هندسه تحلیلی بردارها در فضای R

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "هندسه تحلیلی بردارها در فضای R"

Transcript

1 هندسه تحلیلی بردارها در فضای R

2 فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد بدین معنی که اگر به مانند شکل زیر دست راستمان را در جهت مثبت محور x ها قرار دهیم جهت انگشتان باز جهت مثبت محور x ها جهت انگشتان بسته شده جهت مثبت محور y ها و جهت انگشت شصت جهت مثبت محور z ها را تشکیل می دهد. این دستگاه عالوه بر این سه محور از سه صفحه نیز تشکیل شده است: صفحه xoy یا xy صفحه ای که شامل دو محور xو y می باشد. صفحه xoz یا xz صفحه ای که شامل دو محور xو z می باشد. صفحه yoz یا yz صفحه ای که شامل دو محور yو z می باشد. مختصات نقطه در فضا

3 نقطه ای مانند p را در فضا در نظر بگیرید اگر به مانند شکل زیر از این نقطه سه صفحه عمود بر سه محور رسم کنیم تا محور های zوyوx را در سه نقطه قطع کنند به اعدادی که در محل برخورد روی محورها قرار دارد به ترتیب مولفه های اول و دوم و سوم نقطه p می گویند و هر نقطه را با یک سه تایی مرتب مانند x y z نمایش می دهند. 0, 0, 0 قرارداد: به محور های ozوoyوox به ترتیب محور طول ها محور عرض ها و محور ارتفاع ها می گویند و در نتیجه به مولفه ها نیز با عنوان طول و عرض و ارتفاع نام می برند. توجه:هنگامی که نقطه ای روی محور x ها مانند Aقرار دارد بدین معنی است که دو مولفه دیگر آن برابر صفر می باشد زیرا هرگاه بخواهیم از مبدا مختصاتo به سمت A حرکت کنیم تنها طول این نقطه تغییر می کند. به همین ترتیب می توان برای نقاط رو محورهای مختصات گفت: روی محور xها داریم y=z=0 روی محور yها داریم x=z=0 روی محور zها داریمx=y=0 به همین ترتیب می توان روی صفحات مختصات گفت: روی صفحه xoy داریم 0=z روی صفحه xoz داریمy=0 روی صفحه xoy داریمx=0 توجه: از آنجایی که از نقطه p بر سه محور عمود کرده ایم به محل های برخورد با سه محور تصویر بر آن محور می گویند. مثال در شکل فوق به سه نقطه CوBوA به ترتیب تصویر بر سه محور zوyوx می

4 گویند و با عبارتست از: x و y و z زیرا مثال برای بدست آوردن نقطه است. نمایش می دهند. مختصات تصویر p نقطه بر سه محور مختصات y pz ثابت مانده x x 0,0,0 0 z 0 بر محور xها عمود کرده ایم و بدین دلیل مولفهx 0, y,0 0,0, x به همین ترتیب برای رسیدن به تصویر نقطه p بر صفحه xy که با xy نشان می دهیم از نقطه p بر صفحهxy عمود می کنیم چون این صفحه شامل دو محور yوx است پس بر دو محور yوx نیز عمود می باشد لذا دو مولفه yوx ثابت می ماند. در نتیجه مختصات تصویر نقطه p بر سه صفحه مختصات عبارتست از: توجه: به همین ترتیب طول تصویر بر محورها و صفحه های مختصات برابر است با: xy x 0, y 0,0 xz x 0,0, z 0 yz 0, y, z 0 0 x x 0 y y 0

5 و 0 و 0 z z 0 xy x y 0 0 xz x z 0 0 yz y z 0 0 فاصله نقطه از مبدا مختصات: طول پاره خط OP فیثاغورث براحتی بدست می آید که برابراست با: یا فاصله نقطهP از مبدا مختصات به وسیله رابطه d x y z B x B, y B, z B A x A, y A, z A فاصله دو نقطه : فاصله دو نقطه با استفاده از رابطه زیر بدست می آید: و یا طول پاره خط AB را d AB ( x x ) ( y y ) ( z z ) B A B A B A مثال : چند نقطه روی محور yها وجود دارد که به فاصله 31 از نقطه -,1,3)p می باشد تصاویر نقطه,,3-)P بر صفحه های xzوxy باشد طول پاره خط MN را 4 و 0 (و ( مثال : اگر NوM بدست آورید. مثال: اگر سه راس مثلثی نقاط ) 4 و 0 و 0 ( و ( مشخص کنید. A(,1,0 و B(3,-1,3 و 0 و 4 ( باشد طول اضالع مثلث و نوع مثلث را 1-, -, -)C سه راس یک مثلث هستند. طول اضالع این مثال : نقاط مثلث و نوع مثلث را بدست آورید. مثال:اگر طول تصویر نقطه P بر سه صفحه مختصات به ترتیب برابر 4 و 4 و باشدفاصله نقطه p تا مبدا مختصات را بدست آورید. A B M M x x y y z z,, A B A B A B M(1,,3 وسط پاره خط:هرگاه وسط پاره خط AB را با M نمایش دهیم داریم : ABC B(3,-1, A(1,,- به عبارتی اگر مثال: و دو راس مثلث مختصات راس C و طول پاره خط BC را بدست آورید. و پای میانه BM باشد

6 قرینه یک نقطه نسبت به محورها و صفحه های مختصات : حال اگر بخواهیم قرینه نقطه x,0 y را نسبت به محورهای مختصات مثال محور xها را بدست آوریم ابتدا می بایست آن را 0, z 0 بر روی محور xها تصویر کرده یعنی به نقطه x x 0,0, 0 برسیم سپس به اندازه خودش امتداد دهیم و نقطه حاصل قرینه نقطه P می باشد و آن را با نمایش می دهیم. از آنجایی که وسط Pو x " x " x می باشد داریم: " x x x 0,0,0 x 0, y 0, z 0 x 0, y 0, z 0 به عبارتی وقتی بر محور xها عمود می کنیم مولفه x ثابت مانده و دو مولفه دیگر قرینه می شود.در نتیجه قرینه نسبت به محورها و صفحه های مختصات به شکل زیر می باشد: " x x 0, y 0, z 0 " y x 0, y 0, z 0 " z x 0, y 0, z 0 " xy x 0, y 0, z 0 " xz x 0, y 0, z 0 " yz x 0, y 0, z 0 مثال : قرینه و تصویر نقطه,1,-)P را نسبت به محور yها بدست آورید. مثال: نقطه 3,6,1)P را بر محور xها تصویر و نسبت به صفحه yz قرینه کنید مختصات این دونقطه و فاصله این دو را بدست آورید. متوازی االضالع در فضا همانطوری که می دانید یک چهار ضلعی متوازی االضالع است اگر وتنها اگر قطر هایش یکدیگر را نصف کنند. بدین جهت وسط دوقطر بر هم منطبق است. پس اگر ABCD چهار راس یک متوازی االضالع با قطر های BDوAC باشد بین مختصات این چهار راس رابطه زیر برقرار است: A+C=B+D

7 مثال: اگر (3-,, A(1 و 1,3-,,3)B و,1, )C سه راس متوالی یک متوازی االضالع باشند مختصات نقطه Dرا بدست آورید. مرکز ثقل مثلث)محل برخورد میانه های مثلث( همانطوری که می دانید محل برخورد میانه های یک مثلث G تا وسط ضلع مثلث 3/1 میانه متناظر است در نتیجه ثابت می شود بین مختصات سه راس مثلث ABC و محل برخورد میانه ها رابطه زیر برقرار است: A B C G 3 مثال: اگر 3-,, A( و 1,3-,,3)B و,0, )C سه راس یک مثلث باشند فاصله محل برخورد میانه ها از قرینه نقطه A نسبت به صفحه xoy را بدست آورید.

8 بردار در فضای سه بعدی به هر پاره خط جهت دار یک پیکان می گویند. مثال در شکل فوق چند پاره خط جهت دار را مشاهده می کنید که هم جهت می باشند یا بعضی می گویند موازی و هم جهت می باشند و تنها یکی از آنها از مبدا گذشته است. تنها پیکان قرمز رنگ است که از مبدا می گذرد به آن بردار می گویند. در این شکل پیکان ها همگی دارای طول و جهت مساوی هستند که در اینصورت هستند. به مانندی دو مثلث که بجای برابر از واژه هم ارز استفاده می کنند. پیکان ها پیکان های هم ارز)برابر(: دو پیکان را هم ارز گویند هرگاه طول آنها برابر و هم جهت باشند. هم ارز توجه: معموال با وجود اشتباه بودن اصطالح رایج این است تمام پاره خط های جهت دار را بردار می نامند. توجه: برداری که از مبدا می گذرد و انتهای آن بر نقطه می باشد. A( 1,, 3) قرار دارد بردار OA (,, ) 1 3 مختصات پیکان AB مختصات پیکان AB را از رابطه زیر بدست می آوریم:

9 AB x x, y y, z z B A B A B A V x y z AB OB OA B A به عبارتی : طول بردار طول بردار ) z V ( x, y, برابر است با : V ( x, y, z ) مجموع دو بردار ) z uو ( x, y, اگر دو بردار باشند آنگاه مجموع دو بردار برابر است با : u v ( x x, y y, z z ) مثال: اگر -,1,) و 3-, -,-) دو بردار باشند مطلوبست + تعبیر هندسی مجموع دو بردار C اگر A و B دو بردار و بردار مجموع این دوبردار باشد rv ( rx, ry, rz ) ضرب عدد در بردار اگر r عددی حقیقی و( V ( x, y, z یک بردار باشد آنگاه داریم

10 ویژگی های مجموع دوبردار و ضرب عدد در بردار مثال : اگر -,1,) و 3-, -,-) دو بردار باشند مطلوبست ج( + د( الف( - ب( - مثال: در مثال قبل را با مقایسه کنید. نتیجه مهم در مورد ضرب عدد در بردار rv هر گاه V یک بردار و r عددی حقیقی آنگاه بردار دارای ویژگیهای زیر است : موازی بردار V می باشد )3 V V و هرگاه 0<r باشد خالف جهت می باشد ( اگر 0>r باشد هم جهت با rv r V )1 - مثال برداری موازی هم جهت و و برابر بردار موازی خالف جهت و برابر بردار می باشد به عبارتی اگر 0>r به شکل زیر است.

11 مثال: اگر 0<r باشد شکل r را رسم کنید. توجه: به بردار قرینه می گویند. تعبیر هندسی تفاضل دو بردار مثال : شکل هریک از روابط زیر را رسم کرده و به آنها توجه کنید. الف( AB BA ب( ج( د( مثال: AB BC AC AB AC CB AA 0 طول قطرهای متوازی االضالعی را بدست آورید که با استفاده از دوبردار (1,,3 (3,1,-1 اگر مثال: ساخته می شود. B(-,,-3, A(-1,- و ) MA 1 MB 3 دو نقطه در فضا باشد نقطه M مثال: در متوازی االضالع ABCD اگر نقطه M محل تالقی قطرها و باشد آنگاه بردار v کدام است و را به گونه ای پیدا کنید که و AD u v AB uv BD )4 DM )1 MC ) MB)3 زاویه بین دوبردار هنگامی که دوبردار در ابتدای مشترک باشند زاویه بین دوبردار به شکل زیر می باشد

12 وu اگر هرگاه دارای ابتدای مشترک نباشد هم ارز یکی را بر روی ابتدای دیگری رسم می کنیم. توجه: زاویه بین دو بردار, را با نماد (,) نمایش می دهند. مثال: نشان دهید اگر دوبردار و بر هم عمود باشند طول دوبردار + و - برابر می باشد. مثال: نشان دهید هرگاه دوبردار و دارای طول برابر باشند +و - بر هم عمود هستند. مثال: حاالت مختلف روابط بین طول دوبردارvوu و طول بردارu+v را با توجه به زاویه بین دوبردار v بررسی کنید. u و V رابطه کسینوسها برای بدست آوردن طول )اندازه( مجموع و تفاضل دو بردار دوبردار و اگر α زاویه بین این دو بردار باشد 1 u v u v u v cos u v u v u v cos با توجه به رابطه کسینوسها در مثلث و باتوجه به مثلث مربوط به است. در مثلث مربوط به u v u v چون زاویه بین دوضلعπ-α داریم u v u v u v cos( اثبات می شود. مثال: بدست آورید. در شکل اثبات رابطه واضح می باشد با توجه به رابطه کسینوسها و چون cos( ) cos می باشد رابطه 3 نیز اگر زاویه بین دوبردار بطول های 6 و 1 برابر 60 درجه باشد اندازه)طول( بردار مجموع این دو را بردارهای یکه و جهت هر بردار با طول واحد را بردار یکه می نامند. e v را با v بردار جهت نمایش میدهند و برداریکه ای است در جهت بردار v. ev 1 v v 1 v توجه کنید که چون یک عدد مثبت در بردار v ضرب شده بردار e v هم جهت با بردار v می باشد.

13 و- و- x,y,z مثال: ثابت کنید طول e v مثال: اگر 3-,6-,6) v باشد برابریک می باشد. e v بردارهای یکه محورهای مختصات را بدست آورید. متداول ترین بردارهای یکه بردارهای یکه محورهای مختصات می بشند که به ترتیب به نام i,j,k نامگذاری می شوندو مختصاتشان عبارت است از r j0,1,0 و k 0, 0,1 مثال:اگر بردار مثال:بردار و i 1,0,0 =i+3j+ k باشد نشان دهید,,3) -,3-,0) را بوسیلهi,j,k نمایش دهید. شرط موازی بودن دوبردار v و u دوبردار وجود داشته باشد به گونه ای که v =ru موازیند اگر و تنها اگر مضرب حقیقی یکدیگر باشند. به عبارتی عددی حقیقی مانند x y z x y z (3,1-3m,n-3 با هم دو بردار v( x, y, z uو ( x ) 1, y 1, z 1) موازی هستند اگر و تنها اگر مثال:با توجه به تعریف دوبردار موازی رابطه باال را ثابت کنید. مثال:نشان دهید دوبردار) 4 و )-6 و ( مثال:مقادیر nوm موازی باشند. 3 و 1 ( موازیند. را بگونه ای بدست آورید که دو بردار,, (-6 و ضرب داخلی ضرب داخلی دوبردار v و u )3 را با نماد اگر α زاویه بین این دو بردار باشد. uv نمایش می دهندو آن را به دو صورت تعریف می کنند: u. v u v cos اگر ( v( x, y, z uو ( x ) 1, y 1, z 1) آنگاه u. v x x y y z z 1 1 1

14 اعداد بدست آمده از رابطه 3 و برابر می باشند برای اثبات برابری سمت راست رابطه 3 و چند راه وجود دارد که می توانیم از رابطه کسینوسها نیز استفاده کنیم. مثال:ضرب داخلی دو بردار مثال: اگر 6,3-,)u و,-,1-)v را بدیت آورید. v و u 6 وزاویه بین دوبردار 60 درجه باشد حاصلu.v را بدست آورید. نتیجه: حاصل بدست آمده از ضرب داخلی دو بردار همواره یک عدد حقیقی می باشد. قرارداد:ضرب داخلی نامهای دیگری مانند نقطه ای اسکالر و عددی نیز دارد. مثال: u اگر u. v 0, u 10, v 1 آنگاه v روش بدست آوردن زاویه بین دوبردار هرگاه آوریم: را داشته باشیم v و u.vو u α مثال: مطلوب است زاویه بین دوبردار به مختصات را بدست آورید. زاویه بین دوبردار با استفاده از رابطه زیر می توانیم بدست uv. cos uv و v(1,-3, u(-,,-3 مثال: در مثال قبل زاویه بین دو بردارu+vو u-v را بدست آورید. شرط عمود بودن دوبردار: غیر صفر دوبردار u ( x, y, z ) و ) z v( x, y, بر هم عمود هستند اگر وتنها اگر uv. 0 x 1x y 1y z 1z 0 مثال: نشان دهید دوبردار -,,1) و 1,1-,3) بر هم عمود هستند. مثال:اگر u v 3, u 10, v مثال:مقدار m را بگونه ای بدست آورید که دوبردار ویژگی های ضرب داخلی: برای هر سه بردار u,v,w و اعداد حقیقی r,s داریم: مثال: اگر مثال:اگر نشان دهید دوبردار u,v بر هم عمود هستند. v(3,m,-1 بر هم عمود باشند. u(1,,m و یا 1 u. u u u. v v. u 3 u.( v w u. v u. w r ( u. v ( ru. v u.( rv ( rs ( u. v ( ru.( sv, -,3)v باشد حاصل 3u.(-v را بدست آورید. و3 uv. مطلوبست حاصل v.(v+u) 1,,3)u و v توجه: ضرب داخلی دارای خاصیت شرکت پذیری نمی باشد. به عبارتی توجه:ضرب داخلی برای بیش از دو بردار تعریف نمی شود. u.( v. w ) ( u. v ). w

15 مثال: نشان دهید اگرu برداری غیرصفرو u.v=u.w باشد آنگاه یا بردارu برv-w عمود است و یا v=w u.v=u.w نتیجه: ضرب داخلی دارای خاصیت حذفی نمی باشد یعنی از گرفت که دو بردار v,w مساوی هستند. مثال: اگر و وزاویه بین دوبردار 60 درجه باشد مطلوبست حاصل نمی توان قطعا نتیجه (v-u.(v+u 1 (. u 6 v یادآوری چند اتحاد مهم: ( ( 3 (... c c c c w مثال: اگر u و 1 v و و زاویه بین بردارها دوبه دو برابر 60 درجه باشد مطلوبست u.v+u.w+v.w مطلوبست حاصل و u+v+w=0 w v u u v w مثال: اگر و و مثال: با استفاده از بردارهای یکه محورهای مختصات حاصل هریک عبارتهای زیر را بدست آورید. 1 i. i, j. j, k. k i. j, i. k, j. k حاصل عبارت زیر را بدست آورید. ( i. i ) j ( i. k ) k ( k. k ) j مثال: مثال: مطلوبست زاویه بین دوبردار =i-3k,=-j+3k تعبیر هندسی. اگر زاویه بین, را برابرθ در نظر بگیریم 0 باشد. برابر است با اندازه بردار در اندازه تصویر بردار بر بردار )3 باشد. برابر است با منهای اندازه بردار در اندازه تصویر بردار بر بردار )

16 تصویر قائم یک بردار بر بردار دیگر اگر تصویر قائم بردار گویند و را بر بردار cos. cos اثبات: را بدست می آوریم. می دانیم پس cos. cos cos cos ابتدا طول بردار تصویر رب یعنی 0 هر گاه باشد می دانیم پس حال طول بردار آوردن را بدست آورده ایم می دانیم طول آن در جهت بردار را در بردار جهت می باشد پس برای بدست یعنی که می دانیم بطول.... یک می باشد ضرب می کنیم. برای و نیز به همین ترتیب اثبات می شود.

17 مثال: تصویر بردار -,1,) را بر بردار 1,,) بدست آورید. نتیجه: اندازه)طول(تصویر بردار یعنی هرگاه یعنی بر بردار برابر است با. بعدا اندازه آن را بدست آوریم. مثال: اندازه بردار تصویر را خواستند مستقیم از فرمول باال استفاده می کنیم و بردار قرینه یک بردار نسبت به برداری دیگر اگر قرینه بردار 3-,1,) را بر (1, -, ) بدست آورید. را نسبت به بردار با " نشان می دهند و برابر است با را بدست نمی آوریم تا. " اثبات: مثال: مطلوب است قرینه بردار -,1,) نسبت به بردار 1,,) مثال: مطلوب است طول قرینه بردار 3-,,6)u نسبت به بردار,,3)v کسینوسهای هادی اگر γوβوα زوایای بردار u(x,y,z) با محورهای ozوoyوox باشند آنگاه :

18 cos x,cos y,cos z u u u u x y z e u مثال: اگر u,1),1 باشد مطلوبست بردار یکه نتیجه: همواره و زوایایی که با محورهای مختصات می سازد. cos cos cos 1 اثبات: مثال:اگر برداری با هردو محورهای yوx زوایای 44 درجه بسازد با محور z چه زاویه حاده ای می سازد u v ضرب خارجی اگر vوu دو بردار باشند همین دلیل به آن را ضرب خارجی u درv می گویند که حاصل آن یک بردار می باشد به ضرب برداری نیز می گویند. u v v( x, y, z uو ( x ) 1, y 1, z اگر مختصات (1 باشد به مختصات زیر می باشد u ( x 1, y 1, z 1) y z x z x y u v,, y z x z x y v( x, y, z )

19 u u v u u مثال: اگر 1,1-,)v مطلوبست v نتیجه: سه بردار u(1,,3 و و و,u,vu تشکیل یک دستگاه راستگرد می دهند که در شکل باال می بینید. 1-,,3) برداری به طول پیدا کنید که بر هر دوبردار, عمود باشد. 1 uu 0 u v v u 3 u ( v w u v u w r ( u v ( ru v ( rs ( u v ( ru ( sv u v v u 0 v مثال: اگر -,1,) و ویژگی های ضرب خارجی اگر u,v,w سه بردار باشند نتیجه: اگر دو بردارu,v موازی باشندآنگاه توجه: ضرب خارجی دارای خاصیت شرکت پذیری نمی باشد یعنی اگر u,v,w سه بردار باشند u ( v w ) u v w u v مثال: اگر -,1,) و 1-,,3) مطلوبست حاصل (u+v)(u-v) نتیجه: روابط اتحاد های در جه دوم در ضرب خارجی کاربرد ندارد. نکته: اگر u,v دو بردار وθ زاویه بی آنها باشد و می توانیم اندازه)طول(بردار زیر بدست آوریم. را مستقیم از رابطه u v u v sin u v u v u. v u v uv tn uv. v 6 مثال: اگر u چند رابطه مهم و و زاویه بین دو بردار برابر 10 باشد مطلوبست 3( رابطه بین ضرب داخلی و خارجی و طول دوبردار ( رابطه بین ضرب داخلی و خارجی وαزاویه بین دوبردار اثبات:

20 u v v 3 مثال: اگر u مثال: اگر 3 3 و و باشدu.v را بدست آورید. u,v مطلوبست زاویه بین دو بردار و u.v=-3 uv ضرب خارجی بین بردارهای یکه محورهای مختصات i,j,k رابطه زیر برقرار است: i i j j k k 0 i j k, j k i, k i j 1 i i j j k k i j j 3k c c )1 مثال: حاصل عبارت زیر را بدست آورید. مثال: اگر ++c=0 باشد نشان دهید محاسبه مساحت متوازی االضالع مساحت متوازی الضالعی که با استفاده از دو بردار و ایجاد می شود برابر است با s اثبات: مساحت متوازی االضالع برابر است با ارتفاع ضربدر قاعده. قاعده برابر می باشد برای بدست آوردن ارتفاع فرض می کنیم زاویه بین دوبردار, برابرθ باشد با توجه به رابطه sinθ در مثلث قائم الزاویه داریم: =ارتفاع sin S= sin = درنتیجه

21 1 s D(1,,-3 نتیجه: مساحت مثلثی که بوسیله دو بردار و ایجاد می شود برابر است با مثال: مساحت متوازی االضالع ABCD را بدست آورید که سه راس آن باشد. A(,3,1 و 1,, ) Bو مثال : اگر A,B,C سه راس یک مثلث و O مرکز مختصات باشد نشان دهید مساحت مثلث از رابطه زیر بدست می آید: 1 s OA OB OB OC OC OA حجم متوازی السطوح حجم متوازی السطوحی که با استفاده از سه بردار,,c ایجاد می شود برابر است با : 1-,1,) و( (,3,1 و v.( c ) مثال: مطلوبست حجم متوازی السطوحی که با استفاده از سه بردار,,1-)c ایجاد می شود. نتیجه: سه بردار,,c در یک صفحه قرار دارند هرگاه0 ). c باشد. مثال: k را بگونه ای محاسبه کنید که سه بردار (k,3,-1 و -,,1) و 1,,)c در یک صفحه واقع شوند. نتیجه : حجم متوازی السطوحی که با استفاده از سه بردار,,c ایجاد می شود برابر است با : 1 v.( c ) 6

22 مثال: حجم هرمی را بدست آورید که نقاط,-,3)A و,1,0)B و 1,,6)C و 1,-,3)D چهار راس آن باشند. نکته:.( c).( c) c.( ).( c ) ( c ) c.( )

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

:موس لصف یسدنه یاه لکش رد یلوط طباور

:موس لصف یسدنه یاه لکش رد یلوط طباور فصل سوم: 3 روابط طولی درشکلهای هندسی درس او ل قضیۀ سینوس ها یادآوری منظور از روابط طولی رابطه هایی هستند که در مورد اندازه های پاره خط ها و زاویه ها در شکل های مختلف بحث می کنند. در سال گذشته روابط طولی

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها(

فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( فهرست جزوه ی فصل دوم مدارهای الکتریکی ( بردارها( رفتار عناصر L, R وC در مدارات جریان متناوب......................................... بردار و کمیت برداری.............................................................

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

فصل 5 :اصل گسترش و اعداد فازی

فصل 5 :اصل گسترش و اعداد فازی فصل 5 :اصل گسترش و اعداد فازی : 1-5 اصل گسترش در ریاضیات معمولی یکی از مهمترین ابزارها تابع می باشد.تابع یک نوع رابطه خاص می باشد رابطه ای که در نمایش زوج مرتبی عنصر اول تکراری نداشته باشد.معموال تابع

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g

باشند و c عددی ثابت باشد آنگاه تابع های زیر نیز در a پیوسته اند. به شرطی که g(a) 0 f g تعریف : 3 فرض کنیم D دامنه تابع f زیر مجموعه ای از R باشد a D تابع f:d R در نقطه a پیوسته است هرگاه به ازای هر دنباله از نقاط D مانند { n a{ که به a همگراست دنبال ه ){ n }f(a به f(a) همگرا باشد. محتوی

Διαβάστε περισσότερα

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22

فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل تحلیل مدار به روش جریان حلقه... 22 فهرست مطالب جزوه ی فصل اول مدارهای الکتریکی آنچه باید پیش از شروع کتاب مدار بدانید تا مدار را آسان بیاموزید.............................. 2 مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل................................................

Διαβάστε περισσότερα

جلسه ی ۲۴: ماشین تورینگ

جلسه ی ۲۴: ماشین تورینگ دانشکده ی علوم ریاضی نظریه ی زبان ها و اتوماتا ۲۶ ا ذرماه ۱۳۹۱ جلسه ی ۲۴: ماشین تورینگ مدر س: دکتر شهرام خزاي ی نگارندگان: حمید ملک و امین خسر وشاهی ۱ ماشین تور ینگ تعریف ۱ (تعریف غیررسمی ماشین تورینگ)

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان

جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network سه شنبه 21 اسفند 1393 جلسه دوم سوم چهارم: مقدمه اي بر نظریه میدان استاد: مهدي جعفري نگارنده: علیرضا حیدري خزاي ی در این نوشته مقدمه اي بر

Διαβάστε περισσότερα

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn.

خواص هندسی سطوح فصل ششم بخش اول - استاتیک PROBLEMS. 6.1 through 6.18 Using. Fig. P6.4. Fig. Fig. P ft 8 ft. 2.4 m 2.4 m lb. 48 kn. خواص هندسی فصل ششم سطوح بخش اول - استاتیک... P6.4 0 kn 5 k 9. P6.5 n. 600 l. P6.. P6. 5 m PROLEMS ee8056_ch06_6-75.ndd Page 8 0/6/09 :50:46 M user-s7 . P6.4. P6.... P6. 5 m. P6.5 n. 0 kn 5 k PROLEMS ee8056_ch06_6-75.ndd

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A

برابری کار نیروی برآیند و تغییرات انرژی جنبشی( را بدست آورید. ماتریس ممان اینرسی s I A مبحث بیست و سوم)مباحث اندازه حرکت وضربه قانون بقای اندازه حرکت انرژی جنبشی و قانون برابری کار نیروی برآیند و تغییرات انرژی جنبشی( تکلیف از مبحث ماتریس ممان اینرسی( را بدست آورید. ماتریس ممان اینرسی s I

Διαβάστε περισσότερα

I = I CM + Mh 2, (cm = center of mass)

I = I CM + Mh 2, (cm = center of mass) قواعد کلی اینرسی دو ارنی المان گیری الزمه یادگیری درست و کامل این مباحث که بخش زیادی از نمره پایان ترم ار به خود اختصاص می دهند یادگیری دقیق نکات جزوه استاد محترم و درک درست روابط ریاضی حاکم بر آن ها است

Διαβάστε περισσότερα

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2.

می باشد. انشاال قسمت شعاعی بماند برای مکانیک کوانتومی 2. تکانه زاویه ای اهداف فصل: در این فصل سعی میکنیم تا مساله شرودینگر را در حالت سه بعدی مورد بررسی قرار دهیم. مهمترین نکته فصل این است که ما در انجا فقط پتانسیل های شعاعی را در نظر می گیریم. یعنی پتانسیل

Διαβάστε περισσότερα

فصل دهم: همبستگی و رگرسیون

فصل دهم: همبستگی و رگرسیون فصل دهم: همبستگی و رگرسیون مطالب این فصل: )r ( کوواریانس ضریب همبستگی رگرسیون ضریب تعیین یا ضریب تشخیص خطای معیار برآور ( )S XY انواع ضرایب همبستگی برای بررسی رابطه بین متغیرهای کمی و کیفی 8 در بسیاری

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

به نام خدا. هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in

به نام خدا.  هر آنچه در دوران تحصیل به آن نیاز دارید. Forum.Konkur.in به نام خدا www.konkur.in هر آنچه در دوران تحصیل به آن نیاز دارید Forum.Konkur.in پاسخ به همه سواالت شما در تمامی مقاطع تحصیلی, در انجمن کنکور مجموعه خود آموز های فیزیک با طعم مفهوم حرکت شناسی تهیه و تنظیم:

Διαβάστε περισσότερα

Beta Coefficient نویسنده : محمد حق وردی

Beta Coefficient نویسنده : محمد حق وردی مفهوم ضریب سهام بتای Beta Coefficient نویسنده : محمد حق وردی مقدمه : شاید بارها در مقاالت یا گروهای های اجتماعی مربوط به بازار سرمایه نام ضریب بتا رو دیده باشیم یا جایی شنیده باشیم اما برایمان مبهم باشد

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

فصل پنجم زبان های فارغ از متن

فصل پنجم زبان های فارغ از متن فصل پنجم زبان های فارغ از متن خانواده زبان های فارغ از متن: ( free )context تعریف: گرامر G=(V,T,,P) کلیه قوانین آن به فرم زیر باشد : یک گرامر فارغ از متن گفته می شود در صورتی که A x A Є V, x Є (V U T)*

Διαβάστε περισσότερα

مینامند یا میگویند α یک صفر تابع

مینامند یا میگویند α یک صفر تابع 1 1-1 مقدمه حل بسیاری از مسائل اجتماعی اقتصادی علمی منجر به حل معادله ای به شکل ) ( می شد. منظر از حل این معادله یافتن عدد یا اعدادی است که مقدار تابع به ازای آنها صفر شد. اگر (α) آنگاه α را ریشه معادله

Διαβάστε περισσότερα

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید.

حجمهای کروی: فعالیت فعالیت 1 به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. در حجمهای هندسی نوع آن را تعیین کنید. حجم های هندسی فعالیت به اطراف خود)کالس خانه خیابان و ( به دقت نگاه کنید. آیا چیزی پیدا میکنید که حجم نداشته باشد در تصویر مقابل چه نوع حجمهایی را میبینید آیا همه آنها شکل هندسی دارند آیا میتوانید یک طبقهبندی

Διαβάστε περισσότερα

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود

فصل ٤ انتگرال کند. در چنین روشی برای محاسبه دایره از درج چندضلعیهای منتظم در درون دایره استفاده میشود فصل ٤ انتگرال ٤ ١ مسأله مساحت فرمولهای مربوط به مساحت چندضلعیها نظیر مربع مستطیل مثلث و ذوزنقه از زمانهای شروع تمدنهای نخستین به خوبی شناخته شده بوده است. با اینحال مسأله یافتن فرمولی برای بعضی نواحی که

Διαβάστε περισσότερα

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم

دانشکده علوم ریاضی دانشگاه گیلان آزمون پایان ترم درس: هندسه منیفلد 1 باشد. دهید.f (gx) = (gof 1 )f X شده باشند سوالات بخش میان ترم آزمون پایان ترم درس: هندسه منیفلد 1 زمان آزمون 120 دقیقه نیمسال: اول 95-94 رشته تحصیلی : ریاضی محض 1. نشان دهید X یک میدان برداري روي M است اگر و فقط اگر براي هر تابع مشتقپذیر f روي X(F ) M نیز مشتقپذیر

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

فصل صفر یادآوری مفاهیم پایه

فصل صفر یادآوری مفاهیم پایه فصل صفر جبر اعداد حقیقی در این فصل به مرور مهم ترین مطالبی میپردازیم که در مباحث حساب دیفرانسیل و انتگرال بدان محتاج هستیم این مطالب مشتمل بر مروری مجد د بر خواص اعداد حقیقی است که دانشآموزان از دوره دبستان

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند.

فصل اول هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 5 روش های اجرای دستور را توضیح دهد. 6 نوارهای ابزار را توصیف کند. فصل اول آشنایی با نرم افزار اتوکد هدف های رفتاری: پس از پایان این فصل از هنرجو انتظار می رود: 1 قابلیت های نرم افزار اتوکد را بیان کند. 2 نرم افزار اتوکد 2010 را روی رایانه نصب کند. 3 محیط گرافیکی نرم

Διαβάστε περισσότερα

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول

بسم الله الرحمن الرحیم دورۀ متوسطۀ اول بسم الله الرحمن الرحیم ریا ض ی 7 دورۀ متوسطۀ اول فهرست سخنی با دانش آموز فصل 1 راهبردهای حل مسئله فصل 2 عددهای صحیح معرفی عددهای عالمت دار جمع و تفریق عددهای صحیح )1 ) جمع و تفریق عددهای صحیح )2 ) ضرب

Διαβάστε περισσότερα

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در

فصل اول و به منظور مردود کردن نظریات ارسطو نشان داد که اجسامی با 1592 به استادی کرسی ریاضیات دانشگاه پادوا منصوب شد و در فصل اول حرکت شناسی در دو بعد گالیلئوگالیله: در سال 1581 میالدی به دانشگاه پیزا وارد شد اما در سال 1585 قبل از آن که مدرکی بگیرد از آنجا بیرون آمد. پیش خودش به مطالعه آثار اقلیدس و ارشمیدس پرداخت و به زودی

Διαβάστε περισσότερα

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد

تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد دردینامیک علت حرکت یا سکون جسم تحت تاثیر نیروهای وارد بر آن بررسی میشود. تعریف نیرو:نیرو بر هم کنش )تاثیر متقابل ) دو جسم بر یکدیگر است که این بر هم کنش میتواند از راه تماس مستقیم باشد مانند اصطکاک یا

Διαβάστε περισσότερα

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم

سلسله مزاتب سبان مقدمه فصل : زبان های فارغ از متن زبان های منظم 1 ماشیه ای توریىگ مقدمه فصل : سلسله مزاتب سبان a n b n c n? ww? زبان های فارغ از متن n b n a ww زبان های منظم a * a*b* 2 زبان ها پذیرفته می شوند بوسیله ی : ماشین های تورینگ a n b n c n ww زبان های فارغ

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 23 1 تابع آنتروپی و خاصیت مقعر بودن نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 392-39 مدرس: ابوالفتح بیگی و امین راده گوهري نویسنده: علی ایزدي راد جلسه 23 تابع آنتروپی و خاصیت مقعر بودن در جلسه ي قبل به تعریف توابع محدب و صعودي پرداختیم و قضیه هاي

Διαβάστε περισσότερα

پنج ره: Command History

پنج ره: Command History هب انم زیدان اپک فهرست مطا ل ب مع ر ف ی رنم ازفار م تل ب:... 11 آش نا ی ی با محی ط ا صل ی رنم ازفار م تل ب:... 11 11... پنج ره: Command History وه ارجای د ست ورات رد م تل ب:... 11 نح نو شت ن د ست ورات

Διαβάστε περισσότερα

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ].

E_mail: چکیده فرکتال تشخیص دهد. مقدمه متحرک[ 2 ]. آنالیز کامپیوتری مسیر حرکت اسپرم و استخراج بعد فرکتال نویسندگان : ٣ ٢ ١ مریم پنجه فولادگران محمدحسن مرادی وحیدرضا نفیسی ٤ روشنک ابوترابی تهران دانشگاه آزاد اسلامی واحد علوم و تحقیقات دانشکده مهندسی پزشکی

Διαβάστε περισσότερα

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون

فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون فصل پنجم : سینکروها جاوید سید رنجبر میالد سیفی علی آسگون مقدمه دراغلب شاخه های صنایع حالتی پدید می آید که دو نقطه دور از هم بایستی دارای سرعت یکسانی باشند. پل های متحرک دهانه سد ها تسمه ی نقاله ها جرثقیل

Διαβάστε περισσότερα

مجموعه های اندازه پذیر به مثابە نقاط حدی

مجموعه های اندازه پذیر به مثابە نقاط حدی فرهنگ و اندیشە ریاضی شماره ۵٧ (پاییز و زمستان ١٣٩۴) صص. ٩٧ تا ١٠۶ مجموعه های اندازه پذیر به مثابە نقاط حدی برگردان: رسول کاظمی جی. تاناکا و پی. اف. مک لولین ١. مقدمه دانشجویان درس آنالیز حقیقی در دورۀ

Διαβάστε περισσότερα

فصل اول پیچیدگی زمانی و مرتبه اجرایی

فصل اول پیچیدگی زمانی و مرتبه اجرایی فصل اول پیچیدگی زمانی و مرتبه اجرایی 1 2 پیچیدگی زمانی Complexity) (Time مثال : 1 تابع زیر جمع عناصر یک آرایه را در زبان C محاسبه می کند. در این برنامه اندازه ورودی همان n یا تعداد عناصر آرایه است و عمل

Διαβάστε περισσότερα

عنوان: رمزگذاري جستجوپذیر متقارن پویا

عنوان: رمزگذاري جستجوپذیر متقارن پویا دانشگاه صنعتی شریف دانشکده مهندسی برق گزارش درس ریاضیات رمزنگاري عنوان: رمزگذاري جستجوپذیر متقارن پویا استاد درس: مهندس نگارنده: ز 94 دي ماه 1394 1 5 نماد گذاري و تعریف مسي له 1 6 رمزگذاري جستجوپذیر متقارن

Διαβάστε περισσότερα

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه

فصل دوم محاسبۀ زاویه ١ انواع زوایا را برحسب واحد ١ آشنایی با واحدهای در زندگی مسیر را تغییر میدهد ٣ براساس روابط مثلثهای مشخص زوایای مجهول را محاسبه فصل دوم محاسبۀ زاویه خالصۀ فصل در این فصل دانش آموزان با مفهوم و سلسله مراتب واحدهای اندازه گیری زاویه تبدیل واحد به هم تعیین زوایای اشکال هندسی آشنایی پیدا می کنند و باید توانایی به کارگیری مسائل نظیر

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

فصل سوم : عناصر سوئیچ

فصل سوم : عناصر سوئیچ فصل سوم : عناصر سوئیچ رله الکترومکانیکی: یک آهنربای الکتریکی است که اگر به آن ولتاژ بدهیم مدار را قطع و وصل می کند. الف: دیود بعنوان سوئیچ دیود واقعی: V D I D = I S (1 e η V T ) دیود ایده آل: در درس از

Διαβάστε περισσότερα

جبربردارها هندسه تحلیلی جبرخطی و حساب دیفرانسیل و انتگرال :

جبربردارها هندسه تحلیلی جبرخطی و حساب دیفرانسیل و انتگرال : جبربردارها هندسه تحلیلی جبرخطی آنالیز برداری و حساب دیفرانسیل و انتگرال : VETOR ALGEBRA ANALITIAL GEOMETRY; LINEAR ALGEBRA VETOR ANALYSIS ; DIFFERENTIAL AND INTEGRAL ALULUS ریاضی عمومی جبر بردار ها : تعاریف

Διαβάστε περισσότερα

http://econometrics.blog.ir/ متغيرهای وابسته نماد متغيرهای وابسته مدت زمان وصول حساب های دريافتني rcp چرخه تبدیل وجه نقد ccc متغیرهای کنترلی نماد متغيرهای کنترلي رشد فروش اندازه شرکت عملکرد شرکت GROW SIZE

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

6- روش های گرادیان مبنا< سر فصل مطالب

6- روش های گرادیان مبنا< سر فصل مطالب 1 بنام خدا بهینه سازی شبیه سازی Simulation Optimization Lecture 6 روش های بهینه سازی شبیه سازی گرادیان مبنا Gradient-based Simulation Optimization methods 6- روش های گرادیان مبنا< سر فصل مطالب 2 شماره

Διαβάστε περισσότερα

فیلتر کالمن Kalman Filter

فیلتر کالمن Kalman Filter به نام خدا عنوان فیلتر کالمن Kalman Filter سیدمحمد حسینی SeyyedMohammad Hosseini Seyyedmohammad [@] iasbs.ac.ir تحصیالت تکمیلی علوم پایه زنجان Institute for Advanced Studies in Basic Sciences تابستان 95

Διαβάστε περισσότερα

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95

ترمودینامیک مدرس:مسعود رهنمون سال تحصیلى 94-95 ترمودینامیک سال تحصیلى 94-95 رهنمون 1- مفاهیم اولیه ترمودینامیک: علمی است که به مطالعه ی رابطه ی بین کار و گرما و تبدیل آنها به یکدیگر می پردازد. دستگاه: گازی است که به مطالعه ی آن می پردازیم. محیط: به

Διαβάστε περισσότερα

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن

استفاده از خود متغیر تحت کنترل )در اینجا T یا دما( برای کنترل کردن 4 فصل : 9 سیستم مدار بسته خطی : عنصر اندازه گیری مثل ترموکوپل - Set point + فرآیند عنصرکنترل نهایی کنترل کننده load بار i proce خطوط انتقال مقدار مطلوب m عنصر اندازه گیری مقدار مقرر تعریف : et point عبارت

Διαβάστε περισσότερα

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی...

فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی... 2 خواص مدارات سری... 3 خواص مدارات موازی... فهرست مطالب جزوه ی الکترونیک 1 فصل اول مدار الکتریکی و نقشه ی فنی................................................. 2 خواص مدارات سری....................................................... 3 3...................................................

Διαβάστε περισσότερα

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی

تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی درس تجزیه و تحلیل سیگنال ها و سیستم ها دکتر منصور زینلی فصل اول سیگنال: نشانه یا عالمت هر کمیت فیزیکی) قابل اندازه گیری ) است. انواع سیگنال : سیگنالپیوستهدرزمانکهبهصورت x(t) نشان داده میشود و t یک متغیر

Διαβάστε περισσότερα

الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید.

الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید. الگوهای عددی فعاليت 1 شکل ها به همین ترتیب ادامه پیدا می کنند. با توجه به آن جدول را کامل کنید. ابتدا شکل های چهارم و پنجم را رسم کنید. (١) (٢) (٣) 1 شماره شکل 2 3 4 5 6 7 8 9 10 3 تعداد چوب کبريت 5 با

Διαβάστε περισσότερα

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد

تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد تعیین محل قرار گیری رله ها در شبکه های سلولی چندگانه تقسیم کد مبتنی بر روش دسترسی زلیخا سپهوند دانشکده مهندسى برق واحد نجف آباد دانشگاه آزاد اسلامى نجف آباد ایر ان zolekhasepahvand@yahoo.com روح االله

Διαβάστε περισσότερα

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها

تمرین صفحه 91 تمرین صفحه 95 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها 90 حل تمرین ها تمرین صفحه 91 کدام روش جمع آوری داده ها برای موارد زیر مناسب است یک دلیل برای انتخاب خود ذکر کنید. 1 میزان رضایت مشتریان بانک از نحوه برخورد و رسیدگی به درخواست های آنها پاسخ: پرسش نامه:

Διαβάστε περισσότερα

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند.

موتورهای تکفاز ساختمان موتورهای تک فاز دوخازنی را توضیح دهد. منحنی مشخصه گشتاور سرعت موتور تک فاز با خازن راه انداز را تشریح کند. 5 موتورهای تک فاز 183 موتورهای تکفاز هدف های رفتاری: نحوه تولید میدان مغناطیسی در یک استاتور با یک و دو سیم پیچ را بررسی نماید. لزوم استفاده از سیم پیچ کمکی در موتورهای تک فاز را توضیح دهد. ساختمان داخلی

Διαβάστε περισσότερα

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ

1سرد تایضایر :ميناوخ يم سرد نيا رد همانسرد تلااؤس یحيرشت همان خساپ 1 ریاضیات درس در اين درس ميخوانيم: درسنامه سؤاالت پاسخنامه تشریحی استخدامی آزمون ریاضیات پرورش و آموزش بانک آزمونهای از اعم کشور استخدامی آزمونهای تمام در ریاضیات پرسشهای مجموعهها میشود. ارائه نهادها و

Διαβάστε περισσότερα

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت

عوامل جلوگیری کننده از موازی سازی عبارتند از : 1.هزینه I/O 2.هماهنگی/رقابت عوامل جلوگیری کننده از موازی سازی عبارتند از :.هزینه I/O.هماهنگی/رقابت ممکن است یک برنامه sequential بهتر از یک برنامه موازی باشد بطور مثال یک عدد 000 رقمی به توان یک عدد طوالنی اینکه الگوریتم را چگونه

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن

هدف از این آزمایش آشنایی با برخی قضایاي ساده و در عین حال مهم مدار از قبیل قانون اهم جمع آثار مدار تونن و نورتن آزما ی ش سوم: ربرسی اقنون ا ه م و قوانین ولتاژ و جریان اهی کیرشهف قوانین میسقت ولتاژ و میسقت جریان ربرسی مدا ر تونن و نورتن قضیه ااقتنل حدا کثر توان و ربرسی مدا ر پ ل و تس ون هدف از این آزمایش آشنایی با

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک فصل 6 نیرو و حرکت II مسائل فیزیک هالیدی & رزنیک حمیدرضا طهماسبی ویژگی های اصطکاک. 1 روی کف یکی از واگن های قطار جعبه هایی قرار دارد. اگر ضریب اصطکاک ایستای جعبه ها با کف واگن 0.25 باشد و این قطار با سرعت

Διαβάστε περισσότερα

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی

به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی به نام خدا قابل استفاده برای کلیه دانشجویان مهندسی و علوم پایه مدرس: هوشمند عزیزی دانشگاه فنی و حرفه ای کرمانشاه زمستان 39 فرمت نمایش اعداد : با توجه به دقت و تعداد ارقام اعشاری قابل قبول در محاسبات می

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

مسائل فیزیک هالیدی & رزنیک

مسائل فیزیک هالیدی & رزنیک حرکت در مسیر مستقیم )حرکت یک بعدی( حمیدرضا طهماسبی سرعت متوسط و تندی متوسط 1. هنگام یک عطسه ی شدید چشمان شما ممکن است برای 0.50s بسته شود. اگر شما درون خودرویی در حال رانندگی با سرعت 90km/h باشید ماشین

Διαβάστε περισσότερα

یونیزاسیون اشعهX مقدار مو ثر یونی را = تعریف میکنیم و ظرفیت مو ثر یونی نسبت مقدار مو ثر یونی به زمان تابش هدف آزمایش: مقدمه:

یونیزاسیون اشعهX مقدار مو ثر یونی را = تعریف میکنیم و ظرفیت مو ثر یونی نسبت مقدار مو ثر یونی به زمان تابش هدف آزمایش: مقدمه: ر 1 یونیزاسیون اشعهX هدف آزمایش: تعیین مقدار ظرفیت مو ثر یونی هوا تحقیق بستگی جریان یونیزاسیون به جریان فیلامان و ولتاژ آند لامپ اشعه x مقدمه: اشعه x موج الکترومغناطیسی پر قدرت با محدوده انرژي چند تا چند

Διαβάστε περισσότερα

سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به

سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به کشش سطحی Surface Tension سطوح مرزی سیالها مقاومتی در برابر بزرگ شدن از خود نشان میدهند. این مقاومت همان کشش سطحی است. به صورت دقیقتر اگر یک مرز دو بعدی برای یک سیال داشته باشیم و یک خط فرضی از سیال با

Διαβάστε περισσότερα

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از:

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از: آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: یک (R.A.Millikan) رابرت میلیکان 1909 در سال روش عملی براي اندازهگیري بار یونها گزارش کرد. این روش مشاهده حرکت قطرات ریز

Διαβάστε περισσότερα

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم« 3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري.

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري. حفاظت مقایسه فاز در خطوط انتقال جبران شده سري همراه با MOV 2 1 محمد رضا پویان فر جواد ساده 1 دانشگاه آزاد اسلامی واحد گناباد reza.pooyanfar@gmail.com 2 دانشکده فنی مهندسی دانشگاه فردوسی مشهد sadeh@um.ac.ir

Διαβάστε περισσότερα

آزمایش شماره 5 طرح و ساخت منبع تغذیه

آزمایش شماره 5 طرح و ساخت منبع تغذیه آزمایش شماره 5 طرح و ساخت منبع تغذیه هدف: یک سو کردن ولتاژ متناوب به وسیله دیود نیمه هادی صاف کردن و بررسی ریپل )موجک( و اندازه گیری آن. وسایل آزمایش : ولتمتر- اسیلوسکوپ منبع ac دیود- مقاومت خازن الکترولیت-

Διαβάστε περισσότερα

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ

يﺮﻫز ﺖﺠﺣ ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ.ﺪﯿﺘﺴﻫ ﺎﻨﺷآ ﯽﯾاﺪﺘﺑا ﻊﻄﻘﻣ زا ﺐﺳﺎﻨﺗ ﺚﺤﺒﻣ ﺎﺑ ﺎﻤﺷ ﺰﯾﺰﻋ زﻮﻣآ ﺶﻧاد ﺪ مبحث تناسب حجت زهري دانش آموز عزیز شما با مبحث تناسب از مقطع ابتدایی آشنا هستید. تناسب نوعی رابطه بین اعداد است که در آن اعداد و کمیتها به دو صورت می توانند با یکدیگر نسبت داشته باشند. مدل : تناسب مستقیم:

Διαβάστε περισσότερα

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد

مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد گاما شماره ی ٢٣ تابستان ١٣٨٩ مسي لهای در م انی : نردبان که کنار دیوار لیز م خورد امیر آقامحمدی چ یده مسي لهی نردبان که کنار دیوار لیز م خورد بدون و با در نظر گرفتن اصط اک بررس شده است. م خواهیم حرکت نردبان

Διαβάστε περισσότερα

مبانی برنامه نویسی با #C

مبانی برنامه نویسی با #C مبانی برنامه نویسی با #C 0 Welcome to C# Beginning Programming with the Visual Studio 2013 Environment Writing Your First Program Using Namespaces Creating a Graphical Application 1 Working with Variables,

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید.

نکنید... بخوانید خالء علمی خود را پر کنید و دانش خودتان را ارائه دهید. گزارش کار آزمایشگاه صنعتی... مکانیک سیاالت ( رینولدز افت فشار ) دانشجویان : فردین احمدی محمد جاللی سعید شادخواطر شاهین غالمی گروه یکشنبه ساعت 2::0 الی رینولدز هدف : بررسی نوع حرکت سیال تئوری : یکی از انواع

Διαβάστε περισσότερα

آزمایشگاه الکترونیک 1

آزمایشگاه الکترونیک 1 دانشگاه صنعتی شریف دانشکده فیزیک آزمایشگاه الکترونیک ویرایش سوم 93 آزمایش اسیلوسکپ اشعه کاتدی موضوع : آزمایش کار با یک اسیلوسکپ اشعه کاتدی (C..O) و کاربرد آن در مطالعه مدارهای جریان متناوب (ac) وسایل الزم:

Διαβάστε περισσότερα

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11(

تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( تحلیل آماری جلسه اول )جمعه مورخه 1131/70/11( سرفصل دروس: مفاهیم و تعاریف نمونه گیری و توزیع های نمونه ای برآورد کردن)نقطه ای فاصله ای( آزمون فرضیه آنالیز واریانس مدلهای خطی رگرسیون آزمون استقالل و جداول

Διαβάστε περισσότερα

Econometrics.blog.ir

Econometrics.blog.ir وب سایت آموزش نرم افزارهای اقتصادسنجی به نام خدا معادالت همزمان Economerics.blog.ir نام دانشجو: مریم گودرزی مدل های تک معادله ای مدلهایی هستند که دارای یک متغیر درونزا) Y ( و یک یا چند متغیر توضیحی) X

Διαβάστε περισσότερα