10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ"

Transcript

1 فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد. 4- انرژي جنبشي چرخشي و لختي چرخشي را محاسبه كنيد. 5- گشتاور نيرو را تعريف و محاسبه كنيد. 6- قانون دوم نيوتن را براي چرخش يك جسم بنويسيد. - متغيرهاي چرخشي اگر جسم صلبي حول محوري بچرخد مي توان نقطه اي را را در نظر گرفت كه حول محور چرخش يك مسير دايره اي را مي پيمايد. خط مرجع ثابت در جسم را در نظر بگيريد كه عمود بر محور باشد و همراه جسم مي چرخد. مكان زاويه اي اين خط برابر زاويه خط نسبت به يك راستاي ثابت است كه آن را مكان زاويه اي صفر در نظر مي گيريم. طول كمان طي شده برابر است با گيريم. كه در اين جا s طول كمان r s = rθ شعاع دايره و θزاويه طي شده از نقطه ي صفر در نظر مي شكل هاي - و -3 كتاب وضعيت يك جسم در حال چرخش را نشان مي دهند. زاويه ي θبر حسب راديان (rad) اندازه گيري مي شود و بايد دانست كه يك دور چرخش معادل π راديان مي باشد.

2 جابه جاي ي زاويه اي : اگر جسمي حول محور چرخشي خود بگردد جابه جاي ي زاويه اي نقطه اي در اين چرخش برابر است با : θ = θ θ اين تعريف نه تنها براي يك جسم صلب بلكه براي هر ذره داخلي جسم صلب نيز برقرار است. در نظر داشته باشيد كه هر جابجايي زاويه اي در جهت پاد ساعت گرد مثبت و در جهت ساعت گردد منفي تعريف شده است.

3 -- سرعت زاويه اي اگر جسم چرخاني در لحظه t در θو در لحظه t در θ باشد سرعت زاويه اي متوسط اين جسم دربازه ي زماني t از t به t به صورت زير تعريف مي شود. است با : در صورتي كه θ θ θ ωave = = t t t t باشد. سرعت زاويه اي لحظه اي را مي تو ان تعريف كرد كه برابر dθ ω = سرعت زاويه اي مثبت است چنانچه كه جسم پاد ساعتگرد حركت كند و منفي است چنانچه جسم ساعتگرد حركت نمايد. شتاب زاويه اي تω غيير كند و اين تغيير را در بازه ω به اگر سرعت زاويه اي جسمي از t انجام دهد مي توان شتاب متوسطي را تعريف كرد كه از رابطه ي زير به دست مي آيد. Ave = و چنانچه t محاسبه مي گردد: ي زماني ω t اين شتاب به شتاب لحظه اي تبديل مي شود كه از رابطه ي زير = dω -- چرخش با شتاب زاويه اي ثابت چنانچه به ياد داريم در حركت انتقالي يك جسم با شتاب ثابت يكدسته معادله حركت آن جسم را توصيف مي كرد. اين معادلات عبارت بودند از : v = v + at x = x + v t + at v v = a( x x ) X X = ( v + v ) t در مورد حركت چرخشي خالص كافي است كه كميت هاي نوشته شده در معادلات بالا را با كميت هاي متناظر آنها در يك حركت چرخشي تعويض كرد. بدين معني كه x را با v θ را با w و a را با تعويض كنيد. معادلات به دست آمده عبارت خواهند بود از :

4 w = w θ = θ + w t + w w + t θ θ = = t ( θ θ ) ( w + w )t 3-- رابطه ميان متغيرهاي خطي و زاويه اي اگر خط مرجع روي جسم صلب با زاويه θبچرخد يك نقطه روي جسم در مكان r از محور چرخش مسافت s را در طول يك كمان دايره اي طي مي كند. مقدار s از رابطه ي زير به دست مي آيد. اگر ازمعادله بالا نسبت به زمان مشتق بگيريم. s = rθ ds dv dθ = r v = rw d t و چنانچه از رابطه ي به دست آمده نسبت به زمان مشتق بگيريم خواهيم داشت كه : توجه داشته باشيدكه زاويه ي θبر حسب راديان مي باشد. v r dw = r a = r a در رابطه بالا شتاب مماس جسم است و نبايد با شتاب مركز گرا كه برابر با مي باشد اشتباه شود. 4-- انرژي جنبشي چرخشي اگر جسم صلب را مجموعه اي از ذرات در نظر بگريم كه همگي با يك سرعت زاويه اي حول محوري در حال چرخش هستند مي توا ن انرژي جنبشي كل سيستم متشكل از ذرات را به صورت زير نوشت : توجه داشته باشيد كه K = m v + m v +... = m ( r w) + m ( r w) +... = ( mr + m r +...) w ( mr ) w w براي تمام ذرات يكسان ولي v و r متفاوت هستند. كميت داخل پرانتز را به نام لختي چرخشي (يا گشتاور ماند) مي شناسيم و در حركت چرخشي يك

5 جسم نقش متناظر جرم را در حركت انتقالي دارد. بنابراين اگر لختي چرخشي را با I نشان دهيم خواهيم داشت كه : K = I w, I = m r براي محاسبه لختي چرخشي يك جسم صلب بايد علامت جمع را در عبارت I با علامت انتگرال تعويض كرد و به جاي ذره اي با جرم m بايد يك ديفرانسيل از جرم را به نا م dm در نظر گرفت در اين حالت لختي دوران يك جسم صلب را مي توان به صورت زير نوشت : جدول - كتاب جواب هاي به دست آمده از انتگرال I را نشان مي دهد. I = r dm جدول - لختيهاي چرخشي چند جسم قضيه محورهاي موازي اين قضيه اظهار مي دارد كه چنانچه لختي جسمي حول محوري كه از مركز جرم مي گذرد محاسبه شده و دانسته باشد مي توان لختي آن جسم را حول محوري موازي با محور اوليه به دست آورد. رابطه ي زير اين لختي را حول محور جديد نشان مي دهد. I I + cm = Mh h فاصله ي عمودي ميان محور داده شده و محوري است كه از مركز جرم مي گذرد.

6 5-- گشتاور نيرو گشتاور نيرور يك كميت برداري است و اثر چرخشي نيروي F v وارد به يك جسم حول محور چرخش را بيان مي كند. اين كميت از ضرب برداري دو بردار r v و F v به دست مي آيد. اگر F v بر نقطه اي اثر كند كه داراي بردار مكان r v مي باشد گشتاور عبارت است از: v τ = r v F مقدار اين بردار عبارت خواهد بود از : τ = r F snϕ ϕ زاويه ي بين بردار F و بردار r خواهد بود. در دستگاه اندازه گيري SI واحد گشتاور N.m خواهد بود. آمد. 6-- قانون دوم نيوتن براي چرخش كميتي كه متناظر با نيروي F v در يك حركت انتقالي است گشتاور چرخش مي باشد. يعني با نوشتن قانون دوم نيوتن در يك حركت انتقالي مي توان F v را با τو v m را با I و a را با تعويض كرد و معادله ي قانون دوم نيوتن در يك حركت چرخشي به صورت زير در خواهد τ = I اگر بيش از يك نيرو به جسم وارد شود مي توان گشتاور هر نيرو را جداگانه حساب كرد و مجموع برداري آنها را با τ net نشان داد. در اين حالت خواهيم داشت كه : τ net = I جهت τبر جهت r v و F v عمود مي باشد و بنابراين بر صفحه ي چرخش جسم عمود است. بياد داشته باشيد كه جهت τاز قانون دست راست به دست مي آيد. 7-- كار و انرژي جنبشي چرخشي در حالت انتقالي يك جسم مي دانيم زماني كه نيروي F v بر جسمي وارد مي شود تغييرات انرژي جنبشي برابر با كار انجام توسط آن نيرو روي جسم مي باشد. در حالتي كه نيروي F v بر جسمي اثر مي كند و باعث چرخش آن جسم مي شود اگر v سرعت چرخش جسم باشد مي توان فرض كرد كه جسم از تعداد ذرات با جرم هاي فاصله ي r از محور چرخش قرار دارند بنابراين : m تشكيل يافته كه هر كدام در K K = m v v m r ( m r ) w r Iw = = =

7 بنابراين انرژي جنبشي را مي توان حاصل ضرب لختي چرخش در قضيه كار انرژي جنبشي را مي توان به صورت زير نوشت كه : است از : w دانست حال K = Iw f Iw = اين قضيه كار انرژي در حالت چرخشي خالص مي باشد. از اين گذشته اگر به فرمول را كار در مورد حركت انتقالي دقت كنيم كه عبارت r = r F dr مي توان متناظر با اين فرمول براي يك حركت چرخشي مطلق نوشت كه : و در صورتي كه τثابت باشد مي توان نوشت كه : به همين ترتيب براي توان مصرف شده مي توان نوشت كه : P = = τ dθ = τ dw ( θ θ ) f dθ = τ = τw در جدول 3- كتاب فرمول هاي فيزيك براي حركت انتقالي و حركت چرخشي نوشته شده است. با نگاهي به اين جدول متوجه تناظر بين كميت هاي اين دو گروه از عبارات مي شويد. جدول -3 برخي رابطه هاي متناظر براي حركت انتقالي و چرخشي مكان زاويه اي چرخش خالص (محور ثابت) مكان انتقالي خالص (راستاي ثابت) x سرعت زاويه اي سرعت v = dx / شتاب زاويه اي شتاب a = dv / لختي چرخشي قانون دوم نيوتون كار انرژي جنبشي جرم قانون دوم نيوتون كار انرژي جنبشي m Fnet = ma = F dx K = mv توان (با گشتاور نيروي ثابت) توان (با نيروي ثابت) P = Fv قضيه كار-انرژي جنبشي قضيه كار-انرژي جنبشي = K θ ω = dθ / α = dω / I τ net = I α = τ d θ K = Iω P = τω = K تمرين هاي فصل : #, 5, 9, 3, 9, 3, 33, 39, 45, 55, 59, 67, 69, 77, 85, 96.

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم

Διαβάστε περισσότερα

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه

Διαβάστε περισσότερα

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s. معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود. ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور

Διαβάστε περισσότερα

حل J 298 كنيد JK mol جواب: مييابد.

حل J 298 كنيد JK mol جواب: مييابد. تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته

Διαβάστε περισσότερα

را بدست آوريد. دوران

را بدست آوريد. دوران تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل

Διαβάστε περισσότερα

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم« 3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما

Διαβάστε περισσότερα

آزمایش 2: تعيين مشخصات دیود پيوندي PN

آزمایش 2: تعيين مشخصات دیود پيوندي PN آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω

Διαβάστε περισσότερα

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود. ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا

Διαβάστε περισσότερα

آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار.

آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار. ` آزمايشگاه ديناميك ماشين و ارتعاشات dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش چرخ طيار يا چرخ ل نگ (flywheel) صفحه مدوري است كه به دليل جرم و ممان اينرسي زياد خود قابليت بالايي در ذخيرهسازي

Διαβάστε περισσότερα

+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر

+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر ا نتالپي تشكيل پيوند وا نتالپي تفكيك پيوند: ا نتالپي تشكيل يك پيوندي مانند A B برابر با تغيير ا نتالپي استانداردي است كه در جريان تشكيل ا ن B g حاصل ميشود. ( ), پيوند از گونه هاي (g )A ( ) + ( ) ( ) ;

Διαβάστε περισσότερα

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر: آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك

Διαβάστε περισσότερα

سعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد

سعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد تمرينات درس اندازه گيري دانشگاه شاهد سعيدسيدطبايي تمرين سري 1 و 2 سوال 1: اندازه گيري را تعريف كرده مشخصات شاخص و دستگاه اندازه گيري را بنويسيد منظور از كاليبراسيون و تنظيم چيست. تفاوت دستگاههاي اندازه

Διαβάστε περισσότερα

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ

Διαβάστε περισσότερα

98-F-TRN-596. ترانسفورماتور بروش مونيتورينگ on-line بارگيري. Archive of SID چكيده 1) مقدمه يابد[

98-F-TRN-596. ترانسفورماتور بروش مونيتورينگ on-line بارگيري. Archive of SID چكيده 1) مقدمه يابد[ و 98-F-TRN-596 محاسبه جهشهاي حرارتي و عمر از دست رفته ترانسفورماتور بروش مونيتورينگ n-line بارگيري آرش آقايي فر- حسين عزيزي موسسه تحقيقات ترانسفورماتور ايران واژه هاي كليدي: بارگيري ترانسفورماتور قدرت

Διαβάστε περισσότερα

فصل چهارم آشنايي با اتوكد 2012 فصل چهارم

فصل چهارم آشنايي با اتوكد 2012 فصل چهارم 55 فصل چهارم آشنايي با اتوكد 2012 56 هدفهاي رفتاري پس از پايان اين فصل هنرجو بايد در AutoCAD بتواند : 1- قسمت هاي مختلف محيط كار AutoCAD را بشناسد. 2- با كاربرد روبانهاي مختلف آشنايي كلي داشته باشد. 3-

Διαβάστε περισσότερα

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ 1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

ˆÃd. ¼TvÃQ (1) (2) داشت: ( )

ˆÃd. ¼TvÃQ (1) (2) داشت: ( ) تغيير ا نتالپي : ΔH بيشتر واكنشها در شيمي در فشار ثابت انجام ميگيرند. سوختن كبريت در هواي ا زاد و همچنين واكنش خنثي شدن سود با سولفوريك اسيد در يك بشر نمونه اي از واكنشهايي هستند كه در فشار ثابت انجام

Διαβάστε περισσότερα

گﺮﺑﺪﻳر ﺖﺑﺎﺛ يﺮﻴﮔهزاﺪ :ﺶﻳﺎﻣزآ فﺪﻫ :ﻪﻣﺪﻘﻣ

گﺮﺑﺪﻳر ﺖﺑﺎﺛ يﺮﻴﮔهزاﺪ :ﺶﻳﺎﻣزآ فﺪﻫ  :ﻪﻣﺪﻘﻣ اندازهگيري ثابت ريدبرگ هدف آزمايش: مطالعه طيف اتم هيدروژن و بدست آوردن ثابت ريدبرگ مقدمه: اتم هيدروژن سادهترين سيستم كوانتومي است و شامل يك پروتون و يك الكترون ميباشد. تي وري الكتروديناميك كوانتومي قادر

Διαβάστε περισσότερα

بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه

بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه 79 نشريه انرژي ايران / دوره 2 شماره 3 پاييز 388 بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه رضا گودرزي راد تاريخ دريافت مقاله: 89//3 تاريخ پذيرش مقاله: 89/4/5 كلمات كليدي: اثر

Διαβάστε περισσότερα

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

چكيده است. كليد واژه:

چكيده است. كليد واژه: 25 مجله علمي - پژوهشي مهندسي مكانيك مجلسي / سال چهارم / شماره اول / پاي يز 1389 هدايت و كنترل يك ربات زيرآبي به روش كنترل فازي 2 1 مهدي قنواتي افشين قنبرزاده hanavatimehdi@yahoo.com دريافت مقاله: 89/04/20

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

R = V / i ( Ω.m كربن **

R = V / i ( Ω.m كربن ** مقاومت مقاومت ويژه و رسانندگي اگر سرهاي هر يك از دو ميله مسي و چوبي را كه از نظر هندسي مشابهند به اختلاف پتانسيل يكساني وصل كنيم جريانهاي حاصل در ا نها بسيار متفاوت خواهد بود. مشخصهاي از رسانا كه در اينجا

Διαβάστε περισσότερα

( Δ > o) است. ΔH 2. Δ <o ( ) 6 6

( Δ > o) است. ΔH 2. Δ <o ( ) 6 6 تغييرات انرژي ضمن انحلال: اكثر مواد در موادي مشابه خود حل ميشوند و اين پديده را با برهمكنشهاي ميكروسكوپي بررسي كرديم. براي بررسي ماكروسكوپي اين پديده بايد تغييرات انرژي (ا نتالپي) و تغييرات بينظمي (ا نتروپي)

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

چكيده SPT دارد.

چكيده SPT دارد. ارايه يك روش چيدمان خلاقانه جديد براي زمانبندي دسترسي به شبكه جهت كاهش انجام درخواستها سهراب خانمحمدي سولماز عبدالهي زاد استاد گروه مهندسي كنترل دانشگاه تبريز تبريز ايران Khamohammadi.sohrab@tabrizu.ac.ir

Διαβάστε περισσότερα

ﻞﺼﻓ ﻯﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻡﻮﺳ ﻲﻘﻓﺍ ﻱ ﻪﻠﺻﺎﻓ ﻢﻴﻘﺘﺴﻣﺮﻴﻏ ﺵﻭﺭ ﻪﺑ ﺶﺨﺑ ﻝﻭﺍ - ﺴﻣ ﻲﺣﺎ

ﻞﺼﻓ ﻯﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻡﻮﺳ ﻲﻘﻓﺍ ﻱ ﻪﻠﺻﺎﻓ ﻢﻴﻘﺘﺴﻣﺮﻴﻏ ﺵﻭﺭ ﻪﺑ ﺶﺨﺑ ﻝﻭﺍ - ﺴﻣ ﻲﺣﺎ اندازه گيرى فاصله ي افقي فصل سوم به روش غيرمستقيم بخش اول - مس احي 39 هدف هاى رفتارى : پس از ا موزش و مطالعهى اين فصل از فراگيرنده انتظار مىرود بتواند: 1- اندازهگيرى فاصلهى افقى به روش غيرمستقيم را تعريف

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y=

رياضي 1 و 2 تابع مثال: مثال: 2= ميباشد. R f. f:x Y Y= رياضي و رياضي و تابع تعريف تابع: متغير y را تابعي از متغير در حوزه تعريف D گويند اگر به ازاي هر از اين حوزه يا دامنه مقدار معيني براي متغير y متناظر باشد. يا براي هر ) y و ( و ) y و ( داشته باشيم ) (y

Διαβάστε περισσότερα

3 و 2 و 1. مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند.

3 و 2 و 1.  مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند. بررسي سازگاري تخمين در الگوريتم EKF-SLAM و پيشنهاد يك روش جديد با هدف رسيدن به سازگاري بيشتر فيلتر و كاستن هرينه محاسباتي امير حسين تمجيدي حميد رضا تقيراد نينا مرحمتي 3 و و گروه رباتيك ارس دپارتمان كنترل

Διαβάστε περισσότερα

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود

مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود اهداف: محاسبه ريشه دستگاه دسته عدم وابسته معادالت ريشه هاي چندجمله اي معادالت غيرخطي بندي وابستگي به روش به مشتق مشتق تابع مقدمه غير خطي هاي عددي تابع دسته بندي دوم روش هاي عددي دامنه محدود دامنه نامحدود

Διαβάστε περισσότερα

Distributed Snapshot DISTRIBUTED SNAPSHOT سپس. P i. Advanced Operating Systems Sharif University of Technology. - Distributed Snapshot ادامه

Distributed Snapshot DISTRIBUTED SNAPSHOT سپس. P i. Advanced Operating Systems Sharif University of Technology. - Distributed Snapshot ادامه Distributed Snapshot يك روش براي حل GPE اين بود كه پردازهي مبصر P 0 از ديگر پردازهها درخواست كند تا حالت محلي خود را اعلام كنند و سپس آنها را باهم ادغام كند. اين روش را Snapshot گوييم. ولي حالت سراسري

Διαβάστε περισσότερα

t a a a = = f f e a a

t a a a = = f f e a a ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۴-۱ گزارش کار راهاندازي و تنظيم سرعت موتورهايي DC (شنت) استاد درياباد نگارش: اشکان نيوشا ۱۶ ا ذر ۱۳۸۷ ي م به نام خدا تي وري ا زمايش شنت است. در اين ا زمايش

Διαβάστε περισσότερα

هلول و هتسوپ لدب م ١ لکش

هلول و هتسوپ لدب م ١ لکش دوفازي با كيفيت صورت مخلوط به اواپراتور به 1- در اواپراتور كولر يك اتومبيل مبرد R 134a با دبي 0.08kg/s جريان دارد. ورودي مبرد مي شود و محيط بيرون در دماي 25 o C وارد از روي اواپراتور از بخار اشباع است.

Διαβάστε περισσότερα

- تنش: ( ) kgf / cm. Pa 10. Δ L=δ. ε= = L σ= Eε. kg/cm MPa) 21 / 10. l Fdx. A δ= ε ν= = z ε y =ε z = νεx

- تنش: ( ) kgf / cm. Pa 10. Δ L=δ. ε= = L σ= Eε. kg/cm MPa) 21 / 10. l Fdx. A δ= ε ν= = z ε y =ε z = νεx مقامت مصالح N = m α Δ Δ - تنش كرنش: - يادآري تعاريف: - تنش: Δ.cos α =τ تنش برشي Δ Δ.sin α =σ تنش عمدي (نرمال) Δ - احدها: احدهاي تنش همان احدهاي فشار ميباشند.,K,M,... / N kgf / cm 9 8 = m - كرنش: عبارتست

Διαβάστε περισσότερα

ﻡﺮﻧ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﺮﺘﻣﺍﺭﺎﭘ ﺮﻴﻴﻐﺗ ﺮﺛﺍ ﺭﺩ ﻲﻳﺎﻘﻟﺍ ﺭﻮﺗﻮﻣ ﻲﻜﻴﻣﺎﻨﻳﺩ ﺭﺎﺘﻓﺭ ﻲﺳﺭﺮﺑ

ﻡﺮﻧ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﺮﺘﻣﺍﺭﺎﭘ ﺮﻴﻴﻐﺗ ﺮﺛﺍ ﺭﺩ ﻲﻳﺎﻘﻟﺍ ﺭﻮﺗﻮﻣ ﻲﻜﻴﻣﺎﻨﻳﺩ ﺭﺎﺘﻓﺭ ﻲﺳﺭﺮﺑ بررسي رفتار ديناميكي موتور القايي در اثر تغيير پارامتر با استفاده از نرم افزار Matla ايمان مظهري رامتين حديدي و ابوالفضل واحدي دانشگاه علم و صنعت ايران avahed@ut.ac., amtn_hadd@yahoo.com, mazha@gmal.com

Διαβάστε περισσότερα

چكيده 1- مقدمه درخت مشهد ايران فيروزكوه ايران باشد [7]. 5th Iranian Conference on Machine Vision and Image Processing, November 4-6, 2008

چكيده 1- مقدمه درخت مشهد ايران فيروزكوه ايران باشد [7]. 5th Iranian Conference on Machine Vision and Image Processing, November 4-6, 2008 پنهاني سازي تصوير با استفاده از تابع آشوب و درخت جستجوي دودويي رسول عنايتي فر دانشكده مهندسي كامپيوتر دانشگاه آزاد اسلامي فيروزكوه ايران r.enayatifar@iaufb.ac.ir مرتضي صابري كمرپشتي دانشكده مهندسي كامپيوتر

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

تي وري آزمايش ششم هدف: بررسي ترانزيستور.UJT

تي وري آزمايش ششم هدف: بررسي ترانزيستور.UJT ب- پ- آزمايشگاه الكترونيك - درس دكتر سبزپوشان تي وري آزمايش ششم هدف: بررسي ترانزيستور.UJT *لطفا قبل از آمدن به آزمايشگاه با مراجعه به كتابهاي درسي تي وري ترانزيستورهاي UJT را مطالعه فرماي يد. Uni )يكي

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

A مولفه Z نوشته ميشود: رساناي ي الكتريكي و تعريف ميباشد. سطح ميشود: T D جسم يعني:

A مولفه Z نوشته ميشود: رساناي ي الكتريكي و تعريف ميباشد. سطح ميشود: T D جسم يعني: مدلسازي حرارتي سيمپيچ ترانسفورمر با استفاده از كوپل ميدانهاي مغناطيسي و حرارتي در محيط المان محدود 1 عطا فخري فرهاد شهنيا 1 شركت مهندسين مشاور نير يو دفتر تحقيقات و استاندارد- شركت توزيع نير يو 4 3 محمد

Διαβάστε περισσότερα

DA-SM02-1 هدف : 2- مقدمه

DA-SM02-1 هدف : 2- مقدمه DA-SM02 تست ضربه - هدف : تعيين مقدار انرژي شكست فلزات 2- مقدمه يكي از مساي ل مهم در صنعت كه باعث خسارات زيادي ميشود شكستن قطعات براثر تردي جنس آنها ميباشد. آزمايشهاي كشش و فشار با همه اهميت خود نميتوانند

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

1- مقدمه است.

1- مقدمه است. آموزش بدون نظارت شبكه عصبي RBF به وسيله الگوريتم ژنتيك محمدصادق محمدي دانشكده فني دانشگاه گيلان Email: m.s.mohammadi@gmail.com چكيده - در اين مقاله روشي كار آمد براي آموزش شبكه هاي عصبي RBF به كمك الگوريتم

Διαβάστε περισσότερα

ﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ

ﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ تعيين انرژي بلوري با استفاده از چرخه بورن - هابر چون معمولا روش تجربي مستقيمي براي اندازهگيري انرژي اي وجود ندارد روش محاسبه اين انرژي براي تركيبات يوني اهميت بسياري مييابد. اما مقداري انرژي اي با استفاده

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال قدرت دوچرخه با هدف تعديل در دامنه نوسان شتاب حاصل از رکابزدن

بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال قدرت دوچرخه با هدف تعديل در دامنه نوسان شتاب حاصل از رکابزدن Vol. 4, No. 2, Winter 2014, pp. 2- نشريه علمي پژوهشي اميرکبير )مهندسي مکانيک( Amirkabir Journal of Science & Research (Mechanical Engineering) (AJSR - ME) بهبود پروفیل هندسی چرخ زنجیر در سامانه انتقال

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

يﺎﻫ ﻢﺘﺴﻴﺳ زا هدﺎﻔﺘﺳا ﺎﺑ (IP) ﺖﻧﺮﺘﻨﻳا ﻞﻜﺗوﺮﭘ رد تﺎﻋﻼﻃا يوﺎﺣ يﺎﻫ ﻪﺘﺴﺑ لﺎﻘﺘﻧا (DWDM)جﻮﻣ لﻮﻃ ﻢﻴﺴﻘﺗ لﺎﮕﭼ هﺪﻨﻨﻛ ﺲﻜﻠﭘ ﻲﺘﻟﺎﻣ يرﻮﻧ ﺮﺒﻴﻓ

يﺎﻫ ﻢﺘﺴﻴﺳ زا هدﺎﻔﺘﺳا ﺎﺑ (IP) ﺖﻧﺮﺘﻨﻳا ﻞﻜﺗوﺮﭘ رد تﺎﻋﻼﻃا يوﺎﺣ يﺎﻫ ﻪﺘﺴﺑ لﺎﻘﺘﻧا (DWDM)جﻮﻣ لﻮﻃ ﻢﻴﺴﻘﺗ لﺎﮕﭼ هﺪﻨﻨﻛ ﺲﻜﻠﭘ ﻲﺘﻟﺎﻣ يرﻮﻧ ﺮﺒﻴﻓ انتقال بسته هاي حاوي اطلاعات در پروتكل اينترنت (IP) با استفاده از سيستم هاي فيبر نوري مالتي پلكس كننده چگال تقسيم طول موج( DWDM ) محمد فرداد دانشگاه گيلان mohammad.fardad@gmail.com چكيده اين مقاله مفهوم

Διαβάστε περισσότερα

نقش نيروگاههاي بادي در پايداري گذراي شبكه

نقش نيروگاههاي بادي در پايداري گذراي شبكه No. F-13-AAA-0000 همايون برهمندپور سيما كمانكش سعيد سليمي حميد دانايي محمد جعفريان پژوهشگاه نيرو گروه مطالعات سيستم تهران - ايران Uhberahmandpour@nri.ac.irU2T, Uskamankesh@nri.ac.irU2T, 2T Ussalimi@nri.ac.ir,

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

مريم اسپندار - وحيدحقيقتدوست چكيده 1- مقدمه. ١ Vehicular Anti-Collision Mechanism ٢ Intelligent Vehicular Transportation System

مريم اسپندار - وحيدحقيقتدوست چكيده 1- مقدمه. ١ Vehicular Anti-Collision Mechanism ٢ Intelligent Vehicular Transportation System اراي ه الگوريتم اجتناب از برخورد و تشخيص تقدم خودروها در تقاطع با استفاده از شبكه هاي موقتي مريم اسپندار - وحيدحقيقتدوست سازمان تنظيم مقررات و ارتباطات راديويي espandar@cra.ir دانشكده فني و مهندسي دانشگاه

Διαβάστε περισσότερα

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از:

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از: آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: یک (R.A.Millikan) رابرت میلیکان 1909 در سال روش عملی براي اندازهگیري بار یونها گزارش کرد. این روش مشاهده حرکت قطرات ریز

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

yazduni.ac.ir دانشگاه يزد چكيده: است. ١ -مقدمه

yazduni.ac.ir دانشگاه يزد چكيده: است. ١ -مقدمه كنترل سرعت هوشمند موتورهاي DC sharif_natanz@yahoo.com sedighi@ yazduni.ac.ir دانشگاه يزد دانشگاه يزد حميد رضا شريف خضري عليرضا صديقي اناركي چكيده: دامنه وسيع سرعت موتورهايDC و سهولت كنترل ا نها باعث كاربرد

Διαβάστε περισσότερα

جريان ديفرانسيلي CDBA

جريان ديفرانسيلي CDBA پياده سازي فيلترهاي آنالوگ مد جرياني با استفاده از DTA محرم حسين پور و بابك قصاب زاده اهرابي گروه مهندسي برق الكترونيك- دانشگاه آزاد اسلامي واحد تبريز babakahrabi@gmail.com m.hosseinpour.n@gmail.com چكيده

Διαβάστε περισσότερα

No. F-16-EPM مقدمه

No. F-16-EPM مقدمه No. F-16-EPM -2151 بررسي اثر پرداخت بهاي آمادگي بر هزينههاي بازار برق ايران مريم طارمي سيد ميثم عزتي رضا طهماسبي ايمان رحمتي مديريت نظارت و كنترل بر عملكرد بازار برق معاونت بازار برق ايران شركت مديريت

Διαβάστε περισσότερα

(POWER MOSFET) اهداف: اسيلوسكوپ ولوم ديود خازن سلف مقاومت مقاومت POWER MOSFET V(DC)/3A 12V (DC) ± DC/DC PWM Driver & Opto 100K IRF840

(POWER MOSFET) اهداف: اسيلوسكوپ ولوم ديود خازن سلف مقاومت مقاومت POWER MOSFET V(DC)/3A 12V (DC) ± DC/DC PWM Driver & Opto 100K IRF840 منابع تغذيه متغير با مبدل DC به DC (POWER MOSFET) با ترانز يستور اهداف: ( بررسی Transistor) POWER MOSFET (Metal Oxide Semiconductor Field Effect براي كليد زني 2) بررسي مبدل DC به.DC كاهنده. 3) بررسي مبدل

Διαβάστε περισσότερα

1- مقدمه

1- مقدمه سيستم هاي هوشمند در مهندسي برق سال سوم شماره دوم تابستان 91 بهبود نوسان گشتاور و بازده ماشين سنكرون مغناطيس داي م داخلي بر اساس كنترلر فازي در روش كنترل مستقيم گشتاور 4 3 2 1 حجت مصطفوي بهزاد ميرزاي يان

Διαβάστε περισσότερα

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩

ناﺪﻨﻤﺸﻧاد ﺎﺑ ﯽﻳﺎﻨﺷآ تاو (١٧٣٦ــ١٨١٩ فصل ٣ کار و توان هدف های رفتاری: در پايان اين فصل از هنرجو انتظار می رود: ١ کار الکتريکی را با ذکر رابطه شرح دهد. ٢ توان الکتريکی را با ذکر روابط شرح دهد. ٣ ضريب بهره (راندمان) را با ذکر رابطه توضيح دهد.

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه بخش غیرآهنی هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه رفتار شبه کشسان )Pseudoelasticity( که به طور معمول ابرکشسان )superelasticity( ناميده می شود رفتار برگشت پذیر کشسان ماده در برابر تنش اعمالی است

Διαβάστε περισσότερα

رﺎﺸﺘﻧا ياﺮﺑ پﺎﭼ ياﺮﺑ هدﺎﻣآ

رﺎﺸﺘﻧا ياﺮﺑ پﺎﭼ ياﺮﺑ هدﺎﻣآ دستورالعمل تهية مقالة» آماده براي چاپ «براي انتشار در نشريه پژوهشي انجمن مهندسان مكانيك ايران 1 -آرايش كلي مقاله بايد روي كاغذ سفيد مرغوب (297 210) A4 تهيه و تنها بر يك روي كاغذ چاپ شود. جهت تايپ مقاله

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

گروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران

گروه رياضي دانشگاه صنعتي نوشيرواني بابل بابل ايران گروه رياضي دانشگاه صنعتي شاهرود شاهرود ايران و ۱ دسترسي در سايت http://jnrm.srbiau.ac.ir سال دوم شماره ششم تابستان ۱۳۹۵ شماره شاپا: ۱۶۸۲-۰۱۹۶ پژوهشهاي نوین در ریاضی دانشگاه آزاد اسلامی واحد علوم و تحقیقات دستهبندي درختها با عدد رومي بزرگ حسين عبدالهزاده

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

يون. Mg + ا نزيم DNA پليمراز III

يون. Mg + ا نزيم DNA پليمراز III مراحل همانندسازي DNA همانندسازي DNA را ميتوان به سه مرحله تقسيم كرد : ۱. مرحله ا غاز phase) :(Initiation شامل شناسايي مبدا همانندسازي تشكيل كمپلكس شروع همانندسازي يا ريپليزوم و اضافه شدن چند نوكلي وتيد

Διαβάστε περισσότερα

Eta 100% Zn. Zeta 93-94% Zn. Delta 90-92% Zn. Gamma % Zn. Base steel ساير پوششها: مقايسه پوششهاي گالوانيزه و رنگها:

Eta 100% Zn. Zeta 93-94% Zn. Delta 90-92% Zn. Gamma % Zn. Base steel ساير پوششها: مقايسه پوششهاي گالوانيزه و رنگها: مزايا و معايب لوله با پوششهاي گالوانيزه نسبت به ديگر لوله ها در صنعت مبحث كنترل خوردگي از گذشته مورد توجه بوده و تاكنون روشهاي متفاوتي براي جلوگيري از آن اراي ه گرديده كه در اين ميان با ساخت لوله هاي جديد

Διαβάστε περισσότερα

98-F-EEF-504 ايران - اصفهان چكيده مقدمه:

98-F-EEF-504 ايران - اصفهان چكيده مقدمه: 98-F-EEF-504 بررسي مزاياي جايگزيني لامپهاي LED به جاي منابع روشنايي متعارف فروغ تركي مهندسي برق الكترونيك مهدي رحماني مهندسي صنايع ) شركت مهندسي پاد انرژي اصفهان ايران - اصفهان واژههاي كليدي: لامپ LED

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان

Διαβάστε περισσότερα

1. مقدمه بگيرند اما يك طرح دو بعدي براي عايق اصلي ترانسفورماتور كافي ميباشد. با ساده سازي شكل عايق اصلي بين سيم پيچ HV و سيم پيچ LV به

1. مقدمه بگيرند اما يك طرح دو بعدي براي عايق اصلي ترانسفورماتور كافي ميباشد. با ساده سازي شكل عايق اصلي بين سيم پيچ HV و سيم پيچ LV به No. F-16-TRN-1277 عيب يابي عايق كاغذ روغن ترانسفورماتور قدرت به روش FDS محمد مرتاضي احمد مرادي دانشگاه آزاد اسلامي واحد تهران جنوب تهران ايران چكيده سنجش حوزه ي فركانس سيستم هاي عايقي كاغذ روغن روش تشخيص

Διαβάστε περισσότερα

ﻲﺘﻳﻮﻘﺗ يﺮﻴﮔدﺎﻳ زا هدﺎﻔﺘﺳا ﺎﺑ نآ لﺎﻘﺘﻧا و ﺶﻧاد يزﺎﺳ دﺮﺠﻣ

ﻲﺘﻳﻮﻘﺗ يﺮﻴﮔدﺎﻳ زا هدﺎﻔﺘﺳا ﺎﺑ نآ لﺎﻘﺘﻧا و ﺶﻧاد يزﺎﺳ دﺮﺠﻣ مجرد سازي دانش و انتقال آن با استفاده از يادگيري تقويتي 1 نرجس زارع 2 مجيد نيلي احمدآبادي 1 احمدرضا ولي 2 مريم سادات ميريان mmirian@ut.ac.ir ar.vali@gmail.com mnili@ut.ac.ir zare.narjes@gmail.com 1- دانشگاه

Διαβάστε περισσότερα

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی

Διαβάστε περισσότερα

چكيده 1- مقدمه

چكيده 1- مقدمه تشخيص پوست بر اساس يادگيري تقويتي مريم حبيبي پور مهديه پوستچي حميدرضا پوررضا سعيد راحتي قوچاني گروه هوش مصنوعي دانشگاه آزاد اسلامي مشهد گروه هوش مصنوعي دانشگاه علم و صنعت ايران گروه مهندسي كامپيوتر دانشگاه

Διαβάστε περισσότερα

: O. CaCO 3 (1 CO (2 / A 11 بوده و مولكولي غيرقطبي ميباشد. خصوصيتهاي

: O. CaCO 3 (1 CO (2 / A 11 بوده و مولكولي غيرقطبي ميباشد. خصوصيتهاي شيمي آلي مدرسان شريف رتبه يك كارشناسي ارشد شيمي آلي شيمي موادي تركيبها را در آزمايشگاه نميتوان فصل اول «مباني شيمي آلي» است كه با موجودات زنده ارتباط دارد. تا اواسط قرن نوزدهم ميلادي اعتقاد بر اين بود

Διαβάστε περισσότερα

شماره 59 بهار Archive of SID چكيده :

شماره 59 بهار Archive of SID چكيده : مجله علوم پايه دانشگاه آزاد اسلامي (JSIAU شماره 59 بهار 185 چكيده : محاسبه بهره انرژي جوش و گداخت سوخت پيشرفته هيدروژن بور با استفاده از مدل حجمي محصور سازي لختي رسول خدابخش گروه فيزيك دانشكده علوم دانشگاه

Διαβάστε περισσότερα

هدف آزمایش: مطالعه طیف اتم هیدروژن و بدست آوردن ثابت ریدبرگ مقدمه: ثابت پلانگ تقسیم بر 2 است. است که در حالت تعادل برابر نیروي جانب مرکز است.

هدف آزمایش: مطالعه طیف اتم هیدروژن و بدست آوردن ثابت ریدبرگ مقدمه: ثابت پلانگ تقسیم بر 2 است. است که در حالت تعادل برابر نیروي جانب مرکز است. اندازهگیري ثابت ریدبرگ هدف آزمایش: مطالعه طیف اتم هیدروژن و بدست آوردن ثابت ریدبرگ مقدمه: اتم هیدروژن سادهترین سیستم کوانتومی است و شامل یک پروتون و یک الکترون میباشد. تي وري الکترودینامیک کوانتومی قادر

Διαβάστε περισσότερα