Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum"

Transcript

1 27. septembar Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3. Naći opšte rešenje diferencijalne jednačine 2x y 4 dy = Naći opšte rešenje diferencijalne jednačine y 2y = 2xe x (cos x sin x).. Ispitati apsolutnu konvergenciju reda 2. Izračunati dvostruki integral 4π 2, y = x i x = 0. D ( ) n n3 + 5 n 6 n5 + 4n n= cos x 2 + y 2 dy, gde je D oblast u prvom kvadrantu ograničena sa: π 2 x 2 + y 2 3. Pomoću Grinove formule izračunati I = 2y (x ) dy, gde je pozitivno orijentisan deo kružnice x 2 + y 2 = 2y od tačke A(, ) do tačke B(, ).. Ispitati da li je funkcija f(z) = Re z, z = x + iy analitička i izračunati integral po krivoj = {(x, y) : y = x, 0 Im z + x }. 2. Funkciju f(z) = z 2 + iz Koristeći Košijevu integralnu formulu izračunati C razviti u oranov red na prstenu < z < 2. dz gde je C centralna kružnica poluprečnika 2. z(z i)(z + 3i) 4. Ispitati karakter singulariteta funkcije f(z) = (z + 3)e z 2 i izračunati Res[f(z), 2]. 5. septembar Izračunati neodredeni integral e 2x + e x Izračunati površinu ograničenu sa y = x 2 sin x, x = 0, x = π 2 i x osom. 3. Rešiti početni problem y = 6xy + x y. 4. Naći opšte rešenje diferencijalne jednačine y y 2y = x cos x.

2 . Odrediti oblast konvergencije i ispitati konvergenciju na krajevima intervala n= n!(x + 3) n n n. 2. Izračunati zapreminu tela ograničenog povrsima z + = x 2 + y 2 i z = Izračunati dvostruku integral xy 2 ds, gde je D oblast ograničena parabolom y 2 = 9x i pravom x = 9 2. D. Funkciju f(z) = z 2 7z + 2 razviti u oranov red na prstenu 3 < z < Ispitati prirodu singulariteta u proširenoj kompleksnoj ravni i naći ostatke funkcije f(z) = (z + 2) 3 sin z + 2. z 2 + z 3 dz, ako je kriva = {z C : z + 2 = 99} pozitivno orijentisana. z 4. Primenom aplasove transformacije rešiti jednačinu y (t) + y(t) = 5 uz početne uslove y(0) = i y (0) =.. Izračunati neodredjeni integral x sin 2 (x 2 ). 2. septembar Izračunati površinu ograničenu sa y = x 2 ln 3 x, x =, x = e i x osom. 3. Naći opšte rešenje diferencijalne jednačine 2x y 4 dy = Naći opšte rešenje diferencijalne jednačine y 2y = 2xe x (cos x sin x). 2. septembar Odrediti oblast konvergencije i ispitati konvergenciju na krajevima intervala n=2 x n n3 n ln n. 2. Izračunati zapreminu tela ograničenog površima z = 6 x 2 + y 2 i z = x 2 + y Izračunati krivolinijski integral prve vrste xyds, gde je C četvrtina elipse 4x 2 +y 2 = koja leži u drugom kvadrantu. C 2. septembar 205.

3 . Odrediti analitičku funkciju f(z) = u(x, y) + iv(x, y), z = x + iy, ako je u(x, y) = 5x + 2e x cos y i f(0) = 2. Naći f (z). ( 2. Funkciju f(z) = sin z π ) razviti u oranov red u okolini nule, odrediti tip singulariteta i naći ostatak funkcije u 4 nuli. 3. Data je funkcija f(z) = e. Ispitati prirodu singulariteta u proširenoj kompleksnoj ravni i naći ostatke funkcije u z njima. Koristeći teoremu o ostacima, izračunati f(z) dz, ako je kriva = {z C : z = } pozitivno orijentisana Primenom aplasove transformacije rešiti početni problem y (t) + y(t) = 0, y(0) =, y (0) =.. Izračunati neodredjeni integral - POPRAVNI 22. jun 205. e 2x e 2x. 2. Izračunati dužinu luka krive y = 3 (3 x) x od x = do x = Rešiti početni problem 2x y 4 dy = 0, y() = Naći opšte rešenje diferencijalne jednačine y 2y 3y = x( + e 3x ).. Odrediti oblast konvergencije i naći sumu reda - POPRAVNI 22. jun 205. n=0 n + x n. n! 2. Izračunati zapreminu tela ograničenog površima z = x 2 + y 2, x 2 + y 2 4x = 0 i z = Pomoću Grinove formule izračunati vrednost krivolinijskog integrala x + y dy, gde je negativno orijentisan deo kružnice x 2 + y 2 = 2x od tačke A(, ) do tačke B(, ).. Funkciju f(z) = z 2 iz POPRAVNI 22. jun 205. razviti u oranov red na prstenu < z < Odrediti analitičku funkciju f(z) = u(x, y) + iv(x, y), z = x + iy, ako je u(x, y) = 2e x cos y i f(0) = 2 + i. e z z 2 dz, ako je kriva = {z C : z + 2i = 3} pozitivno orijentisana. (z 9i) 4. Primenom aplasove transformacije rešiti početni problem y (t) + 4y(t) = 0, y(0) = 2, y (0) =.

4 8. jul Izračunati neodredjeni integral arctgx (x 2 + )(arctg 2 x + )(arctgx + 2). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene sa y = x 2 i y = x oko x ose. 3. Rešiti početni problem e y (y + ) =, y(0) = Naći opšte rešenje diferencijalne jednačine y + y = 5x + 2e x. Odrediti oblast konvergencije i naći sumu reda n=0 n + n + 2 xn. 2. Pomoću dostrukog integrala izračunati površinu ograničenu krivama y = x 2 i y = x. 3. Primenom Grinove formule izračunati krivolinijski integral (x + 2) + (y x + )dy gde je C pozitivno orjentisana C kontura oblasti ograničene krivama y = x i y = x 2.. Funkciju f(z) = z 2 5z razviti u oranov red na prstenu z 5 < Ispitati prirodu singulariteta u proširenoj kompleksnoj ravni i naći ostatke funkcije f(z) = (z ) 2 e z z. z 5 z 4 dz, ako je kriva = {z C : z + 2 = 99} pozitivno 2z3 orijentisana. 4. Primenom aplasove transformacije rešiti početni problem y (t) + y(t) = t 2 e t 2 uz početni uslov y(0) = 0.. Izračunati neodredjeni integral e 2x e 2x. 2. februar Izračunati dužinu luka krive y = 3 (3 x) x od x = do x = Rešiti početni problem 2x y 4 dy = 0, y() = Naći opšte rešenje diferencijalne jednačine y 2y 3y = xe 4x.

5 . Odrediti oblast konvergencije i naći sumu reda 2. februar 206. n=2 n x n. n! 2. Izračunati zapreminu tela ograničenog površima z = x 2 + y 2, x 2 + y 2 2x = 0 i z = Pomoću Grinove formule izračunati vrednost krivolinijskog integrala x y dy, gde je pozitivno orijentisan deo kružnice x 2 + y 2 = 2x od tačke A(, ) do tačke B(, ).. Funkciju f(z) = z 2 iz POPRAVNI 2. februar 206. razviti u oranov red na prstenu < z < Odrediti analitičku funkciju f(z) = u(x, y) + iv(x, y), z = x + iy, ako je u(x, y) = 2e x cos y i f(0) = 2 + i. cos z z 2 dz, ako je kriva = {z C : z+2i = 99} pozitivno orijentisana. (z 9i) 4. Primenom aplasove transformacije rešiti početni problem y (t) + 4y(t) = 0, y(0) = 2, y (0) =.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

MATEMATIKA II. Dr Boban Marinković

MATEMATIKA II. Dr Boban Marinković MATEMATIKA II VEŽBE Dr Boban Marinković 1 Neodredjeni integral dx = x + C, dx x = ln x + C, dx = arcsin x + C, 1 x 2 a x dx = ax ln a + C, cos x dx = sin x + C, dx x 2 a = 1 2 2a ln x a x + a + C, dx x2

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2.

QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa A. x 2, g : x. 1 (x 2 + y 2 dx dy. QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, Grupa B. ln x (x 1) 3/2. 1. Izraqunati QETVRTI KOLOKVIJUM IZ MATEMATIKE 1, 1995. x arctan x 1 + x dx. Grupa A. Izraqunati povrxinu koju ograniqavaju pozitivan deo x - ose i grafici funkcija 3. Ako je oblast ograniqena krivama

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

INTEGRALI Zadaci sa kolokvijuma

INTEGRALI Zadaci sa kolokvijuma INTEGRALI Zadaci sa kolokvijuma ragan ori Sadrжaj Neodređeni integral Određeni integral 6 Nesvojstveni integral 9 4 vojni integral 5 Redovi 5 Studentima generacije / (grupe A9, A i A) Ovo je jox jedna

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

dr Lidija Stefanović INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO SKC Niš, 2009.

dr Lidija Stefanović INTEGRALI: KRIVOLINIJSKI, DVOJNI, TROJNI, POVRŠINSKI ZA STUDENTE TEHNIČKIH FAKULTETA; II DEO SKC Niš, 2009. dr idija tefanović INTEGRAI: KRIVOINIJKI, VOJNI, TROJNI, POVRŠINKI ZA TUENTE TEHNIČKIH FAKUTETA; II EO KC Niš, 9. dr idija tefanović INTEGRAI: KRIVOINIJKI, VOJNI, TROJNI, POVRŠINKI ZA TUENTE TEHNIČKIH

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a

Prvi pismeni zadatak iz Analize sa algebrom novembar Ispitati znak funkcije f(x) = tgx x x3. 2. Naći graničnu vrednost lim x a Testovi iz Analize sa algebrom 4 septembar - oktobar 009 Ponavljanje izvoda iz razreda (f(x) = x x ) Ispitivanje uslova Rolove teoreme Ispitivanje granične vrednosti f-je pomoću Lopitalovog pravila 4 Razvoj

Διαβάστε περισσότερα

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE

PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE Fakultet Tehničkih Nauka, Novi Sad PROBNI TEST ZA PRIJEMNI ISPIT IZ MATEMATIKE 1 Za koje vrednosti parametra p R polinom f x) = x + p + 1)x p ima tačno jedan, i to pozitivan realan koren? U skupu realnih

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Dužina luka i oskulatorna ravan

Dužina luka i oskulatorna ravan Dužina luka i oskulatorna ravan Diferencijalna geometrija Vježbe Rješenja predati na predavanjima, u srijedu 9. ožujka 16. god. Zadatak 1. Pokazati da je dužina luka invarijantna pod reparametrizacijom

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

PRIJEMNI ISPIT ZA MASTER STUDIJE NA DEPARTMANU ZA MATEMATIKU I INFORMATIKU PMF UNS x 2 + y j. Pokazati da je krivolinijski integral

PRIJEMNI ISPIT ZA MASTER STUDIJE NA DEPARTMANU ZA MATEMATIKU I INFORMATIKU PMF UNS x 2 + y j. Pokazati da je krivolinijski integral PRIJEMNI ISPIT ZA MASTER STUDIJE NA DEPARTMANU ZA MATEMATIKU I 7.10.2015. ODJ Neka je u C 2 ([α, β]), u(α) = u(β) = 1 2015 Pokazati da je u(t) 0 za sve t [α, β]. Lu = au + b(t)u + c(t)u rešenje jednačine

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

KONTURNA INTEGRACIJA

KONTURNA INTEGRACIJA KONTURNA INTEGRACIJA Materijal sa sedme radne Ljaškijade - jun 14. Studentska asocijacija Eneter emineter.wordpress.com Ovo je materijal za rešavanje pet tipova integrala koristeći teoreme kompleksne analize

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

uniformno konvergira na [ 2, 2]?

uniformno konvergira na [ 2, 2]? Građevinski fakultet Univerziteta u Beogradu 27.6.2015. ZAVRXNI ISPIT IZ MATEMATIKE 3 Prezime i ime: Broj indeksa: 1. Definisati diferencijabilnost funkcije u = u(x, y, z) u taqki (0, 1, 2). 2. Definisati

Διαβάστε περισσότερα

y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1

3n an = 4n3/2 +2n+ n 5n 3/2 +5n+2 n a 2 n = n 2. ( 2) n Dodatak. = 0, lim n! 2n 6n + 1 Nizovi 5 a = 5 +3+ + 6 a = 3 00 + 00 3 +5 7 a = +)+) ) 3 3 8 a = 3 +3+ + +3 9 a = 3 5 0 a = 43/ ++ 5 3/ +5+ a = + + a = + ) 3 a = + + + 4 a = 3 3 + 3 ) 5 a = +++ 6 a = + ++ 3 a = +)!++)! +3)! a = ) +3

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje

Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Matematika 3 zbirka zadataka sa rešenjima i uputstvima za rešavanje Hijavata 1 Predgovor Pismeni ispit iz matematike 3 obuhvata

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

8 Funkcije više promenljivih

8 Funkcije više promenljivih 8 Funkcije više promenljivih 78 8 Funkcije više promenljivih Neka je R skup realnih brojeva i X R n. Jednoznačno preslikavanje f : X R naziva se realna funkcija sa n nezavisno promenljivih čiji je domen

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP

PROJEKTIVNA GEOMETRIJA ANALITIČKI PRISTUP PROJEKTIVNA GEOMETRIJA oktobar 2010. godine ANALITIČKI PRISTUP Homogene koordinate i dvorazmera 1. Tačke 0, i 1 afinog sistema koordinata uzete su redom za bazne tačke A 1 (1 : 0), A 2 (0 : 1) i jedinicu

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης Σηµειώσεις Μιαδικής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο 1. Εισαωικά 5 Η αλεβρική δοµή 5 Η τοπολοική δοµή τού 6 Το εκτεταµένο µιαδικό επίπεδο 7 Συνεκτικότητα

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu

UPUTSTVO: Elektrotehnički fakultet Univerziteta u Sarajevu Elektrotehnički fakultet Univerziteta u Sarajevu P R I P R E M N I Z A D A C I za DRUGI PARCIJALNI ISPIT IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Š.G. 005 / 006. UPUTSTVO: 1. Za svaki od prva četiri zadatka

Διαβάστε περισσότερα

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA

I N Ž E N J E R S K A M A T E M A T I K A 2. Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA I N Ž E N J E R S K A M A T E M A T I K A 64 Glava IV : DIFERENCIJALNE JEDNAČINE PRVOG REDA 4 Osnovni pojmovi Činjenica da se mnogi zakoni fizike i drugih nauka iskazuju uz pomoć diferencijalnih jednačina

Διαβάστε περισσότερα

1. Skicirati sledeće površi i ispitati njihovu regularnost:

1. Skicirati sledeće površi i ispitati njihovu regularnost: Geometrija 3, drgi kolokvijm Prezime i ime, broj indeksa, grpa Skicirati sledeće površi i ispitati njihov reglarnost: a f, v sh cos v, sh sin v,,, v [ π, π]; b g, v, 3, v,, v R a b Rešenje a Iz oblika

Διαβάστε περισσότερα

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet.

Glava 1. Vektori. Definicija 1.1. Dva vektora su jednaka ako su im jednaki pravac, smer i intenzitet. Glava 1 Vektori U mnogim naukama proučavaju se vektorske i skalarne veličine. Skalarna veličina je odred ena svojom brojnom vrednošću u izabranom sistemu jedinica. Takve veličine su temperatura, težina

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Neodred eni integrali

Neodred eni integrali Neodred eni integrali Definicija. Za funkciju F : I R, gde je I interval, kažemo da je primitivna funkcija funkcije f : I R ako je za svako I. F () f() Teorema 1. Ako je F : I R primitivna funkcija za

Διαβάστε περισσότερα

Zbirka zadataka iz Matematike I

Zbirka zadataka iz Matematike I UNIVERITET U NOVOM SADU TEHNOLOŠKI FAKULTET Tatjana Došenović Dušan Rakić Aleksandar Takači Mirjana Brdar birka zadataka iz Matematike I - za studente Tehnološkog fakulteta - Novi Sad, 008. UNIVERITET

Διαβάστε περισσότερα

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1)

2.2 Srednje vrijednosti. aritmetička sredina, medijan, mod. Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 2.2 Srednje vrijednosti aritmetička sredina, medijan, mod Podaci (realizacije varijable X): x 1,x 2,...,x n (1) 1 2.2.1 Aritmetička sredina X je numerička varijabla. Aritmetička sredina od (1) je broj:

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43

Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43 Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak

Matematiqki fakultet. Univerzitet u Beogradu. Domai zadatak Matematiqki fakultet Univerzitet u Beogradu Domai zadatak Zlatko Lazovi 30. decembar 2016. verzija 1.1 Sadraj 1 METRIQKI PROSTORI 2 1 1 METRIQKI PROSTORI a) Neka je (M, d) metriqki prostor i neka je (x

Διαβάστε περισσότερα

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z)

I = 1. cos z. dz = = 1 z 2 cos z + 2z sin z + 2 cos z 2. z(z π) 3 dz. f(re iθ. f(z) ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Χρησιμοποιώντας τους ολοκληρωτικούς τύπους Cauchy υπολογίστε το ολοκλήρωμα I = πi z(z π) 3 dz,

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo,

Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA 1 Akademska godina Sarajevo, Elektrotehnički fakultet Univerziteta u Sarajevu Z A D A C I - Grupe A i B SA DRUGOG PARCIJALNIOG ISPITA IZ PREDMETA INŽENJERSKA MATEMATIKA Akademska 008-009 godina Sarajevo, 09 0 009 IME I PREZIME STUDENTA

Διαβάστε περισσότερα

Tejlorova formula i primene

Tejlorova formula i primene MATEMATIQKA GIMNAZIJA Maturski rad iz matematike Tejlorova formula i primene Uqenik Benjamin Linus Mentor mr Srđan OgƬanovi Beograd, 007 Sadrжaj Uvod 3 Tejlorova formula 4 Tejlorova formula za polinome

Διαβάστε περισσότερα

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE

9. GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Geodetski akultet, dr sc J Beban-Brkić Predavanja iz Matematike 9 GRANIČNA VRIJEDNOST I NEPREKIDNOST FUNKCIJE GRANIČNA VRIJEDNOST ILI LIMES FUNKCIJE Granična vrijednost unkcije kad + = = Primjer:, D( )

Διαβάστε περισσότερα

DIFERENCIJALNE JEDNADŽBE

DIFERENCIJALNE JEDNADŽBE 9 Diferencijalne jednadžbe 6 DIFERENCIJALNE JEDNADŽBE U ovom poglavlju: Direktna integracija Separacija varijabli Linearna diferencijalna jednadžba Bernoullijeva diferencijalna jednadžba Diferencijalna

Διαβάστε περισσότερα

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije

Glava 1. Realne funkcije realne promen ive. 1.1 Elementarne funkcije Glava 1 Realne funkcije realne promen ive 1.1 Elementarne funkcije Neka su dati skupovi X i Y. Ukoliko svakom elementu skupa X po nekom pravilu pridruimo neki, potpuno odreeni, element skupa Y kaemo da

Διαβάστε περισσότερα

Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι

Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι .. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ. Ασκήσεις Κεφαλαίου Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι Κατά τη λύση των ασκήσεων επάνω στους µιγαδικούς αριθµούς είναι χρήσιµο να έχουµε υπόψη ότι ένας µιγαδικός αριθµός µπορεί

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Ατρέας. Μέρος I. Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς)

Ατρέας. Μέρος I.  Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς) http://users.auth.gr/natreas Σημειώσεις: Ατρέας Κεφ. 3-4-5 Κεχαγιάς Κεφ. --6 Βιβλία: Churchill - Brown (για μηχανικούς) Marsden (πιο μαθηματικό) Μέρος I Ατρέας Κεφάλαιο Μιγαδικοί Αριθμοί γεωμετρική παράσταση

Διαβάστε περισσότερα

Jednodimenzionalne slučajne promenljive

Jednodimenzionalne slučajne promenljive Jednodimenzionalne slučajne promenljive Definicija slučajne promenljive Neka je X f-ja def. na prostoru verovatnoća (Ω, F, P) koja preslikava prostor el. ishoda Ω u skup R realnih brojeva: (1)Skup {ω/

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Granične vrednosti realnih funkcija i neprekidnost

Granične vrednosti realnih funkcija i neprekidnost Granične vrednosti realnih funkcija i neprekidnost 1 Pojam granične vrednosti Naka su x 0 R i δ R, δ > 0. Pod δ okolinom tačke x 0 podrazumevamo interval U δ x 0 ) = x 0 δ, x 0 + δ), a pod probodenom δ

Διαβάστε περισσότερα

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Trigonometrija 1. Trigonometrijska kružnica. Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Trigonometrija Trigonometrijska kružnica Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije Projektna nastava Osnovne trigonometrijske relacije:. +. tgx. ctgx tgx.

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora

Matematika I. Elvis Baraković, Edis Mekić. 4. studenog Pojam vektora. Sabiranje i oduzimanje vektora Matematika I Elvis Baraković, Edis Mekić 4. studenog 2011. 1 Analitička geometrija 1.1 Pojam vektora. Sabiranje i oduzimanje vektora Skalarnom veličinom ili skalarom nazivamo onu veličinu koja je potpuno

Διαβάστε περισσότερα

Program za tablično računanje Microsoft Excel

Program za tablično računanje Microsoft Excel Program za tablično računanje Microsoft Excel Teme Formule i funkcije Zbrajanje Oduzimanje Množenje Dijeljenje Izračun najveće vrijednosti Izračun najmanje vrijednosti 2 Formule i funkcije Naravno da je

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

( ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Μ.: 2. Εστω ότι τα σηµεία z,..., Υπολογίστε όλες τις λύσεις της εξίσωσης. θ,n ισούται µε. (α) βρίσκονται στο ηµιεπίπεδο Im

( ) ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Μ.: 2. Εστω ότι τα σηµεία z,..., Υπολογίστε όλες τις λύσεις της εξίσωσης. θ,n ισούται µε. (α) βρίσκονται στο ηµιεπίπεδο Im ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Α.Μ.:. είξτε ότι η οσότητα συνθ + συν ( θ + a) +... + συν ( θ + na) θ,n ισούται µε ( ) ηµ (( n+ ) a/ ) συν ( θ + na /). (β) ηµ ( a /) ηµ ( na /) (γ) ηµ ( θ + na /). (δ) ηµ ( a /) συν ((

Διαβάστε περισσότερα

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 006.. 3, º 1(130).. 7Ä16 Š 530.145 ˆ ƒ ˆ ˆŒ ˆŸ Š ƒ.. ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É μ ² Ö Ó μ μ Ö μ μ²õ μ É μ ÌÉ ±ÊÎ É ² ³ É μ - Î ±μ μ ÊÌ ±μ Ëμ ³ μ- ±² μ ÒÌ ³μ ²ÖÌ Ê ±. ³ É ÔÉμ μ μ μ Ö, Ö ²ÖÖ Ó ±μ³

Διαβάστε περισσότερα

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

Μερικές Διαφορικές Εξισώσεις

Μερικές Διαφορικές Εξισώσεις Πανεπιστήμιο Πατρών, Τμήμα Μαθηματικών Μερικές Διαφορικές Εξισώσεις Χειμερινό εξάμηνο ακαδημαϊκού έτους 24-25, Διδάσκων: Α.Τόγκας ο φύλλο προβλημάτων Ονοματεπώνυμο - ΑΜ: ΜΔΕ ο φύλλο προβλημάτων Α. Τόγκας

Διαβάστε περισσότερα

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης Μιγαδική Ανάλυση Δρ. Θ. Ζυγκιρίδης 2 Περιεχόμενα 1 Μιγαδικοί αριθμοί 1 1.1 Βασικοί ορισμοί και ιδιότητες............................. 1 1.2 Γεωμετρική αναπαράσταση των μιγαδικών αριθμών.................

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

VODIČ A za gimnazije školska 2015./2016. godina MATEMATIKA

VODIČ A za gimnazije školska 2015./2016. godina MATEMATIKA VODIČ A za gimnazije školska 2015./2016. godina MATEMATIKA Predmetna komisija: Dina Kamber Maja Hrbat Vernesa Mujačić Mirsad Dumanjić Sadržaj Uvod... 1 Obrazovni ishodi po oblastima i temama za nivo A...

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις

Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Τίτλος Μαθήματος: Ειδικές Συναρτήσεις Ενότητα: Επίλυση διαφορικών εξισώσεων με τη βοήθεια των συναρτήσεων Bessel Όνομα Καθηγήτριας: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

7.5. KOORDINATNI SISTEMI

7.5. KOORDINATNI SISTEMI - 84-75 KOORDINATNI SISTEMI 75 Dekartov desni pravougli koordinatni sistem U paragrafu 73 definisali smo desni pravougli koordinatni sistem (O;i, j, k) gdje su: (a) koordinatni početak ili ishodište O

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Β Πρόχειρες σημειώσεις

Μιγαδική ανάλυση Μέρος Β Πρόχειρες σημειώσεις ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Β Μιγαδική ανάλυση Μέρος Β Πρόχειρες σημειώσεις Παράγωγος συνάρτησης μιγαδικής μεταβλητής Πριν ορίσουμε την παράγωγο μιας μιγαδικής συνάρτησης f(z) θα σταθούμε

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0

u = 0 u = ϕ t + Π) = 0 t + Π = C(t) C(t) ϕ = ϕ 1 + C(t) dt 2 ϕ = 0 u = (u, v, w) ω ω = u = 0 ϕ u u = ϕ u = 0 ϕ 2 ϕ = 0 u t = u ω 1 ρ Π + ν 2 u Π = p + (1/2)ρ u 2 + ρgz ω = 0 ( ϕ t + Π) = 0 ϕ t + Π = C(t) C(t) C(t) = 0 C(t) ϕ = ϕ 1 + C(t) dt C(t) ϕ ϕ 1 ϕ = ϕ 1 p ρ + ϕ

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja...

1 ISKAZNA I PREDIKATSKA LOGIKA Zadaci Rešenja SKUPOVI Zadaci RELACIJE Zadaci Rešenja... Sadržaj 1 ISKAZNA I PREDIKATSKA LOGIKA 3 1.1 Zadaci............................... 6 1.2 Rešenja.............................. 8 2 SKUPOVI 13 2.1 Zadaci............................... 16 2.2 Rešenja..............................

Διαβάστε περισσότερα