = یکی از نتایج فوری این قضیه این است که در هر مثلث به سادگی می توان طول های قطعاتی را که هر نیمساز روی ضلع مقابل ایجاد می کند با داشتن طول های اضالع مثلث محاسبه کرد: مثال: در مثلث =5 =7 و =8 است طول های دو قطعه ای را که نیمساز زاویه روی ضلع مقابل ایجاد می کند به دست آورید. حل:?? = = = = = =, = = 5 =

11 5 7 8 در شکل روبه رو نیمساز زاویه را رسم کنید و طول های دو قطعه ای را که این نیمساز روی جدا می کند به دست آورید. محاسبه طول نیمسازهای زوایای داخلی مثلث = ) یعنی در مثلث برای محاسبه طول نیمساز داخلی زاویه ) را امتداد میدهیم تا دایره محیطی مثلث را در E قطع کند و E را به وصل میکنیم. الف( چرا =E ب( چرا مثلث های و E متشابه اند ج( نسبت های تشابه آنها را بنویسید. E E = = د( از تناسب اول نتیجه می گیریم:. =.E = (+E) = +.E و چون.E =. )چرا ( بنابراین: =. -. قضیه : در هر مثلث مربع اندازه هر نیمساز داخلی برابر است با حاصل ضرب اندازه های دو ضلع زاویه منهای حاصل ضرب اندازه دو قطعه ای که نیمساز روی ضلع مقابل ایجاد می کند. مثال: در مثلث =5 =3 و =7 است. طول نیمساز زاویه را بیابید. حل: به کمک قضیه )( طول های و را به دست می آوریم: = = = 5 5, = 8 7 = 8 = 35 = 35 = حال با توجه به قضیه )( داریم: 35 =.. = 3 5 = = 5 =

12 0 در مثلث M وسط و MP و MQ نیمسازهای زوایای M و PQ هستند. ثابت کنید: M Q P در مثلث =7 و =5 و =0 است. طول نیمساز زاویه داخلی را به دست آورید. M 3 با پر کردن جاهای خالی با فرض اینکه در شکل مقابل نیمساز زاویه است روش دیگری برای اثبات قضیه نیمسازهای زوایای داخلی ارائه دهید: الف( چرا H = H H H H S = = S H () ب( H S = = S () )( و )( نتیجه میشود : = از مقایسه

13 درس چهارم قضیۀ هرون )محاسبۀ ارتفاع ها و مساحت مثلث( 3 y 5 با مسئله زیر در کتاب هندسه برخورد داشتید: در مثلث با اضالع به کمک قضیه فیثاغورس در مثلث های H و H مقادیر x و y را به دست آورید و از آنجا مساحت مثلث را نیز محاسبه کنید: به عنوان یادآوری مسئله را با هم حل می کنیم: 4-x H x H H + = x + y = H + H = ( 4 x) + y = طرفین این دوتساوی را از هم کم می کنیم و با حذف y معادله ای بر حسب x به دست می آید: x -(4-x) = x -96-x +8 x = x=, y=, S =.H = اگر همین روش را در حالت کل ی در مثلث که = = و = به کار ببریم نتیجه میشود: )دستور هرون( ) S = P(P )(P )(P نصف محیط مثلث است. + + P = که در این دستور )اثبات کامل این دستور را می توانید در مجله ریاضی انتهای فصل ببینید( مثال: مساحت مثلث با اضالع به طول های 4 3 و 5 به کمک دستور هرون برابر است با: P=3+4+5=4 P= 4 s = = 7 3 = 84 3

14 و طول های سه ارتفاع مثلث نیز برابراند با: s 84 h = = = / 5, h =., h =. چهارضلعی یک مزرعه کشاورزی را نشان می دهد که تنها دو ضلع آن بر هم عمودند طول های اضالع زمین به سادگی قابل اندازه گیری هستند و اندازه های آنها در شکل مشخص شده اند. با انجام مراحل زیر مساحت این زمین را به دست آورید: الف( اگر را به وصل کنیم طول را چگونه به دست می آورید = + = + = = 80m 90m 60m 50m ب( مساحت مثلث را چگونه به دست می آورید S = = ج( مساحت مثلث را به کمک دستور هرون به دست آورید. د( مساحت زمین کشاورزی برابر است با: + + P = =,S = S= + = می خواهیم دستور دیگری برای محاسبه مساحت مثلث به کمک نسبت های مثلثاتی به دست آوریم. در مثلث ارتفاع H را رسم کرده ایم. مساحت مثلث را به کمک ارتفاع H بنویسید. sin = H = S = H = H مساحت هر مثلث برابر است با نصف حاصل ضرب اندازه های هر دو ضلع در سینوس زاویه بین آنها: S =..sin =.sin =.sin 4

15 3 7 5 مثلث به اضالع با اندازه های 3 و 5 و 7 مفروض است. مساحت مثلث را با استفاده از دستور هرون به دست آورید. + + P = = S = P(P )(P )(P ) = S بنویسید. =..sin مساحت مثلث را با استفاده از دستور 3 از مقایسه نتایج و اندازه زاویه منفرجه را به دست آورید. 0 در مثلث =6 =0 و 60= º اوال طول را به دست آورید ثانیا مساحت مثلث را تعیین کنید ثالثا مقدار sin را پیدا کنید. m 4m 0m 3m 5m دو زمین کوچک به شکل مثلث با یک دیوار به طول 3 متر مطابق شکل از هم جدا شده اند. ابعاد زمین ها هم در شکل مشخص شده اند. اگر با برداشتن دیوار دو زمین به یک زمین تبدیل شود مساحت آن چقدر می شود نشان دهید دیوار مشترک با لبه های 4 متری و متری زاویه های برابر می سازد. )α=β( 3 دستور محاسبه مساحت مثلث متساوی االضالع به ضلع را به کمک دستور هرون به دست آورید. 7 E 5 4 در شکل مقابل اوال طول را به دست آورید ثانیا مساحت چهارضلعی E را بیابید. 5 در شکل صفحه بعد نیمساز زاویه است. با پر کردن جاهای خالی دستوری دیگر برای محاسبه طول نیمساز زاویه به دست آورید. 5

16 S =S +S..sin = sin + sin..sin =.sin ( + )..sin os..sin = = ( + )sin ( + )sin =. ( رأس (نیمساز d.os = + 6 در مثلث به اضالع 5 و 6 و 7 سانتی متر نقطه ای که از اضالع به طول های 5 و 6 به فاصله و 3 سانتی متر است از ضلع بزرگ تر چه فاصله ای دارد )راهنمایی: از مساحت مثلث استفاده کنید( 5 3 O x در شکل اوال اندازه زاویه را به دست آورید ثانیا مساحت چهارضلعی را بیابید. )راهنمایی: را به وصل کنید( 3 8 ثابت کنید مساحت هر متوازی االضالع برابر است با حاصل ضرب دو ضلع مجاور در سینوس زاویه بین آن دو ضلع به کمک قضیه کسینوس ها ثابت کنید در مثلث > اگر و تنها اگر + الف( > 90 < اگر و تنها اگر + ب( < 90 = اگر و تنها اگر + ج( = 90 0 به کمک نتیجه تمرین 9 حاده قائمه یا منفرجه بودن زاویه را در هر یک از مثلث های زیر تعیین کنید: الف( =0 =9, =6, ب( =8 =9, =4, ج( =8 =7, =5, 6

17 اثبات دستور هرون )برای محاسبه مساحت مثلث( x y H -x در مثلث = و = و H=y و = و H=x و.H=-x با نوشتن قضیه فیثاغورس در مثلث های قائم الزاویه H و H و تفاضل روابط به دست آمده خواهیم داشت: x + y = = ( x) x = + x x x = + ( x) + y = x x = + y= x = ( ) با ساده کردن این عبارت جبری و تجزیه آن به کمک اتحادهای جبری نتیجه می شود: 4 ( + ) y = H = = ( + + )( + ) 4 ( ) = + ( ) = ( + + )( + )( + )( + ) +-=++-=p-=(p-) +-=(p-), +-=(p-) حال با فرض ++=p خواهیم داشت: و به همین صورت: و بنابراین: H = p (p ) (p ) (p ) = p(p )(p )(p ), S = H. = p(p )(p )(p ) 7

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول بسم الله الرحمن الرحیم ریا ض ی 7 دورۀ متوسطۀ اول فهرست سخنی با دانش آموز فصل 1 راهبردهای حل مسئله فصل 2 عددهای صحیح معرفی عددهای عالمت دار جمع و تفریق عددهای صحیح )1 ) جمع و تفریق عددهای صحیح )2 ) ضرب

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn. خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید.

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید. حجم های هندسی فعالیت به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. آیا چیزی پیدا میکنید که حجم نداشته باشد در تصویر مقابل چه نوع حجمهایی را میبینید آیا همه آنها شکل هندسی دارند آیا میتوانید یک طبقهبندی

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد دردینامیک علت حرکت یا سکون جسم تحت تاثیر نیروهای وارد بر آن بررسی میشود. تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد مانند اصطکاک یا

Διαβάστε περισσότερα

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه فصل دوم محاسبۀ زاویه خالصۀ فصل در این فصل دانش آموزان با مفهوم و سلسله مراتب واحدهای اندازه گیری زاویه تبدیل واحد به هم تعیین زوایای اشکال هندسی آشنایی پیدا می کنند و باید توانایی به کارگیری مسائل نظیر

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در فصل اول حرکت شناسی در دو بعد گالیلئوگالیله: در سال 1581 میالدی به دانشگاه پیزا وارد شد اما در سال 1585 قبل از آن که مدرکی بگیرد از آنجا بیرون آمد. پیش خودش به مطالعه آثار اقلیدس و ارشمیدس پرداخت و به زودی

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

تسیچ تکرح مراهچ لصف تسیچ تکرح تعرس و ییاج هباج تفاسم ناکم تسا ردقچ شتکرح زاغآ ةطقن زا وا ةلصاف

تسیچ تکرح مراهچ لصف تسیچ تکرح تعرس و ییاج هباج تفاسم ناکم تسا ردقچ شتکرح زاغآ ةطقن زا وا ةلصاف چهارم فصل چیست حرکت سرعت و جابهجایی مسافت مکان 111 است چقدر حرکتش آغاز نقطة از او فاصلة میرود. شمال به کیلومتر یک سپس و غرب به کیلومتر یک 1 دانشآموزی 1- k 1/6 k 3 1/ k 1 k 1 از متحرک نهایی فاصلة میکند.

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود فصل ٤ انتگرال ٤ ١ مسأله مساحت فرمولهای مربوط به مساحت چندضلعیها نظیر مربع مستطیل مثلث و ذوزنقه از زمانهای شروع تمدنهای نخستین به خوبی شناخته شده بوده است. با اینحال مسأله یافتن فرمولی برای بعضی نواحی که

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به

سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به کشش سطحی Surface Tension سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به صورت دقیقتر اگر یک مرز دو بعدی برای یک سیال داشته باشیم و یک خط فرضی از سیال با

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک حرکت در مسیر مستقیم )حرکت یک بعدی( حمیدرضا طهماسبی سرعت متوسط و تندی متوسط 1. هنگام یک عطسه ی شدید چشمان شما ممکن است برای 0.50s بسته شود. اگر شما درون خودرویی در حال رانندگی با سرعت 90km/h باشید ماشین

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید.

الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید. الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید. (١) (٢) (٣) 1 شماره شکل 2 3 4 5 6 7 8 9 10 3 تعداد چوب کبريت 5 با

Διαβάστε περισσότερα

فصل صفر یادآوری مفاهیم پایه

فصل صفر یادآوری مفاهیم پایه فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان

Διαβάστε περισσότερα

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95 ترمودینامیک سال تحصیلى 94-95 رهنمون 1- مفاهیم اولیه ترمودینامیک: علمی است که به مطالعه ی رابطه ی بین کار و گرما و تبدیل آنها به یکدیگر می پردازد. دستگاه: گازی است که به مطالعه ی آن می پردازیم. محیط: به

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک فصل 6 نیرو و حرکت II مسائل فیزیک هالیدی & رزنیک حمیدرضا طهماسبی ویژگی های اصطکاک. 1 روی کف یکی از واگن های قطار جعبه هایی قرار دارد. اگر ضریب اصطکاک ایستای جعبه ها با کف واگن 0.25 باشد و این قطار با سرعت

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند. فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم

Διαβάστε περισσότερα

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون مقدمه دراغلب شاخه های صنایع حالتی پدید می آید که دو نقطه دور از هم بایستی دارای سرعت یکسانی باشند. پل های متحرک دهانه سد ها تسمه ی نقاله ها جرثقیل

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن آزما ی ش سوم: ربرسی اقنون ا ه م و قوانین ولتاژ و جریان اهی کیرشهف قوانین میسقت ولتاژ و میسقت جریان ربرسی مدا ر تونن و نورتن قضیه ااقتنل حدا کثر توان و ربرسی مدا ر پ ل و تس ون هدف از این آزمایش آشنایی با

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

یونیزاسیون اشعهX مقدار مو ثر یونی را = تعریف میکنیم و ظرفیت مو ثر یونی نسبت مقدار مو ثر یونی به زمان تابش هدف آزمایش: مقدمه:

یونیزاسیون اشعهX مقدار مو ثر یونی را = تعریف میکنیم و ظرفیت مو ثر یونی نسبت مقدار مو ثر یونی به زمان تابش هدف آزمایش: مقدمه: ر 1 یونیزاسیون اشعهX هدف آزمایش: تعیین مقدار ظرفیت مو ثر یونی هوا تحقیق بستگی جریان یونیزاسیون به جریان فیلامان و ولتاژ آند لامپ اشعه x مقدمه: اشعه x موج الکترومغناطیسی پر قدرت با محدوده انرژي چند تا چند

Διαβάστε περισσότερα

فصل اول پیچیدگی زمانی و مرتبه اجرایی

فصل اول پیچیدگی زمانی و مرتبه اجرایی فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل

Διαβάστε περισσότερα

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت عوامل جلوگیری کننده از موازی سازی عبارتند از :.هزینه I/O.هماهنگی/رقابت ممکن است یک برنامه sequential بهتر از یک برنامه موازی باشد بطور مثال یک عدد 000 رقمی به توان یک عدد طوالنی اینکه الگوریتم را چگونه

Διαβάστε περισσότερα

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها 90 حل تمرین ها تمرین صفحه 91 کدام روش جمع آوری داده ها برای موارد زیر مناسب است یک دلیل برای انتخاب خود ذکر کنید. 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها پاسخ: پرسش نامه:

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

ﻰﺿﺎﻳﺭ ﻥﺎﺘﺴﺑﺩ ﻢﺸﺷ ۱۳۹١

ﻰﺿﺎﻳﺭ ﻥﺎﺘﺴﺑﺩ ﻢﺸﺷ ۱۳۹١ رياضى ششم دبستان ۱۳۹١ وزارت آموزش و پرورش سازمان پژوهش و برنامه ريزی آموزشی برنامهريزی محتوا و نظارت بر تا ليف: دفتر تا ليف کتابهای درسی ابتدايی و متوسطه نظری نام کتاب: رياضی ششم دبستان ۳۴/۶ مو ل فان:

Διαβάστε περισσότερα

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها حامد رشیدی 1 و سیامک طالبی 2 1 -دانشگاه شهید باهنر كرمان 2 -دانشگاه شهید باهنر كرمان Hamed.hrt@gmail.com

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

فصل سوم : عناصر سوئیچ

فصل سوم : عناصر سوئیچ فصل سوم : عناصر سوئیچ رله الکترومکانیکی: یک آهنربای الکتریکی است که اگر به آن ولتاژ بدهیم مدار را قطع و وصل می کند. الف: دیود بعنوان سوئیچ دیود واقعی: V D I D = I S (1 e η V T ) دیود ایده آل: در درس از

Διαβάστε περισσότερα

آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز

آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز گزارش آزمایشگاه ماشینهای الکتریکی ۲ آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز شرح آزمایش ماژول تغذیه را با قرار دادن Breaker Circuit بر روی on روشن کنید با تغییر دستگیره ماژول منبع تغذیه

Διαβάστε περισσότερα

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از:

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از: آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: یک (R.A.Millikan) رابرت میلیکان 1909 در سال روش عملی براي اندازهگیري بار یونها گزارش کرد. این روش مشاهده حرکت قطرات ریز

Διαβάστε περισσότερα

پنج ره: Command History

پنج ره: Command History هب انم زیدان اپک فهرست مطا ل ب مع ر ف ی رنم ازفار م تل ب:... 11 آش نا ی ی با محی ط ا صل ی رنم ازفار م تل ب:... 11 11... پنج ره: Command History وه ارجای د ست ورات رد م تل ب:... 11 نح نو شت ن د ست ورات

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی درس تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی فصل اول سیگنال: نشانه یا عالمت هر کمیت فیزیکی) قابل اندازه گیری ) است. انواع سیگنال : سیگنالپیوستهدرزمانکهبهصورت x(t) نشان داده میشود و t یک متغیر

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی دانشگاه فنی و حرفه ای کرمانشاه زمستان 39 فرمت نمایش اعداد : با توجه به دقت و تعداد ارقام اعشاری قابل قبول در محاسبات می

Διαβάστε περισσότερα

مجموعه های اندازه پذیر به مثابە نقاط حدی

مجموعه های اندازه پذیر به مثابە نقاط حدی فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ].

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ]. آنالیز کامپیوتری مسیر حرکت اسپرم و استخراج بعد فرکتال نویسندگان : ٣ ٢ ١ مریم پنجه فولادگران محمدحسن مرادی وحیدرضا نفیسی ٤ روشنک ابوترابی تهران دانشگاه آزاد اسلامی واحد علوم و تحقیقات دانشکده مهندسی پزشکی

Διαβάστε περισσότερα

مطالعه تابش جسم سیاه

مطالعه تابش جسم سیاه مطالعه تابش جسم سیاه هدف آزمایش: اندازهگیري شدت تابش یک جسم سیاه بر حسب درجه حرارت آن تحقیق قانون استفان بولتزمن. تحقیق بستگی شدت تابش بر حسب فاصله از جسم سیاه. مقدمه: پرتو ساطع شده از یک جسم در دماي T

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ مبحث تناسب حجت زهري دانش آموز عزیز شما با مبحث تناسب از مقطع ابتدایی آشنا هستید. تناسب نوعی رابطه بین اعداد است که در آن اعداد و کمیتها به دو صورت می توانند با یکدیگر نسبت داشته باشند. مدل : تناسب مستقیم:

Διαβάστε περισσότερα

آزمایشگاه الکترونیک 1

آزمایشگاه الکترونیک 1 دانشگاه صنعتی شریف دانشکده فیزیک آزمایشگاه الکترونیک ویرایش سوم 93 آزمایش اسیلوسکپ اشعه کاتدی موضوع : آزمایش کار با یک اسیلوسکپ اشعه کاتدی (C..O) و کاربرد آن در مطالعه مدارهای جریان متناوب (ac) وسایل الزم:

Διαβάστε περισσότερα

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی...

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی... فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی................................................. 2 خواص مدارات سری....................................................... 3 3...................................................

Διαβάστε περισσότερα

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید.

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید. گزارش کار آزمایشگاه صنعتی... مکانیک سیاالت ( رینولدز افت فشار ) دانشجویان : فردین احمدی محمد جاللی سعید شادخواطر شاهین غالمی گروه یکشنبه ساعت 2::0 الی رینولدز هدف : بررسی نوع حرکت سیال تئوری : یکی از انواع

Διαβάστε περισσότερα

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري.

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري. حفاظت مقایسه فاز در خطوط انتقال جبران شده سري همراه با MOV 2 1 محمد رضا پویان فر جواد ساده 1 دانشگاه آزاد اسلامی واحد گناباد reza.pooyanfar@gmail.com 2 دانشکده فنی مهندسی دانشگاه فردوسی مشهد sadeh@um.ac.ir

Διαβάστε περισσότερα

آموزش اتوکد (AutoCAD)

آموزش اتوکد (AutoCAD) آموزش اتوکد (AutoCAD) تهیه و تنظیم: سید مسعود توفیقی اسفهالن ایمیل: Captain_k2@yahoo.com سامانه پیام کوتاه: 30002105000010 وبسایت: آموزش اتوکد (AUTOCAD) فهرست آموزش نرم افزار اتوکد )AutoCAD( درس اول: -

Διαβάστε περισσότερα

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور فرانک معتمدی * دکترفرید شیخ االسالم 2 -دانشجوی رشته برق دانشگاه آزاد واحد نجفآباد Fa_motamedi@yahoo.com 2 -استاد گروه برق

Διαβάστε περισσότερα

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11(

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( سرفصل دروس: مفاهیم و تعاریف نمونه گیری و توزیع های نمونه ای برآورد کردن)نقطه ای فاصله ای( آزمون فرضیه آنالیز واریانس مدلهای خطی رگرسیون آزمون استقالل و جداول

Διαβάστε περισσότερα

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند.

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند. 5 موتورهای تک فاز 183 موتورهای تکفاز هدف های رفتاری: نحوه تولید میدان مغناطیسی در یک استاتور با یک و دو سیم پیچ را بررسی نماید. لزوم استفاده از سیم پیچ کمکی در موتورهای تک فاز را توضیح دهد. ساختمان داخلی

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه 2 1* فرانک معتمدی فرید شیخ االسالم 1 -دانشجوی دانشکده برق

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα