مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0"

Transcript

1 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله S L k= : X()=A+B X()=B= ; X(π)==A X()= جواب بدیهی k=μ 2 : X() = Asinhμ + Bcoshμ X() = B =, X(π) = A = جواب بدیهی = X() k= μ 2 < : X() = Asinμ + Bcosμ X() = B = { مقادیر ویژه < 2 X(π) = Asinμπ = μ n = n Z + k n = n توابع ویژه X n () = A n sin n حل معادله Y: Y" n 2 Y = Y() = Ae n + Be n B= کراندار( )پتانسیل lim (, ) = زمانی که انتظار داریم

2 Y n () = c n e n (, ) = D n e n sin n n=1 (, ) = () = D n sin n n=1 D n = 2 π π () sin n d اعداد مختلط : z = + i r = rcosθ, = rsinθ, < θ < 2π, قطبی r = e i = cos + isin )رابطه اویلر( z = + i = re iθ = r(cos θ + isin θ) { z 1 = 1 + i 1 تفریق, جمع( 1 z 2 = 2 + i 2 z 1 ± z 2 = ( 1 ± 2 ) + i( 1 ± 2 ) تعبیر هندسی:

3 ) 2 z :ضرب 1 z 2 = ( 1 + i 1 )( 2 + i 2 ) = r 1 r 2 e i(θ 1+θ 2) تعبیر هندسی: حالت خاص: ضرب کردن z در i iz = e i(π 2 ) re i(θ) = e i(π 2 +θ) ضرب کردن عدد در i = به اندازه π خالف ساعت دوران 2 مثال( اثر تبدیل فوق را روی شکل زیر بررسی کنید: مثال( مطلوبست محاسبه عبارت های زیر: 1) 2 + i 2 i 2 + i 2 + i = i = i 2) i = e i(π 2 ) = e i(π 4 ) = i

4 3)1 + i + i i 1 = 1(1 i11 ) = 1 1 i r = 1 z = re iθ z n = r n e inθ = 1 { con nθ = 1 sin nθ = مثال) مطلوبست حل معادله = 1 n ) z ریشه های یک) θ = 2kπ n, k Z { k = z 1 = e i() k = 1 z 2 = e i(2π n )... k = n 1 z n = e i(2π n ) توابع مختلط: منظور از یک تابع مختلط دستوری است که یک عدد مختلط را به عدد مختلط یکتایی متناظر می کند: w = (z) z = + i w = + iv هر تابع مختلط یک تابع : R 2 R 2 مثال( w = (z) = z 2 = ( + i) 2 = ( 2 2 ) + i(2)

5 تعبیر هندسی : مثال) اثر نگاشت w = (z) = e z روی خط = c بررسی کنید w = (z) = e +i = e (cos + isin) = e cos + ie sin = c { = ec cos ثابت ) معادله دایره) v = e c sin 2 + v 2 = e 2c w = (z) = (, ) + i v(, ) قرارداد: هرتابع مختلط را از این به بعد به صورت زیرنمایش می دهیم: ( ) ( (, ) v(, ) )

6 ε > δ > z z < δ (z) L < ε حد و پیوستگی در توابع مختلط: گوییم تابع (z) w = در نقطه z = z دارای حد L است هرگاه تذکر: چون ساختار تعریف مشابه تعریف حد در اعداد حقیقی است کلیه قضایای اعداد حقیقی نیز در اینجا برقرار است. lim z z [(z) ± g(z)] = l 1 ± l 2 lim (,) (, ) (, ) = lim (,) (, ) v(, ) = v lim آنگاه : z z g(z) = l 2, lim z z قضیه اگر (z) = l 1 lim آنگاه : z z اگر برای تابع (z) = + iv داشته باشیم (z) = + iv و برعکس. نتیجه: است. حد هرتابع مختلط برابر مجموع حدود قسمت های حقیقی و موهومی آن به عنوان توابع دومتغیره

7 پیوستگی z=z تابع w=(z) درنقطهی پیوسته است هرگاه: lim ( z ) ( z ) zz نکته: چون مقدماتی در ساختار تعریف پیوستگی مشابه حالت توابع حقیقی اعداد حقیقی در اعداد مختلط نیز برقرار است. قضایای کلیه باشد می مختلط: توابع حد با رابطه در شده اثبات قضیه ی به توجه با نتیجه: پیوسته است و ) w iv lim (, (, ) (, ) lim v (, ) v(, ) (, ) یعنی یک تابع پیوسته باشند. مشتق: مختلط وقتی پیوسته است که قسمت های حقیقی و موهومی آن به عنوان توابع دو متغیره مشتق یک تابع مختلط در نقطه ی را به صورت زیر تعریف می کنیم: ( z ) ( z ) ( z z ) ( z ) ( z ) lim lim ' z z z z z z ( z ) تابع کنید ثابت z نیست. پذیر مشتق جا هیچ در اما است پیوسته جا همه در z i w ( z ) i اثبات پیوستگی: lim (, ) (, ) lim (, ) (, ) (, ) lim (, ) (, ) lim v(, ) (, ) (, ) lim ( z ) i ( z ) zz پیوسته است برای مشتق حد رو به رو باید وجود داشته باشد: ( z ) ( z ) i ( i ) ( z ) lim lim ( ) ' z z z z z z i i

8 :مسیرI i ( i ) lim lim 1 i ( i ) :مسیرII i ( i ) i ( ) lim lim 1 i ( i ) i( ) تابع پس (z) در z ندارد. مشتق 2 ( z) z تابع پذیری مشتق مورد در کنید. بحث ( z ) z ( z ) ( z ) ( ) ' ( z ) lim lim z z z z z z i ( i ) :مسیرI ( ) lim lim 2 i ( i ) z z :مسیر II ( ) lim lim i2 i ( i ) i( ) z ندارد. مشتق نقاط سایر در در جز به حالت این نکته: چون ساختار تعریف در اینجا نیز برقرار است. کلیه ی است حقیقی اعداد مشابه مشتق گیری مشتق دستورات ' ' ' ( z ) g ( z ) ( z ) g ( z ) ' ' ' ( z ) g ( z ) ( z ) g ( z ) ( z ) g ( z ) ' ' ( ) '(z) (z) (z)g ( ) 2 ( ) ( ) z g z g z g z ' ' ' ( g ( z )) ( g ( z ))g ( z ) مشتق برای قسمت این اساسی قضیه پذیری) شرط معادالت الزم کوشی_ ریمان(: ( z ) ( z ) ( z ) lim z z ' z z :مسیر I

9 (, ) iv (, ) ( (, ) iv (, )) (, ) (, ) i ( v (, ) v(, )) lim lim lim ( i ) ( i ) (, ) iv (, ) :مسیر II (, ) iv (, ) ( (, ) iv (, )) (, ) (, ) i ( v (, ) v(, )) lim lim lim ( i ) ( i ) i( ) i( ) i (, ) v (, ) شرط الزم برای مشتق داشتن: (, ) iv (, ) i (, ) v (, ) شرط الزم کوشی_ریمان (, ) v (, ) ) v (, برای وجود مشتق (, ) مختلط: مزدوج تابع برای ( z ) z i 1v 1 مشتق پذیرنیست در 2 2 کنید ثابت ( z ) 2i نیست: پذیر مشتق 2 2 (, ), v (, ) 2 v 2, 2 شرط کوشی-ریمان باشد. نمی پذیر مشتق و نیست برقرار اگر :) پذیری مشتق برای کافی شرایط قضیه) مختلط: تابع شود فرض ( z ) (, ) iv (, )

10 در نقطه ی ( (, پیوسته بوده و مشتقات جزئی مرتبه ی اول توابع دو متغیره و پیوسته بوده و معادالت کوشی-ریمان برقرار باشند آنگاه تابع موجود است. (, ) ' ( z) (, ) در نیز v(, ) شرط الزم مشتق پذیری شرایط کوشی_ریمان v, ( z) مشتق پذیری شرایط کوشی_ریمان و پیوستگی و مشتق پذیری مرتبه اول در مثال قبل: (z) پیوسته است در = مشتق پذیراست مشتقات جزیی مرتبه اول پیوسته اند (z) برای = شرایط کوشی_ریمان برقرارند توابع همساز) nctions :)harmonic تعریف: (, ) تابع دو متغیره( h(, موجود در باشند و در معادله الپالس صدق همساز گوییم کنند. دوم مرتبه ی جزئی مشتقات هرگاه h h z i تابع اگر قضیه: ) ( z ) (, ) iv (, در در آنگاه باشد پذیر مشتق توابع نقطه این ) (, و ) v (, شوند. می همساز اثبات: روابط کوشی-ریمان: v v v v v v v v در توابع مختلط اگر نقطه پیوسته است. آن در تابع جزئی مشتقات تمام آنگاه باشد پیوسته ای نقطه در تابعی مشتق پذیری همساز بودن

11 مشتق پذیری همساز بودن + شرایط کوشی_ریمان 2 2 (,) ( )cos 2 sin آیا تابع فرم می تواند قسمت باشد تابع را مشخص کنید. با پذیر مشتق تابع یک حقیقی ( z ) (, ) iv (, ) باید چک کنیم آیا ) (, همسازاست 2 2 2cos 2 sin 2 sin cos ( ) 2 cos 2 cos 2 sin cos ( )sin 2 sin 2 cos 2 cos 2 sin 2cos بنابراین همساز نمی باشد.

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی درس تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی فصل اول سیگنال: نشانه یا عالمت هر کمیت فیزیکی) قابل اندازه گیری ) است. انواع سیگنال : سیگنالپیوستهدرزمانکهبهصورت x(t) نشان داده میشود و t یک متغیر

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

7- روش تقریب میانگین نمونه< سر فصل مطالب

7- روش تقریب میانگین نمونه< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 7 روش تقریب میانگین نمونه Sample Average Approximation 7- روش تقریب میانگین نمونه< سر فصل مطالب 2 شماره عنوان فصل 1-7 معرفی 2-7 تقریب 3-7

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

مجموعه های اندازه پذیر به مثابە نقاط حدی

مجموعه های اندازه پذیر به مثابە نقاط حدی فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ

Διαβάστε περισσότερα

پنج ره: Command History

پنج ره: Command History هب انم زیدان اپک فهرست مطا ل ب مع ر ف ی رنم ازفار م تل ب:... 11 آش نا ی ی با محی ط ا صل ی رنم ازفار م تل ب:... 11 11... پنج ره: Command History وه ارجای د ست ورات رد م تل ب:... 11 نح نو شت ن د ست ورات

Διαβάστε περισσότερα

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی دانشگاه فنی و حرفه ای کرمانشاه زمستان 39 فرمت نمایش اعداد : با توجه به دقت و تعداد ارقام اعشاری قابل قبول در محاسبات می

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn. خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود فصل ٤ انتگرال ٤ ١ مسأله مساحت فرمولهای مربوط به مساحت چندضلعیها نظیر مربع مستطیل مثلث و ذوزنقه از زمانهای شروع تمدنهای نخستین به خوبی شناخته شده بوده است. با اینحال مسأله یافتن فرمولی برای بعضی نواحی که

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

Econometrics.blog.ir

Econometrics.blog.ir وب سایت آموزش نرم افزارهای اقتصادسنجی به نام خدا معادالت همزمان Economerics.blog.ir نام دانشجو: مریم گودرزی مدل های تک معادله ای مدلهایی هستند که دارای یک متغیر درونزا) Y ( و یک یا چند متغیر توضیحی) X

Διαβάστε περισσότερα

فصل صفر یادآوری مفاهیم پایه

فصل صفر یادآوری مفاهیم پایه فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان

Διαβάστε περισσότερα

فصل سوم : عناصر سوئیچ

فصل سوم : عناصر سوئیچ فصل سوم : عناصر سوئیچ رله الکترومکانیکی: یک آهنربای الکتریکی است که اگر به آن ولتاژ بدهیم مدار را قطع و وصل می کند. الف: دیود بعنوان سوئیچ دیود واقعی: V D I D = I S (1 e η V T ) دیود ایده آل: در درس از

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت عوامل جلوگیری کننده از موازی سازی عبارتند از :.هزینه I/O.هماهنگی/رقابت ممکن است یک برنامه sequential بهتر از یک برنامه موازی باشد بطور مثال یک عدد 000 رقمی به توان یک عدد طوالنی اینکه الگوریتم را چگونه

Διαβάστε περισσότερα

فصل اول پیچیدگی زمانی و مرتبه اجرایی

فصل اول پیچیدگی زمانی و مرتبه اجرایی فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل

Διαβάστε περισσότερα

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s. معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن آزما ی ش سوم: ربرسی اقنون ا ه م و قوانین ولتاژ و جریان اهی کیرشهف قوانین میسقت ولتاژ و میسقت جریان ربرسی مدا ر تونن و نورتن قضیه ااقتنل حدا کثر توان و ربرسی مدا ر پ ل و تس ون هدف از این آزمایش آشنایی با

Διαβάστε περισσότερα

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95 ترمودینامیک سال تحصیلى 94-95 رهنمون 1- مفاهیم اولیه ترمودینامیک: علمی است که به مطالعه ی رابطه ی بین کار و گرما و تبدیل آنها به یکدیگر می پردازد. دستگاه: گازی است که به مطالعه ی آن می پردازیم. محیط: به

Διαβάστε περισσότερα

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند. فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن 4 فصل : 9 سیستم مدار بسته خطی : عنصر اندازه گیری مثل ترموکوپل - Set point + فرآیند عنصرکنترل نهایی کنترل کننده load بار i proce خطوط انتقال مقدار مطلوب m عنصر اندازه گیری مقدار مقرر تعریف : et point عبارت

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

بخش ششم: عملیات در پایگاه داده رابطهای

بخش ششم: عملیات در پایگاه داده رابطهای هب انم آنکه جان را فک رت آموخت بخش ششم: عملیات در پایگاه داده رابطهای مرتضی امینی نیمسال دوم 92-91 )محتویات اسالیدها برگرفته از یادداشتهای کالسی استاد محمدتقی روحانی رانکوهی است.( یادآوری: مدل دادهای 2

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11(

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( سرفصل دروس: مفاهیم و تعاریف نمونه گیری و توزیع های نمونه ای برآورد کردن)نقطه ای فاصله ای( آزمون فرضیه آنالیز واریانس مدلهای خطی رگرسیون آزمون استقالل و جداول

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه 2 1* فرانک معتمدی فرید شیخ االسالم 1 -دانشجوی دانشکده برق

Διαβάστε περισσότερα

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در فصل اول حرکت شناسی در دو بعد گالیلئوگالیله: در سال 1581 میالدی به دانشگاه پیزا وارد شد اما در سال 1585 قبل از آن که مدرکی بگیرد از آنجا بیرون آمد. پیش خودش به مطالعه آثار اقلیدس و ارشمیدس پرداخت و به زودی

Διαβάστε περισσότερα

Archive of SID. یا یات کار دی وا د لا جان مقدمه 1 2 چکیده 1 SDE. ا درس الکترونیکی:

Archive of SID.  یا یات کار دی وا د لا جان مقدمه 1 2 چکیده 1 SDE. ا درس الکترونیکی: ج ه ر یا یات کار دی وا د لا جان سال م ماره ١ (ایپپی ٢۴ ھار ٨٩ ص ص ٩٣-١٠١ مقایسه عددی جواب معادله دیفرانسیل تصادفی با نوفه سفید گاوسی و پواسونی رمضان رضاییان رحمان فرنوش. چکیده دانشکده علوم پایه دانشگاه

Διαβάστε περισσότερα

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول بسم الله الرحمن الرحیم ریا ض ی 7 دورۀ متوسطۀ اول فهرست سخنی با دانش آموز فصل 1 راهبردهای حل مسئله فصل 2 عددهای صحیح معرفی عددهای عالمت دار جمع و تفریق عددهای صحیح )1 ) جمع و تفریق عددهای صحیح )2 ) ضرب

Διαβάστε περισσότερα

دکتر عباس روحانی) (

دکتر عباس روحانی) ( http://abbasrohani.persiangig.com شاهرود دانشکده کشاورزی دانشگاه صنعتی اصول کار و متلب با برنامه نویسی دکتر عباس روحانی) abassrohani@yahoo.com ( MATrix LABoratory MATLAB MATLAB یک محیط نرمافزاری برای انجام

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز

آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز گزارش آزمایشگاه ماشینهای الکتریکی ۲ آزمایش ۱ اندازه گیری مقاومت سیم پیچ های ترانسفورماتور تک فاز شرح آزمایش ماژول تغذیه را با قرار دادن Breaker Circuit بر روی on روشن کنید با تغییر دستگیره ماژول منبع تغذیه

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک فصل 6 نیرو و حرکت II مسائل فیزیک هالیدی & رزنیک حمیدرضا طهماسبی ویژگی های اصطکاک. 1 روی کف یکی از واگن های قطار جعبه هایی قرار دارد. اگر ضریب اصطکاک ایستای جعبه ها با کف واگن 0.25 باشد و این قطار با سرعت

Διαβάστε περισσότερα

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون مقدمه دراغلب شاخه های صنایع حالتی پدید می آید که دو نقطه دور از هم بایستی دارای سرعت یکسانی باشند. پل های متحرک دهانه سد ها تسمه ی نقاله ها جرثقیل

Διαβάστε περισσότερα

محاسبه توابع متعامد کسری روی یک بازه

محاسبه توابع متعامد کسری روی یک بازه دانشگاه یزد دانشکده ریاضی پایان نامه برای دریافت درجه کارشناسی ارشد ریاضی کاربردی محاسبه توابع متعامد کسری روی یک بازه استاد راهنما: دکتر فرید(محمد) مالک قائینی استاد مشاور: دکتر سید محمد مهدی حسینی پژوهش

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نویز سیستم و اعوجاج کمی سازی

پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نویز سیستم و اعوجاج کمی سازی پایدار سازی سیستم های چندجمله ای غیرخطی در معرض نیز سیستم اعجاج کمی سازی علی رضا فرهادی استادیار دانشکده مهندسی برق دانشگاه صنعتی شریف afarhadi@sharifedu )تاریخ دریافت مقاله 4994/9/4 تاریخ پذیرش مقاله

Διαβάστε περισσότερα

پاياننامهي كارشناسي ارشد رشتهي فیزيک گرايش حالت جامد

پاياننامهي كارشناسي ارشد رشتهي فیزيک گرايش حالت جامد دانشکده علوم پایه پاياننامهي كارشناسي ارشد رشتهي فیزيک گرايش حالت جامد Mg 3 P 2 دكتر ويشتاسب سلیمانیان شهريور 2931 چکیده: در این پایاننامه با استفاده از بسته محاسباتی کوانتوم اسپرسو و استفاده از امواج

Διαβάστε περισσότερα

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها

یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها یک سیستم تخصیص منابع هوشمند بر مبنای OFDMA در یک سیستم بیسیم توزیع شده با استفاده از تئوری بازیها حامد رشیدی 1 و سیامک طالبی 2 1 -دانشگاه شهید باهنر كرمان 2 -دانشگاه شهید باهنر كرمان Hamed.hrt@gmail.com

Διαβάστε περισσότερα

مساله مکان یابی - موجودی چند محصولی چند تامین کننده با در نظر گرفتن محدودیت های تصادفی برای زنجیره تامین دو سطحی

مساله مکان یابی - موجودی چند محصولی چند تامین کننده با در نظر گرفتن محدودیت های تصادفی برای زنجیره تامین دو سطحی مساله مکان یابی - موجودی چند محصولی چند تامین کننده با در نظر گرفتن محدودیت های تصادفی برای زنجیره تامین دو سطحی رضا توکلی مقدم یاسر رحیمی امیر اقسامی کارشناسی ارشد دانشکده مهندسی صنایع پردیس دانشکده های

Διαβάστε περισσότερα

طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت

طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت طراحی و تجزیه و تحلیل کنترل کننده منطق فازي براي کنترل فرکانس بار در سیستم هاي قدرت 2 1 مهرداد احمدي کمرپشتی هدي کاظمی موسسه آموزش عالی روزبهان ساري گروه برق ساري ایران Mehrdad.ahmadi.k@gmail.com hoda.kazemi.aski@gmail.com

Διαβάστε περισσότερα

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ 1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و

Διαβάστε περισσότερα

مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود

مقدمه دسته بندي دوم روش هاي عددي دامنه محدود اهداف: هاي چندجمله اي رهيافت هاي محاسباتي: سعي و خطا دامنه نامحدود اهداف: محاسبه ريشه دستگاه دسته عدم وابسته معادالت ريشه هاي چندجمله اي معادالت غيرخطي بندي وابستگي به روش به مشتق مشتق تابع مقدمه غير خطي هاي عددي تابع دسته بندي دوم روش هاي عددي دامنه محدود دامنه نامحدود

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک حرکت در مسیر مستقیم )حرکت یک بعدی( حمیدرضا طهماسبی سرعت متوسط و تندی متوسط 1. هنگام یک عطسه ی شدید چشمان شما ممکن است برای 0.50s بسته شود. اگر شما درون خودرویی در حال رانندگی با سرعت 90km/h باشید ماشین

Διαβάστε περισσότερα

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری چکیده : کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری روش طراحی قوانین کنترل چندجمله ای با استفاده از جایابی قطب راه کار مناسبی برای بسیاری از کاربردهای صنعتی می باشد. این دسته از کنترل کننده

Διαβάστε περισσότερα

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه فصل دوم محاسبۀ زاویه خالصۀ فصل در این فصل دانش آموزان با مفهوم و سلسله مراتب واحدهای اندازه گیری زاویه تبدیل واحد به هم تعیین زوایای اشکال هندسی آشنایی پیدا می کنند و باید توانایی به کارگیری مسائل نظیر

Διαβάστε περισσότερα

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها 90 حل تمرین ها تمرین صفحه 91 کدام روش جمع آوری داده ها برای موارد زیر مناسب است یک دلیل برای انتخاب خود ذکر کنید. 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها پاسخ: پرسش نامه:

Διαβάστε περισσότερα

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی...

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی... فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی................................................. 2 خواص مدارات سری....................................................... 3 3...................................................

Διαβάστε περισσότερα

تسیچ تکرح مراهچ لصف تسیچ تکرح تعرس و ییاج هباج تفاسم ناکم تسا ردقچ شتکرح زاغآ ةطقن زا وا ةلصاف

تسیچ تکرح مراهچ لصف تسیچ تکرح تعرس و ییاج هباج تفاسم ناکم تسا ردقچ شتکرح زاغآ ةطقن زا وا ةلصاف چهارم فصل چیست حرکت سرعت و جابهجایی مسافت مکان 111 است چقدر حرکتش آغاز نقطة از او فاصلة میرود. شمال به کیلومتر یک سپس و غرب به کیلومتر یک 1 دانشآموزی 1- k 1/6 k 3 1/ k 1 k 1 از متحرک نهایی فاصلة میکند.

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد دردینامیک علت حرکت یا سکون جسم تحت تاثیر نیروهای وارد بر آن بررسی میشود. تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد مانند اصطکاک یا

Διαβάστε περισσότερα

نکته و تست شیمی سال دوم فصل 1 شماره 3( ) کنکور 69 دکتر رضا بابایی برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری(

نکته و تست شیمی سال دوم فصل 1 شماره 3( ) کنکور 69 دکتر رضا بابایی برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری( نکته و تست 2 شیمی سال دوم فصل 1 و شماره 3( ) برنامه این جلسه: 1( ادامه ی جزوه ی شماره 2 )استوکیومتری( 2( فصل 1 و 2 دوم کنکور 69 دکتر رضا بابایی 1 متن کتاب 1- نخستین بار دالتون ادعا کرد عنصر را به گونه

Διαβάστε περισσότερα