QA u zaštiti od zračenja
|
|
- Ευφήμιος Παππάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 QA u zaštiti od zračenja
2 QA i QC (ISO 9000:2000) Osiguranje kvaliteta (QA): Sve planirane i sistematske akcije neophodne da se dokaže da proizvod ili usluga zadovoljavaju propisane zahteve kvaliteta
3 Kontrola kvaliteta QC Kontrola kvaliteta (QC): opisuje stvarne mehanizme i procedure pomoću u kojih se osigurava kvalitet (a) Deo ukupnog QA. (b) Razmatra se u okviru operacionalnih tehnika i aktivnosti neophodnih za: (i) proveru ispunjenosti zahteva kvaliteta (ii) sprovođenje korektivnih mera ukoliko ti zahtevi nisu ispunjeni
4 Osiguranje kvaliteta QA IAEA BSS 115 Program QA treba da bude uveden da bi obezbedio: a) Adekvatnu potvrdu da će zahtevi vezani za zaštitu od zračenja i sigurnost biti zadovoljeni b) Ustanovljavanje mehanizama QC i procedura za postizanje efikasnosti zaštite od zračenja
5 QA program za zaštitu od zračenja sadrži: a) Merenje fizičkih parametara izvora zračenja u vreme komisije i periodično (uključena i dekomisija); b) Pisani izveštaji o relevantnim procedurama i rezultatima c) Etaloniranje merila i opreme za monitoring; d) Regularna i nezavisna ocena QA programa (oditing) e) Obuka osoblja
6 Ocenjivanje kvaliteta: (1) Obavlja kadar koji nije direktno odgovoran za zonu koja se ocenjuje (2) Procenjuje se potreba za poboljšanjima ili korektivnim meraman (3) Ne sme se pomešati sa nadzorom ili inspekcijom (4) Sprovodi se u cilju interne ili eksterne provere (5) Primenjuje se za bilo koji nivo QA programa (6) Mora biti po unapred utvrđenim standardima (7) Treba da bude redovno kao deo povratne sprege u poboljšanju kvaliteta
7 QA program za medicinsku ekspoziciju mora da sadrži: Merenje fizičkih parametara generatora jonizujućih i nejonizujućih zračenja, uređaja za dobijanje i manipulaciju slikom Verifikaciju odgovarajućih fizičkih i kliničkih faktora u dijagnostici i terapiji Način dokumentovanja rezultata merenja ekspozicije Verifikaciju i kalibraciju monitora zračenja i ostalih merila Metode procene uspešnosti QA programa Hijerarhiju odgovornosti od države do korisnika usluge- pacijenta
8 Nivoi znanja u zaštiti od zračenja 1. Osnovni nivo: deo opšte kulture 2. Intermedijarni nivo: BSc i MSc programi na tehničkim fakultetima i na PMF 3. Profesionalci
9 OBLASTI PRIMENE JONIZUJUĆIH I NEJONIZUJUĆIH ZRAČENJA koji zahtevaju QA programe 1. Medicina 2. Industrija 3. Poljoprivreda 4. Metode u praćenju parametara životne sredine 5. Nauka i istraživanja 6. Borba protiv nuklearnog terorizma i nelegalne trgovine opasnim materijama
10 OBLASTI PRIMENE JONIZUJUĆIH I NEJONIZUJUĆIH ZRAČENJA 7. Radioaktivni otpad 8. Zakonodavstvo 9. Zaštita od jonizujućih i nejonizujućih zračenja 10. Javno informisanje i komunikacija sa medijima 11. Vojna primena
11 KVALIET PRAKTIČNI PRISTUP: Ispunjenje očekivanja i zahteva : Korisnik usluge Onaj koji pruža uslugu Pacijenta Lekara Projektanta QA MEDICINSKI INŽENJER
12 OSIGURANJE KVALIETA UKUPNI KVALITET Dijagnostika Terapija Zaštita Sigurnost
13 ORGANIZACIJA Međunarodna tela Preporuke Međulaboratorijske komparacije. Edukacija i trening. Nacionalna organizacija Regulativa Nacionalne komparacije Edukacija i trening. Industrija Pomoć u prijemnim ispitivanjima. Dokumentacija Održavanje Obuka Profesionalna društva Podrška QA-programima Radne grupe Edukacija i trening
14 Procesni pristup Zahtev Identifikacija pacijenta Pregled Metod Komjuterska evaluacija Dijagnostički izveštaj
15 Pisane procedure Opis procedure Zaštita od zračenja Dejstvo u slučaju akcidenta Procedura: Skeniranje kostiju Priprema pacijenta: Prazna bešika Radiofarmaceutik : Tc99m-MDP Način administriranja: IV injection Aktivnost: 400 MBq Tip pregleda : Sken celog tela Geometrija AP, PA Brzina skeniranja 10 cm/minute Kolimator: Scanning Prozor : 140+/-20% kev Položaj pacijenta : Ležeći Prikaz rezultata : Snimak (film +digitalna) Zaštita od zračenja Standardna Akcident Dekontaminacija I stepena
16 Koga štitimo Pacijent Članovi porodice pacijenta Profesionalno izložena lica Stanovništo to ŠT E T A K O R I S T
17 Pacijent mora uvek da bude svestan da postoji rizik primene jonizujućih i nejonizujućih zračenja, ali da će dobiti dijagnostičku ili terapijsku uslugu najvišeg kvaliteta i nivoa bezbednosti u skladu sa pisanom politikom kvaliteta bolnice
18 Identifikacija faktora koji utiču na medicinsku ekspozicijuu okviru QA programa Prijem ii skladištenje Priprema Detekcija (QC oprema) Administriranje Kontaminacija Radioaktivni otpad
19 Osoblje koje radi sa izvorima jonizujućih i nejonizujućih zračenja mora da bude svesno neophodnosti stalne obuke, ali i stalne brige poslodavca za njihovu sigurnost.
20 FAKTORI KOJI UTIČU NA KVALITET U SMISLU ZAŠTITE Dizajn uređaja Sigurni smeštaj izvora Bezbedno rukovanje Upravljanje otpadom Elektromagnetna i radijaciona sigurnost opreme Lični monitoring Sistematski pregledi-zdravstveni nadzor Monitoring radnog mesta Lokalni propisi Obuka i iskustvo osoblja
21 Kako dostići visoke standarda bezbednosti u bolnici? Kultura Podrška uprave Dobro edukovan kadar Lokalne organizacije za zaštitu od zračenja Program QA Korišćenje ovlašćenih servisa Kontinualna edukacija i trening Lični monitoring i zdravstveni nadzor PISANI IZVEŠTAJI Dokumentovana lokalna pravila i procedure
22 Edukacija i Trening su od ključnog značaja za QA programe u zaštiti od zračenja
23 Edukacija Kadar mora da ima odgovarajuću edukaciju da bi obavljao svoju dužnost od radnika koji transportuje pacijenta do najvišeg nivoa Zaštita od zračenja zahteva dodatnu edukaciju Lica koja će raditi sa izvorima zračenja moraju pre stupanja na dužnost da nauče: - uslove dobijanja licence - fizičke veličine i merne jedinice u oblasti zaštite od jz i njz - lokalne propise - QA programe i QC procedure - ponašanje u slučaju akcidenta i incidenta
24 Program obuke mora da sadrži Osnove fizike zračenja Biološke efekte zračenja Međunarodne standarde Odgovornosti i obaveze Sigurno rukovanje izvorima jz i njz Zaštita profesionalno izloženih lica Medicinska ekspozicija. Rukovanje otpadom Zaštita stanovništva Dejstvo u slučaju akcidenta Organizacija zaštite od zračenja
25 QA nije prinuda već šansa za kvalitet Suštinski pristup: QA program mora da omogući da osoblje ima slobodu da prijavi greške (preispitivanje i usavršavanje) Okruženje bez prinude Ohrabrivanje predloga Edukacija je ključ uspeha, a ne kazna
26 Odgovornosti u sprovođenju QA Uprava bolnice Komitet za radijacionu sigurnost RSO Osoblje departmana Proizvođač i isporučilac opreme Regulatorna tela koja daju licence
27 Lokalna pravila Sedi i piši : Osobe odgovorne za nadzor nad radom Opis kontrolisanih zona Opšte mere zaštite od zračenja Nivoi doza Planovi dejstva u slučaju akcidenta
28 Uputstvo o radijacionoj sigurnosti Klasifikacija zona zračenja Kategorizacija osoblja Monitoring Hijerarhija odgovornosti Planovi dejstva u slučaju akcidenta Zakonski osnov Međunarodne preporuke
29 Mere u zonama zračenja 1) Granice doze 2) Ograničenje boravka 3) Kategorija prisutnog osoblja 4) Lična dozimetrijska kontrola 5) Kontrola pristupa 6) Oznaka zone
30 KONTROLISANA ZONA SA STALNIM BORAVKOM Ograničenje boravka: ograničeno do 20 msv godišnje Granice jačine doze: 100 μsv/h Kategorija osoblja: lica profesionalno izložena: P Lična dozimetrijska kontrola: TLD, lični dozimetar sa direktnim očitavanjem Kontrola pristupa: mehaničke barijere ЗРАЧЕЊЕ RADIATION КОНТРОЛИСАНА ЗОНА CONTROLLED AREA Oznaka zone: Z2, plava, oznaka II WEAR YOUR PERSONAL TLD
31 KATEGORIZACIJA OSOBLJA U Klasifikacija se može promeniti u bilo koje vreme kada uslovi izlaganja zračenju to zahtevaju. 1. Lica profesionalno izložena jonizujućem zračenju (P) 2. Lokalno nadzirana lica (L) 3. Stanovništvo (N) 4. Privremeni radnici (ugovor) (U) 5. Posetioci (Pos)
32 PROFESIONALNO IZLOŽENA LICA Lica pod ličnim monitoringom: rade u kontrolisanim zonama zračenja Odluka o stručnoj spremi i zdravstvenim uslovima lica koja rade sa izvorima jonizujućih zračenja (Službeni list SRJ, br. 45/97) (1) Kategorija A: mogu da prime efektivne doze veće od 6 msv godišnje, ekv.doze veće od 3/10 propisanih granica za pojedine organe, TLD se očitava mesečno (2) Kategorija B: stalno ili povremeno rade u nadgledanoj zoni, a povremeno u kontrolisanoj zoni zračenja, TLD se očitava tromesečno
33 LOKALNO NADZIRANA LICA Lica koja ne spadaju u kategoriju profesionalno izloženih lica, ali se MOGU kratko naći u NADGLEDANOJ zoni Stalni nadzor GZZ: praćenje primljene doze koja ne sme preći vrednost od 1 msv godišnje Lični dozimetar: ELD sa direktnim očitavanjem koji se izdaje na revers. Izveštaj sa nalazom OBAVEZAN
34 NEKATEGORIZOVANA LICA- STANOVNIŠTVO Lica koja se ni pod kojim regularnim uslovima NEĆE naći u blizini izvora jonizujućih zračenja
35 Lica koja rade po ugovoru Lica koja rade po ugovoru na AIT, a koja mogu biti izložena dejstvu jonizujućih zračenja, kategorisana su kao profesionalno izložena lica. Lica moraju biti obaveštena o tome, od strane SVOG poslodavca, u vreme raspisivanja tendera za izvođenje radova PRE potpisivanja ugovora.
36 Posetioci Lica koja su kraće od 2 meseca, Ulaze u zone zračenja ISKLJUČIVO u pratnji osoblja koje je pod ličnim monitoringom i ne smeju tamo raditi. Granica efektivne doze: 1 msv godišnje
37 Izuzetci U kontrolisanim zonama zračenja ne smeju raditi: 1) Lica mlađa od 18 godina 2) Osobe koje nemaju medicinsku dozvolu 3) Žene u trudnoći Granica efektivne doze: 1 msv godišnje
38 Profesionalno izložena lica SVA profesionalno izložena lica koja su prošla adekvatnu obuku u oblasti zaštite od jonizujućih zračenja ODGOVORNA su za sprovođenje mera zaštite od zračenja na svom radnom mestu
39 Ovlašćene institucije Institucije ovlašćene prema Zakonu o zaštiti od jonizujućih zračenja za: (1) Dozimetrijsku kontrolu radnog mesta (2) Ličnu dozimetrijsku kontrolu (3) Monitoring životne sredine (4) Medicinski nadzor (5) Sprovođenje dekontaminacije (6) Smeštaj RAO (7) Projektovanje mera zaštite od j.z.
40 MONITORING Cilj monitoringa: kontinualno praćenje i registrovanje nivoa doze zračenja ( osnovni parametar rizika) radi procene izloženosti pojedinca i okoline objekta uticaju izvora zračenja Predmet monitoringa: -Snop zračenja - Profesionalno izložena lica (eksterni i interni) - Radno mesto - Okolni objekti (okolina instalacije) - PREDOPERACIONI MONITORING -Monitoring zona zračenja -Lični monitoring
41 Proizvođač i dobavljač Dizajn opreme prema standardu Transport izvora zračenja prema IAEA ST-1 Tipska ispitivanja Obezbeđuju sertifikat o usaglašenosti Obezbeđuju uputstvo za rukovanje i održavanje
42 Tehnički servisi: Regulatorno telo Dozimetrijske usluge Laboratorijske usluge Kalibracija Rukovanje otpadom Medicinske usluge Obuka Ekspertska podrška
43 Od čega počinjemo u QA programu zaštite od zračenja? Ultravioletna fototerapija Laser Ultrazvuk
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Šta je rizik? Proces opisivanja i karakterizovanja. uje prikupljanje, sastavljanje i analiziranje informacija o riziku; saopštavanjima
PROCENA RIZIKA Šta je rizik? Proces opisivanja i karakterizovanja prirode i veličine ine (značaja) određenog rizika i uključuje uje prikupljanje, sastavljanje i analiziranje informacija o riziku; Osnova
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
BIOLOŠKI EFEKTI JONIZUJUĆIH ZRAČENJA I ZAŠTITA
BIOLOŠKI EFEKTI JONIZUJUĆIH ZRAČENJA I ZAŠTITA 1. Biološki efekti 2. Rizik i procena rizika 3. Generalni principi zaštite od zračenja 4. Veličine uvedene za potrebe zaštite od zračenja 5. Granice doza
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Pravilnik o preventivnim merama za bezbedan i zdrav rad pri izlaganju buci
Na osnovu člana 7. stav 2. Zakona o bezbednosti i zdravlju na radu ("Službeni glasnik RS", broj 101/05), Ministar rada i socijalne politike donosi Pravilnik o preventivnim merama za bezbedan i zdrav rad
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Sistemi veštačke inteligencije primer 1
Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.
Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP. Aleksandar Smiljanić
Juniorski četverac bez kormilara sezona 2014/2015 sa osvrtom na završne pripreme pred EP i SP Aleksandar Smiljanić Generacija 1996 / 1997 8 + SP Hamburg 2014 4 - SP Rio de Janeiro 1. Cvijetić Nikola (1997)
Vežba - Doza na otvorenom i u zatvorenom prostoru -
Vežba - Doza na otvorenom i u zatvorenom prostoru - Čovek je stalno izložen dejstvu prirodnog jonizujućeg zračenja. Pod jonizujućim zračenjem podrazumeva se bilo koje zračenje koje u interakciji sa materijalnom
ELEMENTI SISTEMA KVALITETA PREMA ZAHTEVIMA PRAVILNIKA O OPREMI I ZAŠTITNIM SISTEMIMA NAMENjENIM ZA UPOTREBU U POTENCIJALNO EKSPLOZIVNIM ATMOSFERAMA
ELEMENTI SISTEMA KVALITETA PREMA ZAHTEVIMA PRAVILNIKA O OPREMI I ZAŠTITNIM SISTEMIMA NAMENjENIM ZA UPOTREBU U POTENCIJALNO EKSPLOZIVNIM ATMOSFERAMA Miroslav Tufegdžić Institut za nuklearne nauke VINČA
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
RAD, SNAGA I ENERGIJA
RAD, SNAGA I ENERGIJA SADRŢAJ 1. MEHANIĈKI RAD SILE 2. SNAGA 3. MEHANIĈKA ENERGIJA a) Kinetiĉka energija b) Potencijalna energija c) Ukupna energija d) Rad kao mera za promenu energije 4. ZAKON ODRŢANJA
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
PRSKALICA - LELA 5 L / 10 L
PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,
Korektivno održavanje
Održavanje mreže Korektivno održavanje Uzroci otkaza mogu biti: loši radni uslovi (temperatura, loše održavanje čistoće...), operativne promene (promene konfiguracije, neadekvatno manipulisanje...) i nedostaci
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.
1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović
Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
PRAVILNIK. ("Sl. list SFRJ", br. 24/90) Član 1
PRAVILNIK O OBAVEZNOM ATESTIRANJU ELEMENATA TIPSKIH GRAĐEVINSKIH KONSTRUKCIJA NA OTPORNOST PREMA POŽARU I O USLOVIMA KOJE MORAJU ISPUNJAVATI ORGANIZACIJE UDRUŽENOG RADA OVLAŠĆENE ZA ATESTIRANJE TIH PROIZVODA
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju
TROŠAK KAPITALA Predmet: Upravljanje finansijskim odlukama i rizicima Profesor: Dr sci Sead Mušinbegovid Fakultet za menadžment i poslovnu ekonomiju Sadržaj predavnaja: Trošak kapitala I. Trošak duga II.
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul
EuroCons Group. Karika koja povezuje Konsalting, Projektovanje, Inženjering, Zastupanje
EuroCons Group Karika koja povezuje Filtracija vazduha Obrok vazduha 24kg DNEVNO Većina ljudi ima razvijenu svest šta jede i pije, ali jesmo li svesni šta udišemo? Obrok hrane 1kg DNEVNO Obrok tečnosti
PRAVILNIK O MERILIMA. ("Sl. glasnik RS", br. 3/2018) I UVODNE ODREDBE. Predmet. Član 1
Preuzeto iz elektronske pravne baze Paragraf Lex izvor: www.paragraf.rs Informacije o izmenama, dopunama, važenju, prethodnim verzijama ili napomenama propisa, kao i o drugim dokumentima koji su relacijski
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
XI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :
PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
NUKLEARNA MEDICINA. Dijagnostka i terapija otvorenim izvorima. 1. Klinički problem. 2. Radiofarmaceutik. 3. Instrumentacija
NUKLEARNA MEDICINA NUKLEARNA MEDICINA Dijagnostka i terapija otvorenim izvorima zračenja 1. Klinički problem 2. Radiofarmaceutik 3. Instrumentacija Slike u nuklearnoj medicini Slika predstavlja funkcionalne
Zadatak 4b- Dimenzionisanje rožnjače
Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
TESTIRANJE ZAPTIVENOSTI KANALSKIH MREŽA
2. MEĐUNARODNI STRUČNI SKUP IZ OBLASTI KLIMATIZACIJE, GRIJANJA I HLAĐENJA ENERGIJA+ TESTIRANJE ZAPTIVENOSTI KANALSKIH MREŽA Dr Milovan Živković,dipl.inž.maš. Vuk Živković,dipl.inž.maš. Budva, 22-23.9.
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Doze u nuklearnoj medicini
Doze u nuklearnoj medicini Tipične doze u nuklearnoj medicini Pregled Radiopharmaceutik A (MBq) Organ Kosti 99m Tc-MDP 740 Srčani zid 201 Tl-Thallous Chloride 120 Infekcije 67 Ga-Gallium Citrate 150 Kost
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
PRAVILNIK O VAGAMA SA NEAUTOMATSKIM FUNKCIONISANJEM. ("Sl. glasnik RS", br. 17/2013) Predmet. Član 1
Preuzeto iz elektronske pravne baze Paragraf Lex izvor: www.paragraf.rs PRAVILNIK O VAGAMA SA NEAUTOMATSKIM FUNKCIONISANJEM ("Sl. glasnik RS", br. 17/2013) Predmet Član 1 Ovim pravilnikom propisuju se
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)
Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
Preuzeto iz elektronske pravne baze Paragraf Lex
Preuzeto iz elektronske pravne baze Paragraf Lex BUDITE NA PRAVNOJ STRANI online@paragraf.rs www.paragraf.rs Ukoliko ovaj propis niste preuzeli sa Paragrafovog sajta ili niste sigurni da li je u pitanju
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
I Pismeni ispit iz matematike 1 I
I Pismeni ispit iz matematike I 27 januar 2 I grupa (25 poena) str: Neka je A {(x, y, z): x, y, z R, x, x y, z > } i ako je operacija definisana sa (x, y, z) (u, v, w) (xu + vy, xv + uy, wz) Ispitati da
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Ponašanje pneumatika pod dejstvom bočne sile
Ponašanje pneumatika pod dejstvom bočne sile POVOĐENJE TOČKA Dejstvo bočne sile pravac kretanja pod uglom u odnosu na pravac uzdužne ravni pneumatika BOČNA SILA PAVAC KETANJA PAVAC UZDUŽNE AVNI PNEUMATIKA
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Linearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )