ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ELEKTROMOTORNI POGONI SA ASINHRONIM MOTOROM"

Transcript

1 ELEKTROOTORNI POGONI SA ASINHRONI OTORO Poučavamo amo pogone a tofaznim motoom. Najčešće koišćeni moto u elektomotonim pogonima. Ainhoni moto: - jednotavna kontukcija; - mala cena; - vioka enegetka efikanot.

2 ETALNI PRSTEN LAINIRANO JEZGRO BAKARNE ŠIPKE KAVEZNI ROTOR NAOTAJI LAINIRANO JEZGRO NAOTANI ROTOR

3 oto a kaveznim otoom Stato Roto

4 ROTOR ASINHRONOG OTORA NAJČEŠĆE IA ZAKOŠENE ŽLEBOVE DA BI SE INIIZIRALE PULSACIJE OENTA

5 POPREČNI PRESEK ASINHRONOG OTORA

6 STATIKA POGONA Ekvivalentna šema motoa (po fazi). R R U I E R m I R I m Rotoke veličine u vedene na tato.

7 Otale kaakteitične veličine: f f Hz Hz f ad.el./ f ad.el./ - tatoka učetanot; - otoka učetanot; - kužna učetanot tatoa; - kužna učetanot otoa; ad.el./ - ugaona bzina; m P / P ad.meh./ ad/ / / - boj pai polova; - mehanička ugaona bzina; - klizanje.

8 BAZNE VREDNOSTI U b = U n nominalna efektivna vednot faznog napona I b = I n nominalna efektivna vednot fazne tuje b = f n nominalna kužna učetanot Z b = U b / I b P b = q U b I b = 3 U b I b q - boj faza = 3 b = P b / ( b /P)

9 TOKOVI SNAGE P 3U I co - naga tatoa, naga uzeta iz izvoa; Cu 3 P R I - naga gubitaka u baku tatoa; PFe 3E Rm - naga gubitaka u gvožđu lim PFe 0 R m P 3 R I - naga obtnog magnetnog polja; o P 3 R I P - naga gubitaka u baku otoa; Cu o P Po P Cu 3 R I Po - mehanička naga; Pt t - naga gubitaka na tenje i ventilaciju; P P P - koina mehanička naga.

10 P Cu Rotoki gubici Gubici uled tenja i ventilacije P t Ulazna elektična naga P P o P P ehanička naga na vatilu Statoki gubici P Cu Gubici u gvožđu P Fe Napomena: Snaga P t penoi e u opteećenje!

11 Elektomagnetni moment: e m m P P R I P R I I I R P P R ω

12 EHANIČKA KARAKTERISTIKA (tatička kaakteitika momenta) U PREDSTOJEĆOJ ANALIZI PRETPOSTAVIO DA JE E = cont. e e ( ) I () E R e R E e( ) 3 P R R R E ( ) 3 P

13 Funkcija e () ima ektemum koji e može naći iz: d e d omenat u tački ektemuma naziva e PREVALNI OENAT ( p ), a odgovaajuće klizanje PREVALNO KLIZANJE ( p ). p 0 R 3 P E ; p KLOSS - ova FORULA e p p p p p Važno: R p p cont.

14 STATIČKE KARAKTERISTIKE STRUJA I I I m E R E I j I ji a R R E Im j za PFe 0 ili Rm

15 Statička kaakteitika momenta, pi E=cont. 6 e () G G 0 ASK kočnica = =

16 Statičke kaakteitike tuja, E=cont. 0 8 I () 6 Re(I ()) Re(I ()) Im(I ()) Im(I ()) I m () =0 8 0 =

17 Dve petpotavke: RAZOTRIO REALAN (ealniji) SLUČAJ. P Fe E cont. U = cont. 0 R m. R R (avim ealna E petpotavka) U I R I m

18 Sa navedenim petpotavkama e može napiati: I U R R e p 3PU R R R R R f p 3PU R R znaci: + za motoni ežim; za geneatoki ežim.

19 Statička kaakteitika momenta, pi E cont., U =U n = cont. R U I R 4 I m 3 p mot p gen e () E()

20 Statičke kaakteitike tuja, pi E cont., U =U n = cont. R U I m I R I () Re(I ()) Re(I ()) Im(I ()) Im(I ()) I m ()

21 RAZOTRIO SLUČAJ BEZ ZANEARENJA INDUKTIVNOSTI AGNEĆENJA E cont. U = cont. Jedina petpotavka: P Fe 0 R m R E I I U R I m

22 Z R j Z () R j Z j m Z ( ) Z Z Z ( ) e m I () U E Z () () U Z I e Im () E () Z m E () I ( ) I( ) Im( ) Z () R 3 I I 3 m ω P e P P R

23 Statička kaakteitika momenta, pi E cont., U =U n = cont. U R I I R 4 I m 3 p mot p gen e () E()

24 Statičke kaakteitike tuja, pi E cont., U =U n = cont. R U I I m I R I () Re(I ()) Re(I ()) Im(I ()) Im(I ()) I m ()

25 Kod velikih mašina može e matati R 0 Sada je: e 3PU R R p R p 3 P U Veoma lično kao kod E=cont. ože e izveti KLOSS - ova fomula. e p p p

26 Statička kaakteitika momenta, pi E cont., U =U n = cont. R =0 3 R U I I m I R e () E()

27 Statičke kaakteitike tuja, pi E cont., U =U n = cont. R =0 R 7 U I I m I R 6 5 I () Re(I ()) Re(I ()) Im(I ()) Im(I ()) I m ()

28 STRUJNO NAPAJANJE ASINHRONOG OTORA I cont. Ovakav način napajanja puža nove mogućnoti kod napajanja iz invetoa. U analizi zanemaujemo gubitke u gvožđu. P 0 Fe R I U I cont. I R I m

29 Paktična ealizacija tujnog geneatoa * i + i u c Reguliani naponki izvo u i Z

30 Statička kaakteitika momenta e izvodi iz: I Im I Im Zm I Z Z j I I I m Z Z m R j R R I I I R 3 e P I R R R 3 P I f, I

31 Funkcija e () ima ektemum koji e može naći iz: Vednoti pevalnog momenta i klizanja u: de d 0 p 3 P I p R Pomoću ovih pevalnih vednoti može e izveti odgovaajuća KLOSS-ova fomula. ehanička kaakteitika kod tujnog napajanja ima iti oblik kao i kod naponkog napajanja, ali e kaakteitične vednoti azlikuju. je je p nap. p t. p nap. p t.

32 Statička kaakteitika momenta, pi tujnom napajanju I = I n I U R I cont. I m I R 3 ZOO naponka kaakteitika tujna kaakteitika U = I = e () 0 en ()

33 Statička kaakteitika momenta, pi tujnom napajanju I = I n R I U I cont. I R 0.8 I m e () en ()

34 Statičke kaakteitike tuja, pi tujnom napajanju I = I n I U R I cont. I m I R.. I = +0i 0.9 I () Re(I ()) Re(I ()) Im(I ()) Im(I ()) I m ()

35 Uz uvažavanje STATIČKA KARAKTERISTIKA NAPONA Z ( ) Z Z Z ( ) ekv m R j U ( ) I Z ( ) ekv R j j R j () R R ekv R R Z R j lim 0 lim Z R j ekv Z R R j ekv može e napiati: je je: R R

36 Statička kaakteitika napona tatoa kod tujno napajanog ainhonog motoa pi nominalnoj tuji I U R I cont. I m I R I = I n U ()

POGON SA ASINHRONIM MOTOROM

POGON SA ASINHRONIM MOTOROM OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO

Διαβάστε περισσότερα

KOČENJE ASINHRONOG MOTORA

KOČENJE ASINHRONOG MOTORA Potoje ti načina kočenja: KOČENJE ASINHRONOG OTORA 1. Rekupeativno;. Potivtujno na dva načina; 3. Dinamičko ili kočenje jednomenom tujom. 1. REKUPERATIVNO Pokazano je da ainhoni moto adi kao ainhoni geneato

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA S V E U Č I L I Š T E U Z A GR E U F A K U L T E T E L E K T R O T E H NI K E I R A Č U N A R S T V A Z A V O D Z A E L E K T R OST R OJ A R S T V O I A U T O M A T I Z A C I J U ANALIZA ELEKTRIČNIH STROJEVA

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

frekventni pretvarači bez međukola (poznati kao direktni pretvarači), frekventni pretvarači sa promenljivim ili konstantnim međukolom.

frekventni pretvarači bez međukola (poznati kao direktni pretvarači), frekventni pretvarači sa promenljivim ili konstantnim međukolom. Frekventni regulatori Uvod S tatički frekventni pretvarači su elektronski uređaji koji omogućavaju upravljanje brzinom trofaznih motora pretvarajući mrežni napon i frekvenciju, koji su fiksirane vrednosti,

Διαβάστε περισσότερα

Peta vežba Vektorsko upravljanje asinhronim motorom

Peta vežba Vektorsko upravljanje asinhronim motorom Peta vežba Vektorsko upravljanje asinhronim motorom Uvod Cilj vežbe je da se prouče statičke i dinamičke karakteristike pogona sa vektorskim upravljanjem. Kroz ovu vežbu, studenti će imati priliku da prouče

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Sinhrone mašine

ELEKTRIČNE MAŠINE Sinhrone mašine ELEKTRIČNE MAŠINE Sinhrone mašine Uvod Sinhrone mašine predstavljaju mašine naizmenične struje. Koriste se uglavnom kao generatori električne energije naizmenične struje, te stoga predstavljaju jedan od

Διαβάστε περισσότερα

ELEKTRIČNE MAŠINE Asinhrone mašine

ELEKTRIČNE MAŠINE Asinhrone mašine ELEKTRIČNE MAŠINE Asinhrone mašine Uvod Asinhrona mašina je tipičnan predstavnik električne mašine male i srednje snage koja se obično pravi u velikim serijama. Prednosti asinhrone mašine u odnosu na ostale

Διαβάστε περισσότερα

KOČENJE ASINHRONOG MOTORA

KOČENJE ASINHRONOG MOTORA KOČENJE ASINHRONOG MOTORA Razmatramo tri načina kočenja: 1. Rekuperativno;. Protivtrujno na dva načina; 3. Dinamičko ili kočenje jednomernom trujom. 1. Rekuperativno kočenje Pokazano je da ainhroni motor

Διαβάστε περισσότερα

ZADACI SA VEŽBI ASINHRONE MAŠINE

ZADACI SA VEŽBI ASINHRONE MAŠINE ZADACI SA VEŽBI ASINHONE AŠINE Zadata. Ogledom azog hoda i atog oja tofazog aihoog avezog motoa, dobijei u ledeći ezultati: u ogledu atog oja i aou 00 V, moto je ovlačio iz meže tuju od I 70 A i agu od

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

PRETVARAČI. doc. dr Boris Dumnić. Bane Popadić

PRETVARAČI. doc. dr Boris Dumnić. Bane Popadić EEKTROENERGETSKI PRETVARAČI Peavanja Vežbe pof. Vean Vać o. Bo Dunć o. Bo Dunć Bane Popać http://www.keep.ftn.un.a./ EEKTROENERGETSKI PRETVARAČI teatua OSNOVI EEKTROENERGETIKE Elektoenegetk petvaač Auto

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Električne mašine. Princip rada električnih mašina Dinamička elektromagnetska indukcija Princip rada generatora

Električne mašine. Princip rada električnih mašina Dinamička elektromagnetska indukcija Princip rada generatora ELEKTRČNE MAŠNE ELEKTROMOTORN POGON Električne ašine Princip rada Poja ašine i električne ašine ređaj koji energiju transforiše u ehanički rad Princip rada električnih ašina Dinaička elektroagnetska indukcija

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA

ANALIZA ELEKTRIČNIH STROJEVA PRIMJENOM RAČUNALA S V E U Č I L I Š T E U Z A GR E U F A K U L T E T E L E K T R O T E H NI K E I R A Č U N A R S T V A Z A V O D Z A E L E K T R OST R OJ A R S T V O I A U T O M A T I Z A C I J U ANALIZA ELEKTRIČNIH STROJEVA

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ)

NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) NAIZMENIČNE STRUJE POTREBNE FORMULE: Trenutna vrednost ems naizmeničnog izvora: e(t) = E max sin(ωt + θ) Trenutna vrednost naizmeničnog napona: u(t) = U max sin(ωt + θ) Trenutna vrednost naizmenične struje:

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

4 Asinhroni strojevi Uvod Konstrukcijska izvedba Princip rada Režimi rada Modeli za analizu rada asinhronog

4 Asinhroni strojevi Uvod Konstrukcijska izvedba Princip rada Režimi rada Modeli za analizu rada asinhronog Sadržaj 4 Asinhroni strojevi 1 4.1 Uvod................................. 1 4.2 Konstrukcijska izvedba....................... 2 4.3 Princip rada............................. 5 4.4 Režimi rada.............................

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

OG2EM. Zadaci za rad na časovima računskih vežbi

OG2EM. Zadaci za rad na časovima računskih vežbi OGEM Zadaci za rad na čaovia računkih vežbi Tekt adrži 10 zadataka koji će e rešavati na čaovia računkih vežbi u toku druge polovine kura Prvih 6 zadataka e odnoi na ainhrone ašine Preotala 4 zadatka e

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

MERENJE NEELEKTRIČNIH VELIČINA

MERENJE NEELEKTRIČNIH VELIČINA MERENJE NEELEKTRIČNIH VELIČINA SADRŽAJ 1 MERENJE NEELEKTRIČNIH VELIČINA... 4 1.1 Termička ispitivanja... 4 1.1.1 Temperaturne klase izolacije... 4 1.1.2 Merenje temperature... 6 1.1.2.1 Primena termometara...

Διαβάστε περισσότερα

Regulisanje brzine asinhronih mašina sa kratkospojenim rotorom Viši harmonici Viši prostorni harmonici (za osnovni

Regulisanje brzine asinhronih mašina sa kratkospojenim rotorom Viši harmonici Viši prostorni harmonici (za osnovni ASINHRONE MAŠINE SADRŽAJ 1 ASINHRONE MAŠINE... 4 1.1 Namotaji mašina za naizmeničnu truju... 4 1. Elektromotorna ila... 5 1..1 Elektromotorna ila jednog provodnika... 6 1.. Elektromotorna ila jednog navojka

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 Predavanje VI II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs ? Kalemovi Kalem je elektronska komponenta koja poseduje reaktivnu otpornost direktno proporcionalnu

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci 3 H 12.35 Y β Low 80 1 - - Betas: 19 (100%) 11 C 20.38 M β+, EC Low 400 1 5.97 13.7 13 N 9.97 M β+ Low 1 5.97 13.7 Positrons: 960 (99.7%) Gaas: 511 (199.5%) Positrons: 1,199 (99.8%) Gaas: 511 (199.6%)

Διαβάστε περισσότερα

ELEKTRIČNI AKTUATORI Ak. god. 2011/2012.

ELEKTRIČNI AKTUATORI Ak. god. 2011/2012. FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA www.fer.hr/predmet/eleakt_a ELEKTRIČNI AKTUATORI Ak. god. 2011/2012. Modul: Automatika Predavanja: Prof. dr. sc. Ivan Gašparac Auditorne vježbe: Laboratorij: Goran

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja

ISTORIJAT 2. Veća cena Složenije i skuplje održavanje Manja pouzdanost i kraći vek trajanja JEDNOSMERNI POGONI ISTORIJAT 1 Prvi realizovani električni pogoni. Prvi DC motor konstruisao je Jacobi 1838. godine u Petrogradu, a motor je pokretao čamac s 14 osoba po reci Nevi. Namotaji statora i rotora

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

1 MEHANIČKI PRENOSNICI SNAGE

1 MEHANIČKI PRENOSNICI SNAGE MEHANIČKI RENOSNICI SNAGE enosnik u najšiem smislu pedstavlja mašinsku gupu ili mašinu, čiji je zadatak penošenje mehaničke enegije od pogonske mašine ka adnoj mašini. Znači, uvođenje penosnika () kao

Διαβάστε περισσότερα

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO

Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

Snage u ustaljenom prostoperiodičnom režimu

Snage u ustaljenom prostoperiodičnom režimu Snage u ustaljenom prostoperiodičnom režimu 13. januar 016 Posmatrajmo kolo koje se sastoji od dvije podmreže M i N, kao na Slici 1. U kolu je uspostavljen ustaljeni prostoperiodični režim i ulazni napon

Διαβάστε περισσότερα

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone

Univerzitet u Beogradu Elektrotehnički fakultet Katedra za energetske pretvarače i pogone Univerzitet u Beograu Elektrotehnički fakultet Katera za energetske pretvarače i pogone!"#$%&'"(&)*&+&)+,-./*&- &&(&- )&."*--)#-/-*& D i p l o s k i r a Mentor: Kaniat: r loboan Vukosavić Jovica Vranjković

Διαβάστε περισσότερα

NAIZMENIČNE STRUJE. Osnovni pojmovi

NAIZMENIČNE STRUJE. Osnovni pojmovi NAZMENČNE STRUJE Osnovni pojovi Naizenične struje i naponi su električne veličine koje toko vreena enjaju ser. Prea vreenskoj zavisnosti jačine struje, naizenične struje se ogu podeliti na sledeći način:

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II Vježba 11.

OSNOVE ELEKTROTEHNIKE II Vježba 11. OSNOVE EEKTOTEHNKE Vježba... Za redno rezonantno kolo, prikazano na slici. je poznato E V, =Ω, =Ω, =Ω kao i rezonantna učestanost f =5kHz. zračunati: a) kompleksnu struju u kolu kao i kompleksne napone

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΕΠΙΣΤΗΜΟΝΙΚΟ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (Δ.Π.Μ.Σ.) «ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΜΑΘΗΜΑ ΚΟΡΜΟΥ «ΥΔΑΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΤΥΞΗ» ΥΔΑΤΙΚΑ ΟΙΚΟΣΥΣΤΗΜΑΤΑ Σημειώσεις

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

GUBICI ENERGIJE U DINAMIČKIM STANJIMA ASINKRONOG STROJA

GUBICI ENERGIJE U DINAMIČKIM STANJIMA ASINKRONOG STROJA GUBICI ENERGIJE U DINAMIČKIM STANJIMA ASINKRONOG STROJA Dinamička tanja: ZALET REVERZIRANJE PROTUSTRUJNO KOČENJE Pretpotavka: Trenutno u završene električne prijelazne pojave; Jednadžba gibanja: d ω M

Διαβάστε περισσότερα

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1.

Funkcija gustoće neprekidne slučajne varijable ima dva bitna svojstva: 1. Nenegativnost: f(x) 0, x R, 2. Normiranost: f(x)dx = 1. σ-algebra skupova Definicija : Neka je Ω neprazan skup i F P(Ω). Familija skupova F je σ-algebra skupova na Ω ako vrijedi:. F, 2. A F A C F, 3. A n, n N} F n N A n F. Borelova σ-algebra Definicija 2: Neka

Διαβάστε περισσότερα

ASINHRONI MOTORI PRINCIP RADA ASINHRONOG MOTORA

ASINHRONI MOTORI PRINCIP RADA ASINHRONOG MOTORA 1 ASINHRONI MOTORI Od Teslinog pronalaska pre više od 120 godina, pa sve do danas asinhroni motor je najvažniji pogonski motor u industriji i drugim primenama u pogonima konstantne brzine. Osnovni uzroci

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

Komutatorske mašine jednosmerne struje

Komutatorske mašine jednosmerne struje ELEKTRIČNE MAŠINE Komutatorske mašine jednosmerne struje Uvod Mašine jednosmerne struje su zbog svojih veoma dobrih funkcionalnih karakteristika nekada predstavljale često rešenje u električnim pogonima.

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI S IZMJENIČNIM MOTORIMA

ELEKTROMOTORNI POGONI S IZMJENIČNIM MOTORIMA FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTROMOTORNI POGONI ELEKTROMOTORNI POGONI S IZMJENIČNIM MOTORIMA Modul: Elektroenergetika Predavanja: Prof. dr. sc. Drago Ban Prof.dr.sc. Ivan Gašparac ZAVOD ZA

Διαβάστε περισσότερα

ASINKRONI RAD SINKRONOG GENERATORA

ASINKRONI RAD SINKRONOG GENERATORA ASINKRONI RAD SINKRONOG GENERATORA 1 Asinkroni rad sinkronih generatora Nepravilan rad u kojemu brzina vrtnje nije sinkrona. Dozvoljava se kratkotrajno ili se trenutno isključuje. U asinkroni rad spada:

Διαβάστε περισσότερα

MAŠINE JEDNOSMERNE STRUJE

MAŠINE JEDNOSMERNE STRUJE MAŠINE JEDNOSMERNE STRUJE ELEKTROMEHANIČKO PRETVARANJE ENERGIJE Uređaji za elektromehaničko pretvaranje energije: ELEKTRIČNI SISTEM MEHANIČKI SISTEM Električni motori Električni generatori Sprega između

Διαβάστε περισσότερα