1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }

Save this PDF as:

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }"

Transcript

1 هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف ( کاملا"مشخص باشند. ب ( متمایز باشند. مجموعه را معمولا"با حروف بزرگ الفباي لاتین و B و C و D و... نام گذاري می کنند. نمایش مجموعه : ٢ ٣ ٤ ٥ ٦ براي نمایش مجموعه روشهاي مختلفی وجود دارد. الف ( استفاده از نمودار ون» هندسی «B ب ( استفاده از جملات و } { ) تفصیلی ( نمودار ون ج ( استفاده از علاي م ریاضیات ) توصیفی ( *تمرین : کدامیک از مثالهاي زیر می توانند یک مجموعه تشکیل دهند. الف ( گل هاي خوشبو د ( دو شهر ایران ز ( 20 عدد طبیعی عضو بودن : ب ( سه حرف الفباي لاتین ه ( مقسوم علیه هاي اول عدد 60 ح ( 4 عدد زوج کوچکتر از 10 ج ( فوتبالیستهاي معروف و ( اعداد طبیعی ط ( اعداد اول کوچکتر از 20 هر عنصري که در یک مجموعه وجود دارد و از سایر عنصرها جدا می باشد عضو آن مجموعه می باشد و براي نمایش عضو بودن آن از علامت استفاده می شود. اگر عنصر عضو مجموعه است می گوي یم است. مجموعه هاي متناهی : اگر تعداد عضوهاي یک مجموعه شمارا باشد آن مجموعه را متناهی می گوي یم. مجموعه هاي نامتناهی : اگر تعداد عضوهاي یک مجموعه ناشمارا باشد آن مجموعه را نامتناهی می گوي یم. ١

2 مجموعه تهی : حجت زهري مجموعه اي که هیچ عضوي نداشته باشد مجموعه ي تهی می نامیم. براي نمایش مجموعه تهی از علامت و یا } { استفاده می شود. {{ }} { } نکته : موارد مقابل مجموعه تهی نمی باشند. {تهی} *مثال : کدام مورد صحیح و کدام مورد نادرست است. 1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { } } { تهی 10) }}, {{ } { 5) R,,, Z,, N,,, مجموعه هاي بی پایان معروف : R مجموعه اعداد فرد مجموعه اعداد صحیح Z مجموعه اعداد حقیقی مجموعه اعداد زوج مجموعه اعداد اول مجموعه اعداد حسابی مجموعه اعداد طبیعی N مجموعه اعداد گویا Q مجموعه اعداد گنگ Q زیر مجموعه : هرگاه با عضوهاي یک مجموعه مجموعه ي جدیدي بسازیم مجموعه ي جدید را زیر مجموعه ي مجموعه ي اول می گویند هرگاه با عضوهاي موجود در مجموعه مجموعه ي B را می سازیم می گوییم : است. مجموعه ي B زیر مجموعه ي مجموعه ي است اگر به ازاي هر داشته باشیم ٢ B

3 *مثال : تمام زیر مجموعه هاي مجموعه ي {β}, را بنویسید. *مثال : تمام زیر مجموعه هاي مجموعه ي {2,3},{2} را بنویسید. ( عدد اصلی مجموعه :(. ( ) مجموعه مانند را عدد اصلی می گویند و با نمایش می دهند تعداد عضوهاي یک نکته : عدد اصلی فقط براي مجموعه هاي متناهی تعریف می شود. ={{1},{1,1,1},{1}} ( ) = = {1,2,3,4,5,,100} ( ) = = {4,7,10,13,,214} ( ) = مجموعه هاي یک مجموعه n عضوي : کشف رابطه تعداد زیر... =تعداد زیر مجموعه 0 = ) ( ( ) =1 ( ) =2 ( ) = 3 ( ) =4 = تعداد زیر مجموعه = تعداد زیر مجموعه تعداد زیر مجموعه = = تعداد زیر مجموعه.... = تعداد زیر مجموعه )= ( = تعداد زیر مجموعه =5 ) ( *مثال : با اضافه شدن هر عضو تعداد زیر مجموعه ها چند برابر می شود *مثال : تعداد زیر مجموعه هاي یک مجموعه 2 + K عضوي چند برابر تعداد زیر مجموعه هاي یک مجموعه ي 2 - K عضوي است ٣

4 *مثال : تعداد زیر مجموعه هاي یک مجموعه 3+ K عضوي 8 برابر تعداد زیر مجموعه هاي یک مجموعه 1-2K عضوي است مقدار K چند است *مثال : تعداد زیر مجموعه هاي یک مجموعه K+4 عضوي از تعداد زیر مجموعه هاي یک مجموعه +K 1 عضوي 224 واحد بیشتر است مقدار K چه عددي می باشد *مثال : تعداد زیر مجموعه هاي یک مجموعه 1+K عضوي از سه برابر تعداد زیرمجموعه هاي یک مجموعه 1-K عضوي 16 واحد بیشتر است مقدار K چه قدر است تعداد زیر مجموعه هايK عضوي یک مجموعه n عضوي :! ( )!! = ) توجه شود به مبحث ترکیبات ( = تعداد زیرمجموعه هاي 2 عضوي : خلاصه فرمول 2 = ( 1) 2 = تعداد زیرمجموعه هاي 3 عضوي 3 = ( 1) ( 2) 6 *مثال : یک مجموعه 7 عضوي در هر یک از حالت زیر داراي چند زیر مجموعه است ب ( 3 عضوي د ( 6 عضوي الف ( یک عضوي ج ( دو عضوي زیر مجموعه هاي محض : به تمام زیر مجموعه هاي یک مجموعه غیر از خود آن مجموعه زیر مجموعه هاي محض آن مجموعه می گویند. *مثال :یک مجموعه 5 عضوي چند زیر مجموعه محض دارد = 2 1 تعداد زیر مجموعه هاي محض *مثال : اگر {{ },, 3 و 2 }= باشد درستی یا نادرستی هر یک از عبارتهاي زیر را مشخص کنید ٤

5 { } { } {2,3} {2,3}, { } {3} {{2}}. : مجموعه ي توانی ) ( نامیم. هرگاه تمام زیر مجموعه هاي یک مجموعه را نوشته و آنها را در یک مجموعه ي جدید قرار دهیم مجموعه جدید را مجموعه توانی می مجموعه ي زیر مجموعه ها را مجموعه ي توانی می نامیم. ={2,3} P()={{ 2},{3},{2,3}, } n(p()= می باشد. نتیجه : اگر n()=k باشد 2 *مثال : مجموعه توانی مجموعه {{ }, }= را بنویسید. *مثال : اگر 3 الف ( n(p()) چند است به سي ولات زیر پاسخ دهید. n()= باشد ب ( n(p(p(a))) چند است ج ( P(P()) چند زیر مجموعه دارد *اگر n(p(p(p(a))))=2 16 باشد n() چند است *اگر{,{ )P }}=() },{ 1},{ باشد مجموعه ي را بنویسید را بنویسید. *مجموعه ي((( P(P(P( *اگر{{{ }}}= و {{ }, }=B کدام یک از گزینه هاي زیر درست است ( ) ( ) P() ( ) *اگر {{,, },{ }}=B مجموعه ي P(P(B)) را مشخص کنید ٥

6 نوشتن مجموعه ها با علاي م ریاضی و بر عکس : هر یک از مجموعه هاي مقابل را با نوشتن عضوها مشخص کنید. ={, 2 = } B={, 3 = } C={ 3, 2 < 20} D={ 2 1 1, < 3} E={ 2, < 40} F={, 1 } G={2 3,, 2 + = 5} H={( 1) } I={2 +,,, 3} هریک از مجموعه هاي مقابل را با علاي م ریاضیات بنویسید. :{1,11,111, } B:{1,8,27, } C:{ 1, 2, 3, 4, } D:{7,8,11,16,23, } E:{-1,1,-1,1,-1,1, } H:{-2,+5,-10,+17,-26, } K:{-1,0,7,26, } ٦

7 بسته بودن یک مجموعه نسبت به عملهاي اصلی: می گوي یم مجموعه ي نسبت به هر یک از چهار عمل اصلی + و و و بسته است هر گاه هر کدام از دو عضو دلخواه از مجموعه ي را نسبت به هر یک از عملهاي اصلی محاسبه کردیم حاصل بدست آمده باز هم عضوي از همان مجموعه باشد (تذکر : می توانیم هر عضو را با خودش نیز در نظر بگیریم ( مثال : هر کدام از مجموعه هاي مقابل نسبت به کدامیک از چهار عمل اصلی بسته است ) مثال نقض بیاورید ( 1 و 0 و 1 N Z {...و 7 و 5 و 3 و 1 } {2 2 1 x } {...و 125 و 25 و 5 } R-Q *مثال : یک مجموعه ي تک عضوي مثال بزنید که نسبت به عمل جمع و تفریق و ضرب بسته باشد. *مثال : چه عضوي را به مجموعه ي{...و 4 و 2 و 2 - و 4... و- }= اضافه کنیم تا مجموعه ي حاصل نسبت به عمل جمع بسته باشد حجت زهري ٧

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات

سايت ويژه رياضيات   درسنامه ها و جزوه هاي دروس رياضيات سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

تمرین اول درس کامپایلر

تمرین اول درس کامپایلر 1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

شاخصهای پراکندگی دامنهی تغییرات:

شاخصهای پراکندگی دامنهی تغییرات: شاخصهای پراکندگی شاخصهای پراکندگی بیانگر میزان پراکندگی دادههای آماری میباشند. مهمترین شاخصهای پراکندگی عبارتند از: دامنهی تغییرات واریانس انحراف معیار و ضریب تغییرات. دامنهی تغییرات: اختالف بزرگترین و

Διαβάστε περισσότερα

تحلیل الگوریتم پیدا کردن ماکزیمم

تحلیل الگوریتم پیدا کردن ماکزیمم تحلیل الگوریتم پیدا کردن ماکزیمم امید اعتصامی پژوهشگاه دانشهاي بنیادي پژوهشکده ریاضیات 1 انگیزه در تحلیل الگوریتم ها تحلیل احتمالاتی الگوریتم ها روشی براي تخمین پیچیدگی محاسباتی یک الگوریتم یا مساله ي

Διαβάστε περισσότερα

فصل ششم: ترکیبات درس اول: شمارش اصل جمع و اصل ضرب فعالیت قیمه هویج سیب پرتقال قورمه «سورۀ نحل»

فصل ششم: ترکیبات درس اول: شمارش اصل جمع و اصل ضرب فعالیت قیمه هویج سیب پرتقال قورمه «سورۀ نحل» کد 11 فصل 6 فصل ششم: ترکیبات و إ ن ت ع د وا ن ع م ة الل ه ل ت ح صو ه ا و اگر بخواهید نمی توانید نعمت های خدا را بشمارید. «سورۀ نحل» درس اول: شمارش شاید شمارش درنظر برخی یک مهارت با اهمیت ریاضی نباشد و

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn

فعالیت = ) ( )10 6 ( 8 = )-4( 3 * )-5( 3 = ) ( ) ( )-36( = m n m+ m n. m m m. m n mn درس»ریشه ام و توان گویا«تاکنون با مفهوم توان های صحیح اعداد و چگونگی کاربرد آنها در ریشه گیری دوم و سوم اعداد آشنا شده اید. فعالیت زیر به شما کمک می کند تا ضمن مرور آنچه تاکنون در خصوص اعداد توان دار و

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه

جلسه 28. فرض کنید که m نسخه مستقل یک حالت محض دلخواه نظریه اطلاعات کوانتمی 1 ترم پاییز 1392-1391 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: مرتضی نوشاد جلسه 28 1 تقطیر و ترقیق درهم تنیدگی ψ m بین آذر و بابک به اشتراك گذاشته شده است. آذر و AB فرض کنید

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه

Διαβάστε περισσότερα

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ مبحث تناسب حجت زهري دانش آموز عزیز شما با مبحث تناسب از مقطع ابتدایی آشنا هستید. تناسب نوعی رابطه بین اعداد است که در آن اعداد و کمیتها به دو صورت می توانند با یکدیگر نسبت داشته باشند. مدل : تناسب مستقیم:

Διαβάστε περισσότερα

فصل ترکیبیات درس اول شمارش درس دوم جایگشت درس سوم ترکیب

فصل ترکیبیات درس اول شمارش درس دوم جایگشت درس سوم ترکیب ترکیبیات 6 فصل و إ ن ت ع د وا ن ع م ة الل ه ل ت ح صو ه ا»سورۀ ابراهیم آیۀ 4«و اگر بخواهید نمی توانید نعمت های خدا را بشمارید. درس اول شمارش درس دوم جایگشت درس سوم ترکیب داشتن حداقل چند رنگ کافی است تا

Διαβάστε περισσότερα

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو

Διαβάστε περισσότερα

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است.

محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته است. محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه 1 محاسبات کوانتمی 1 علم ساخت و استفاده از کامپیوتري است که بر پایه ي اصول مکانیک کوانتم قرار گرفته

Διαβάστε περισσότερα

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت

Διαβάστε περισσότερα

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی

جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی دانشکده ی علوم ریاضی ساختمان داده ۱۰ ا ذر ۹۲ جلسه ی ۱۸: درهم سازی سرتاسری - درخت جست و جوی دودویی مدر س: دکتر شهرام خزاي ی نگارنده: معین زمانی و ا رمیتا اردشیری ۱ یادا وری همان طور که درجلسات پیش مطرح

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد:

تخمین با معیار مربع خطا: حالت صفر: X: مکان هواپیما بدون مشاهده X را تخمین بزنیم. بهترین تخمین مقداری است که متوسط مربع خطا مینیمم باشد: تخمین با معیار مربع خطا: هدف: با مشاهده X Y را حدس بزنیم. :y X: مکان هواپیما مثال: مشاهده نقطه ( مجموعه نقاط کنارهم ) روی رادار - فرض کنیم می دانیم توزیع احتمال X به چه صورت است. حالت صفر: بدون مشاهده

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

نگاه کلی به فصل ششم اهداف کل ی 2 آشنایی با شرط تساوی دو ماتریس ماتریس صفر قرینه یک ماتریس و ویژگیهای آنها

نگاه کلی به فصل ششم اهداف کل ی 2 آشنایی با شرط تساوی دو ماتریس ماتریس صفر قرینه یک ماتریس و ویژگیهای آنها نگاه کلی به فصل ششم اهداف کل ی آشنایی با ماتریس و ویژگیهای آن آشنایی با شرط تساوی دو ماتریس ماتریس صفر قرینه یک ماتریس و ویژگیهای آنها 3 آشنایی با اعمال روی ماتریسها )جمع ماتریسها ضرب عدد در ماتریس ضرب

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

جلسه ی ۵: حل روابط بازگشتی

جلسه ی ۵: حل روابط بازگشتی دانشکده ی علوم ریاضی ساختمان داده ها ۶ مهر ۲ جلسه ی ۵: حل روابط بازگشتی مدر س: دکتر شهرام خزاي ی نگارنده: ا رمیتا ثابتی اشرف و علی رضا علی ا بادیان ۱ مقدمه پیدا کردن کران مجانبی توابع معمولا با پیچیدگی

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

جلسه ی ۴: تحلیل مجانبی الگوریتم ها

جلسه ی ۴: تحلیل مجانبی الگوریتم ها دانشکده ی علوم ریاضی ساختمان داده ها ۲ مهر ۱۳۹۲ جلسه ی ۴: تحلیل مجانبی الگوریتم ها مدر س: دکتر شهرام خزاي ی نگارنده: شراره عز ت نژاد ا رمیتا ثابتی اشرف ۱ مقدمه الگوریتم ابزاری است که از ا ن برای حل مسا

Διαβάστε περισσότερα

فصل صفر یادآوری مفاهیم پایه

فصل صفر یادآوری مفاهیم پایه فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان

Διαβάστε περισσότερα

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی

Διαβάστε περισσότερα

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا

نویسنده: محمدرضا تیموری محمد نصری مدرس: دکتر پرورش خالصۀ موضوع درس سیستم های مینیمم فاز: به نام خدا به نام خدا پردازش سیگنالهای دیجیتال نیمسال اول ۹۵-۹۶ هفته یازدهم ۹۵/۰8/2۹ مدرس: دکتر پرورش نویسنده: محمدرضا تیموری محمد نصری خالصۀ موضوع درس یا سیستم های مینیمم فاز تجزیه ی تابع سیستم به یک سیستم مینیمم

Διαβάστε περισσότερα

3 لصف یربج یاه ترابع و ایوگ یاه ناوت

3 لصف یربج یاه ترابع و ایوگ یاه ناوت فصل توان های گویا و عبارت های جبری 8 نگاه کلی به فصل هدفهای این فصل را میتوان به اختصار چنین بیان کرد: همانگونه که توان اعداد را در آغاز برای توانهای طبیعی عددهای ٢ و ٣ تعریف میکنیم و سپس این مفهوم را

Διαβάστε περισσότερα

نظریه زبان ها و ماشین ها

نظریه زبان ها و ماشین ها نظریه زبان ها و ماشین ها Theory of Languages & Automatas سید سجاد ائم ی زمستان 94 به نام خدا پیش گفتار جزوه پیش رو جهت استفاده دانشجویان عزیز در درس نظریه زبانها و ماشینها تهیه شده است. در این جزوه با

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999.

Ali Karimpour Associate Professor Ferdowsi University of Mashhad. Reference: Chi-Tsong Chen, Linear System Theory and Design, 1999. DVNCED CONTROL l Karmpour ssoca Prossor Frdows Uvrsy o Mashhad Rrc: Ch-Tsog Ch, Lar Sysm Thory ad Dsg, 999. Lcur lcur Basc Ida o Lar lgbra-par II Topcs o b covrd clud: Fucos o Squar Marx. Lyapuov Equao.

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر

تئوری رفتار مصرف کننده : می گیریم. فرض اول: فرض دوم: فرض سوم: فرض چهارم: برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر تئوری رفتار مصرف کننده : می گیریم برای بیان تئوری رفتار مصرف کننده ابتدا چهار فرض زیر را در نظر فرض اول: مصرف کننده یک مصرف کننده منطقی است یعنی دارای رفتار عقالیی می باشد به عبارت دیگر از مصرف کاالها

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

ندرک درگ ندرک درگ شور

ندرک درگ ندرک درگ شور ٥ عددهای تقریبی درس او ل: تقریب زدن گردکردن در کالس چهارم شما با تقریب زدن آشنا شده اید. عددهای زیر را با تقریب دهگان به نزدیک ترین عدد مانند نمونه تقریب بزنید. عدد جواب را در خانه مربوطه بنویسید. 780

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند. 8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection

Διαβάστε περισσότερα

Delaunay Triangulations محیا بهلولی پاییز 93

Delaunay Triangulations محیا بهلولی پاییز 93 محیا بهلولی پاییز 93 1 Introduction در فصل های قبلی نقشه های زمین را به طور ضمنی بدون برجستگی در نظر گرفتیم. واقعیت این گونه نیست. 2 Introduction :Terrain یک سطح دوبعدی در فضای سه بعدی با یک ویژگی خاص

Διαβάστε περισσότερα

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت

فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت فصل چهارم : مولتی ویبراتورهای ترانزیستوری مقدمه: فیدبک مثبت در تقویت کننده ها از فیدبک منفی استفاده می نمودیم تا بهره خیلی باال نرفته و سیستم پایدار بماند ولی در فیدبک مثبت هدف فقط باال بردن بهره است در

Διαβάστε περισσότερα

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که :

فصل سوم جبر بول هدف های رفتاری: در پایان این فصل از فراگیرنده انتظار می رود که : فصل سوم جبر بول هدف کلی: شناخت جبر بول و اتحادهای اساسی آن توابع بولی به شکل مجموع حاصل ضرب ها و حاصل ضرب جمع ها پیاده سازی توابع منطقی توسط دروازه های منطقی پایه و نقشة کارنو هدف های رفتاری: در پایان

Διαβάστε περισσότερα

........................................................................................................................................................... حجم ومساحت ف ص ل 8.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Διαβάστε περισσότερα

باسمه تعالی آزمون نهایی درس یادگیری ماشین به همراه پاسخ کوتاه ترم اول 29-29

باسمه تعالی آزمون نهایی درس یادگیری ماشین به همراه پاسخ کوتاه ترم اول 29-29 مدرس: محمدعلی کیوانراد باسمه تعالی آزمون نهایی درس یادگیری ماشین به همراه پاسخ کوتاه ترم اول 9-9 زمان: 01 دقیقه نام و نام خانوادگی: شماره دانشجویی: ایمیل: در این قسمت عالوه بر تعیین گزینه درست علت انتخاب

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

بسمه تعالی نمونه سؤال فصل اول شیمی دهم با تشکر از همکارانی که در تهیه این بانک سؤال همکاری داشتند

بسمه تعالی نمونه سؤال فصل اول شیمی دهم با تشکر از همکارانی که در تهیه این بانک سؤال همکاری داشتند بسمه تعالی نمونه سؤال فصل اول شیمی دهم با تشکر از همکارانی که در تهیه این بانک سؤال همکاری داشتند عنصر x 11 با جرم اتمی میانگین 01/11 دارای دو ایزوتوپ طبیعی است که یکی از آن ها فراوانی 0 درصد داشته و تعداد

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

ریاضی دهم ویژۀ استعدادهای درخشان مؤلف: حجت انصاری محمدصالح ارشاد

ریاضی دهم ویژۀ استعدادهای درخشان مؤلف: حجت انصاری محمدصالح ارشاد مجموعه کتاب های عالمه حلی ریاضی دهم ویژۀ استعدادهای درخشان مؤلف: حجت انصاری محمدصالح ارشاد : ارشاد سیدمحمدصالح 1365 سرشناسه : ریاضی دهم ويژه استعدادهای درخشان عنوان و نام پديدآور : تهران: انتشارات حلی

Διαβάστε περισσότερα

نحوه سیم بندي استاتورآلترناتور

نحوه سیم بندي استاتورآلترناتور نحوه سیم بندي استاتورآلترناتور ابتدا به تعریف مختصري از استاتور و نقش آن در آترناتور می پردازیم. دینام یا آلترناتور قطعه اي الکترومکانیکی است که نیروي مکانیکی را به نیروي الکتریکی تبدیل میکند. دینام در

Διαβάστε περισσότερα

مجموعه های اندازه پذیر به مثابە نقاط حدی

مجموعه های اندازه پذیر به مثابە نقاط حدی فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ

Διαβάστε περισσότερα

جلسه ی ۱۱: درخت دودویی هرم

جلسه ی ۱۱: درخت دودویی هرم دانشکده ی علوم ریاضی ساختمان داده ا بان جلسه ی : درخت دودویی هرم مدر س: دکتر شهرام خزاي ی نگارنده: احمدرضا رحیمی مقدمه الگوریتم مرتب سازی هرمی یکی دیگر از الگوریتم های مرتب سازی است که دارای برخی از بهترین

Διαβάστε περισσότερα

فصل چهارم تعیین موقعیت و امتدادهای مبنا

فصل چهارم تعیین موقعیت و امتدادهای مبنا فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

مهنۀیاپ هطسوتم ل وا ۀرود

مهنۀیاپ هطسوتم ل وا ۀرود پایۀنهم دورۀ او ل متوسطه 194 وزارت آموزش و پرورش سازمان پژوهش و برنامه ریزی آموزشی برنامه ریزی محتوا و نظارت بر تألیف: دفترتألیف کتاب های درسی ابتدایی و متوسطه نظری نام کتاب: ریاضی پایۀ نهم دورۀ او ل متوسطه

Διαβάστε περισσότερα

خطاهای پزشکی و دارویی

خطاهای پزشکی و دارویی خطاهای پزشکی و دارویی 1 2 خطاهای پزشکی و دارویی خطاهای پزشکی و دارویی 3 مقدمه: یکی از مراقبتهایی که پرستاران برای بیماران خود انجام می دهند مراقبت دارویی می باشد. به منظور پیشگیری از عوارض دارویی پرستاران

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

عنوان مقاله "نقاط تنها تنها مانده اند"

عنوان مقاله نقاط تنها تنها مانده اند بسمه تعالی عنوان مقاله "نقاط تنها تنها مانده اند" )بررسی چالش های موجود در تعاریف حد وپیوستگی در کتابهای دبیرستانی( زهرا عباسی *1 حسن رزاقیان 2 آموزش و پرورش شهرستان محمودآباد تابستان 1131 چکیده در این

Διαβάστε περισσότερα

فصل مجموعه الگو و دنباله درس اول درس دوم متمم یک مجموعه درس سوم الگو و دنباله درس چهارم

فصل مجموعه الگو و دنباله درس اول درس دوم متمم یک مجموعه درس سوم الگو و دنباله درس چهارم فصل مجموعه الگو و دنباله www.riazisara.ir آالداغالر یا کوه های رنگی در شهرستان ماه نشان استان زنجان درس اول مجموعه های متناهی و نامتناهی درس دوم متمم یک مجموعه درس سوم الگو و دنباله درس چهارم دنباله های

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

Spacecraft thermal control handbook. Space mission analysis and design. Cubesat, Thermal control system

Spacecraft thermal control handbook. Space mission analysis and design. Cubesat, Thermal control system سیستم زیر حرارتی ماهواره سرفصل های مهم 1- منابع مطالعاتی 2- مقدمه ای بر انتقال حرارت و مکانیزم های آن 3- موازنه انرژی 4 -سیستم های کنترل دما در فضا 5- مدل سازی عددی حرارتی ماهواره 6- تست های مورد نیاز

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

بسم هللا الرحمن الرحیم

بسم هللا الرحمن الرحیم بسم هللا الرحمن الرحیم نام سر گروه : نام اعضای گروه : شماره گروه : تاریخ انجام آزمایش : تاریخ تحویل آزمایش : هدف آزمایش : بررسی جریان و ولتاژ در مدارهای RLC و مطالعه پدیده تشدید وسایل آزمایش : منبع تغذیه

Διαβάστε περισσότερα

فصل اول ماتریس و کاربردها

فصل اول ماتریس و کاربردها فصل اول ماتریس و کاربردها اول فصل ماتریسها روی اعمال و ماتریس اول: درس ماتریس حقیقی عدد هر است. ماتریس یک ستون و سطر تعدادی شامل حقیقی عددهای از مستطیلی آرایش هر مینامیم. ماتریس آن درایة را ماتریس هر در

Διαβάστε περισσότερα

ثابت. Clausius - Clapeyran 1

ثابت. Clausius - Clapeyran 1 جدول 15 فشار بخار چند مایع خالص در دمای 25 C فشار بخار در دمایC (atm) 25 نام مایع 0/7 دیاتیل اتر 0/3 برم 0/08 اتانول 0/03 آب دمای جوش یک مایع برابر است با دمایی که فشار بخار تعادلی آن مایع با فشار اتمسفر

Διαβάστε περισσότερα