Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος."

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος Σημειώσεις Matlab Γενικά a = 2 Εκχώρηση της τιμής 2 στη μεταβλητή a. b = 3; Εκχώρηση της τιμής 3 στη μεταβλητή b, χωρίς να εμφανίζεται το αποτέλεσμα. c = a + b Δίνει το άθροισμα των a και b. x = 1, y = -2 Δύο εντολές σε μία γραμμή, χωρισμένες με κόμμα (εμφανίζονται και τα δύο αποτελέσματα). b Εμφανίζει την τιμή που έχουμε δώσει προηγουμένως: 3. clear b Σβήνει τη μεταβλητή b από τη μνήμη. b Μήνυμα λάθους, γιατί έχουμε σβήσει το b. clear Σβήνει όλες τις μεταβλητές από τη μνήμη. Εισαγωγή Πινάκων v = [7-2 5] v = [7,-2, 5] Δημιουργεί ένα διάνυσμα, αποτελούμενο από μία γραμμή. Ομοίως με προηγουμένως. w = [1; 2; 3] Δημιουργεί ένα διάνυσμα, αποτελούμενο από μία στήλη. Α = [4-2 5; ; 2 3 5] Εισαγωγή πίνακα 3x3. Α = [ ] Εισαγωγή του ίδιου πίνακα (πατάμε Enter στο τέλος της γραμμής). Βασικές Συναρτήσεις va = abs(v) Δημιουργεί το διάνυσμα va του οποίου κάθε στοιχείο ισούται με την απόλυτη

2 sq = sqrt(v) τιμή του αντίστοιχου στοιχείου του ορίσματος v. Δημιουργεί το διάνυσμα sq του οποίου κάθε στοιχείο ισούται με την τετραγωνική ρίζα του αντίστοιχου στοιχείου του ορίσματος v. Αν κάποιο στοιχείο είναι αρνητικό, το αντίστοιχο στοιχείου του sq θα είναι μιγαδικός. y = sin(pi/6) Επιστρέφει το ημίτονο του π/6. Όμοια για cos (συνημίτονο), tan (εφαπτομένη), asin (τόξο ημ.), acos (τόξο συν.), atan (τόξο εφ.). y = exp(4) Επιστρέφει το e 4, όπου e η βάση των νεπέριων λογαρίθμων. v' Επιστρέφει τον ανάστροφο του πίνακα v. C1 = eye(4) Δίνει το μοναδιαίο τετραγωνικό πίνακα με διάσταση 4. C2 = eye(5,3) Δίνει το μοναδιαίο πίνακα με 5 γραμμές και 3 στήλες. C3 = ones(3) Δίνει τον τετραγωνικό πίνακα με διάσταση 3 και όλα τα στοιχεία μονάδες. C4 = eye(2,3) Δίνει τον πίνακα με 5 γραμμές και 3 στήλες και όλα τα στοιχεία μονάδες. C5 = zeros(2) Δίνει τον τετραγωνικό πίνακα με διάσταση 2 και όλα τα στοιχεία μηδέν. Α1 = diag(v) Επιστρέφει το διαγώνιο (τετραγωνικό) πίνακα με στοιχεία διαγωνίου τα στοιχεία του v, αφού το όρισμα v είναι διάνυσμα. A2 = diag(v,k) Επιστρέφει τον πίνακα με όλα τα στοιχεία 0, εκτός αυτών που ανήκουν στην k-διαγώνιο και που θα παίρνουν τις τιμές από τα στοιχεία του διανύσματος v. Για k = 0 τα στοιχεία του v μπαίνουν στην κύρια διαγώνιο, για k = 1 μπαίνουν στη διαγώνιο που βρίσκεται ακριβώς πάνω από την κύρια διαγώνιο, για k = -1 μπαίνουν στη διαγώνιο που βρίσκεται ακριβώς κάτω από την κύρια διαγώνιο κοκ. Οι διαστάσεις του πίνακα θα είναι οι ελάχιστες δυνατές ώστε να χωρούν το διάνυσμα v. w = diag(a,k) Παίρνει τα στοιχεία της k-διαγωνίου του τετραγωνικού πίνακα Α και σχηματίζει με αυτά ένα διάνυσμα-στήλη. To k ορίζεται όπως πριν. Η συνάρτηση diag είναι η ίδια με τις δύο προηγούμενες περιπτώσεις, απλώς συμπεριφέρεται διαφορετικά ανάλογα με τη μορφή του πρώτου ορίσματος. ΣΗΜΕΙΩΣΗ: Όλες οι συναρτήσεις (εκτός αν αναφέρεται διαφορετικά), όταν παίρνουν σαν όρισμα πίνακα αντί για αριθμό, επιστρέφουν ένα πίνακα με ίδιες διαστάσεις, του οποίου το κάθε στοιχείο ισούται με την τιμή της συνάρτησης του αντίστοιχου στοιχείου του αρχικού πίνακα. Ισχύει π.χ. για sqrt, abs, sin κτλ. Ακολουθίες Αριθμών u1 = [4:10] Δίνει το διάνυσμα με στοιχεία τους αριθμούς 4,5,6,7,8,9,10 (βήμα 1). v1 = [3:2:8] Δίνει το διάνυσμα με στοιχεία τους αριθμούς 3,5,7 (βήμα 2). t1 = [1:-1/2:-1] Δίνει το διάνυσμα με στοιχεία τους αριθμούς 1,1/2,0,-1/2,-1 (βήμα -½). u2 = linspace(4,10,7) Δίνει το διάνυσμα με τους 7 αριθμούς από το 4 έως και το 10 - δίνει

3 ό,τι και το u1. t1 = logspace(0,3,4) Δίνει την ακολουθία των 4 αριθμών από 10 0 έως Διαστάσεις και Δείκτες Στοιχείων n = length(t1) Επιστρέφει το μήκος του διανύσματος t1 ή για πίνακα τη μέγιστη διάστασή του. [nr,nc] = size(a) Εκχωρεί στο nr τις γραμμές του πίνακα Α και στο nc τις στήλες του Α. Α(1,2) Α(4,5) = 3 Επιστρέφει το στοιχείο που ανήκει στην πρώτη γραμμή και δεύτερη στήλη. Θέτει ως τιμή του στοιχείου 4,5 την τιμή 3 (αν υπολείπονται γραμμές έως την 4 η ή στήλες έως την 5 η, τα υπόλοιπα στοιχεία των επιπλέον γραμμών συμπληρώνονται με μηδενικά). Β = [1:5, 2:6] Δημιουργεί τον πίνακα [ ] Β = [1:5; 2:6] Δημιουργεί τον πίνακα Β(2,:) Επιστρέφει ως διάνυσμα γραμμή τη 2 η γραμμή του Β. Β(:,5) Επιστρέφει ως διάνυσμα στήλη τη 5 η στήλη του Β. Β(1:2, end-1:end) Επιστρέφει ένα πίνακα με τα 4 στοιχεία των 2 πρώτων γραμμών και 4 5 των 2 τελευταίων στηλών, δηλαδή τον πίνακα. 5 6 Β(:, 2:4) = [] Διαγράφει τη 2 η, 3 η και 4 η στήλη, εμφανίζει το νέο πίνακα. Παραγωγή Πινάκων με Τυχαία Στοιχεία v = rand(1,3) Σχηματίζει έναν πίνακα με 1 γραμμή και 3 στήλες και στοιχεία τυχαίας πραγματικής τιμής από το 0 έως και το 1. Α = rand(3) Β = rand(3) Σχηματίζει έναν τετραγωνικό πίνακα με διάσταση 3 και τυχαία στοιχεία. Σχηματίζει έναν πίνακα 3x3 με τυχαία στοιχεία (εν γένει διαφορετικά του Α). Πράξεις Πινάκων S = Α+Β P = Α*Β Χ1.*Χ2 X1./X2 Επιστρέφει το άθροισμα των Α και Β, που έχουν κοινές διαστάσεις. Εκτελεί το γινόμενο του Α(m x n) επί τον Β(n x t) και το εκχωρεί στον P(m x t). Για τους πίνακες Χ1 και Χ2, που έχουν κοινές διαστάσεις, δημιουργεί πίνακα του οποίου κάθε στοιχείο ισούται με το γινόμενο των αντίστοιχων των Χ1, Χ2. Παρόμοια με πριν, αλλά το κάθε στοιχείο προκύπτει με διαίρεση του

4 Α^3 Χ3 = Χ1.^3 αντίστοιχου του Χ1 δια του Χ2. Εκτελεί τον πολ/μό Α*Α*Α (ισχύει για τετραγωνικό μόνο). Δημιουργεί τον πίνακα Χ3 ίδιων διαστάσεων με τον Χ1 και κάθε στοιχείο του ισούται με την 3 η δύναμη του αντίστοιχου του Χ1. Χ4 = Χ1.^Χ2 Για τους πίνακες Χ1 και Χ2, που έχουν κοινές διαστάσεις, δημιουργεί πίνακα Χ4 του οποίου κάθε στοιχείο ισούται με το αντίστοιχο του Χ1 υψωμένο στο αντίστοιχο του Χ2. A^(-1) Επιστρέφει τον αντίστροφο πίνακα του Α. inv(a) Επίσης επιστρέφει τον αντίστροφο πίνακα του Α. A\B max(a) max(a,[],1) max(a,[],2) min(a) sum(a) sum(a,1) sum(a,2) prod(a) Αντίστροφη διαίρεση: εκτελεί την πράξη inv(a)*b, όπου ο Β δεν πρέπει απαραίτητα να είναι τετραγωνικός πίνακας, αρκεί όμως το πλήθος των γραμμών του να είναι ίσος με τη διάσταση του τετραγωνικού Α. Η αντίστροφη διαίρεση είναι χρήσιμη για την επίλυση του συστήματος Ax = b. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-γραμμή του οποίου κάθε στοιχείο ισούται με το μέγιστο από τα στοιχεία της στήλης που ανήκει. Αν το Α είναι διάνυσμα (στήλη ή γραμμή), επιστρέφει το μέγιστο αριθμό. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-γραμμή του οποίου κάθε στοιχείο ισούται με το μέγιστο από τα στοιχεία της στήλης που ανήκει. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-στήλη του οποίου κάθε στοιχείο ισούται με το μέγιστο από τα στοιχεία της γραμμής που ανήκει. Ίδια σύνταξη με το max, αλλά επιστρέφει τα ελάχιστα. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-γραμμή του οποίου κάθε στοιχείο ισούται με το άθροισμα των στοιχείων της στήλης που ανήκει. Αν το Α είναι διάνυσμα (στήλη ή γραμμή), επιστρέφει το άθροισμα όλων των στοιχείων. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-γραμμή του οποίου κάθε στοιχείο ισούται με το άθροισμα των στοιχείων της στήλης που ανήκει. Αν το Α είναι πίνακας, επιστρέφει το διάνυσμα-στήλη του οποίου κάθε στοιχείο ισούται με το άθροισμα των στοιχείων της γραμμής που ανήκει. Ίδια σύνταξη με το sum, αλλά επιστρέφει τα γινόμενα. Μετατροπές Πινάκων C = reshape([1 2 3; 4 5 6; 7 8 9; ], 2,6) Ανασχηματίζει τον 4x3 πίνακα να έχει 2 γραμμές και στήλες δημιουργώντας τον C =, δηλαδή διαβάζει ανά στήλη τα στοιχεία.

5 Ε = C(:) Μετατρέπει τον πίνακα C σε διάνυσμα-στήλη. Μιγαδικοί Αριθμοί και Συναρτήσεις Μιγαδικών z1 = 1-2*i Μιγαδικός αριθμός με πραγματικό μέρος 1 και φανταστικό -2. z2 = 1-2j real(z1) imag(z1) angle(z1) Ο ίδιος με τον z1 (τα i και j να μη χρησιμοποιούνται σαν ακέραιοι). Επιστρέφει το πραγματικό μέρος. Επιστρέφει το φανταστικό μέρος. Επιστρέφει τη γωνία του διανύσματος που δημιουργείται στο σύστημα των μιγαδικών Συναρτήσεις Συμβολοσειρών s = 'A string example' Οτιδήποτε μέσα σε μονές αποστρόφους θεωρείται συμβολοσειρά. s = num2str(pi,3) n = str2num('2.34') Αποθηκεύει στο s την τιμή '3.142'. Μετατρέπει έναν αριθμό σε συμβολοσειρά με όσα σημαντικά ψηφία ζητάμε μέσω του 2 ου ορίσματος. Αποθηκεύει στο n την τιμή Μετατρέπει μια συμβολοσειρά σε αριθμό με όση ακρίβεια του έχουμε δώσει. Πολυώνυμα 3 polyval([ ], 1.5) Βρίσκει την τιμή του πολυωνύμου x 2x + 12 για x = 1.5. roots([ ]) poly([0-1 2]) Βρίσκει όλες τις ρίζες πραγματικές και μιγαδικές του πολυωνύμου. Επιστρέφει το πολυώνυμο με ρίζες τα στοιχεία του ορίσματος (το πολυώνυμο επιστρέφεται σε μορφή διανύσματος των συντελεστών). Γραφικές Παραστάσεις 2 Διαστάσεων t = [0: pi/20: 2*pi]; plot(t, cos(t)) Δημιουργούμε μια ακολουθία [ 0,2π ] grid on title('the Cos Function') xlabel('t'); ylabel('cos') t με βήμα π/20 και φτιάχνουμε το διάγραμμα του συνημίτονου. Εμφανίζει τη διαγράμμιση στην τελευταία γραφική παράσταση. Εμφανίζει τον τίτλο στο γράφημα. Εμφανίζει τα ονόματα των αξόνων x και y αντίστοιχα. axis([0 2*pi -1 1]) Θέτει τα όρια του γραφήματος για το t [ 0,2π ] και για τις συναρτήσεις y [ 1,1 ].

6 plot(t,cos(t),'k-', t,sin(t),'ro') Δημιουργεί στο ίδιο γράφημα τη γραφική παράσταση του συνημίτονου με συνεχή μαύρη γραμμή και του ημίτονου με κόκκινους κύκλους. legend('cos', 'Sin') Εμφανίζει το υπόμνημα του γραφήματος. Λογαριθμική Κλίμακα semilogy(t, abs(cos(t))) semilogx(t, abs(cos(t))) loglog(t, abs(cos(t))) Κάνει το διάγραμμα της απόλυτης τιμής του συνημίτονου, αλλά στον κατακόρυφο άξονα η κλίμακα είναι λογαριθμική. Παρόμοια με πριν, αλλά για τον οριζόντιο άξονα. Λογαριθμική κλίμακα και στους δύο άξονες. Πολλαπλά Γραφήματα subplot(2,2,1) Εμφανίζει σε ένα παράθυρο 4 (2 γραμμές x 2 στήλες) χώρους για γραφήματα και θέτει σαν ενεργό το 1 ο, όπου και θα εμφανιστεί το επόμενο γράφημα, όταν δοθεί εντολή τύπου plot, loglog κτλ. Γραφήματα 3 Διαστάσεων x = linspace(-20, 20, 80); y = linspace(-2*pi, 2*pi, 160); [Χ,Υ] = meshgrid(x,y) Από τα διανύσματα x και y δημιουργούνται τα X και Y που είναι διαστάσεων length(y) x length(x) και τα στοιχεία μιας στήλης του X είναι ίδια μεταξύ τους, όπως επίσης ίδια μεταξύ τους είναι και τα στοιχεία μιας γραμμής του Y. Δηλαδή ο πίνακας Χ είναι το διάνυσμα-γραμμή x επαναλαμβανόμενο 160 φορές κατακόρυφα και ο πίνακας Υ είναι το διάνυσμα-στήλη y' επαναλαμβανόμενο 80 φορές οριζόντια. surf(x, Y, X.^2.*cos(Y)) Δίνει το τρισδιάστατο γράφημα του x 2 cos( ) x [ 20,20] και y [ 2 π,2 π ]. y, για ΠΡΟΣΟΧΗ στη χρήση της τελείας. πριν από το σύμβολο μιας πράξης (.*./.^.\ κτλ.), όταν θέλουμε να δηλώσουμε πράξη στοιχείου προς στοιχείο. Άλλες Εντολές clc Σβήνει τις προηγούμενες εντολές και τα αποτελέσματά τους από το παράθυρο εντολών (command window), αλλά όχι τις μεταβλητές από

7 help exp lookfor exponential Συνδυασμοί πλήκτρων Ctrl+C ή Ctrl+Break τη μνήμη. Μας δίνει πληροφορίες για τη σύνταξη της συνάρτησης exp. Επιστρέφει μια λίστα από θέματα που περιέχουν τη λέξη exponential, τα οποία μπορούμε να κοιτάξουμε το καθένα ξεχωριστά με την εντολή help. Τερματισμός όποιας εντολής βρίσκεται σε εξέλιξη. Δημιουργία συνάρτησης File > New > M-file File > Open ή Ctrl+O Δημιουργία νέου m-file Άνοιγμα αρχείου Πατάμε F5 από τον m-file editor ή πληκτρολογούμε το όνομα του αρχείου χωρίς την κατάληξη στο παράθυρο εντολών (command window), για να τρέξουμε το m-file. Για να ορίσουμε ένα m-file ως συνάρτηση με όνομα namefun, ορίσματα in1,in2,in3 κτλ και αποτελέσματα out1,out2, στην πρώτη γραμμή του αρχείου γράφουμε function [out1,out2] = namefun(in1,in2,in3) ή function out = namefun(in1,in2,in3) αν η συνάρτηση επιστρέφει μόνο έναν αριθμό out. ΠΡΟΣΟΧΗ: Το όνομα του m-file πρέπει να είναι το ίδιο με το όνομα που χρησιμοποιείται στην πρώτη γραμμή, δηλαδή namefun.m Ό,τι υπάρχει δεξιά από το σύμβολο % θεωρείται σχόλιο. Οι γραμμές που είναι εξολοκλήρου σχόλιο και βρίσκονται στην αρχή του m-file ή αμέσως μετά τον ορισμό της συνάρτησης φαίνονται με την εντολή help. Παράδειγμα συνάρτησης %This function finds the sum and the product of two numbers function [sum1,prod1] = praxeis(a1,a2) sum1 = sum([a1,a2]); prod1 = prod([a1,a2]); Τα παραπάνω τα σώζουμε σε αρχείο με όνομα praxeis.m και μετά γράφουμε στη γραμμή εντολών [s,p] = praxeis(2,3) το οποίο καταχωρεί στη μεταβλητή s το άθροισμα δηλαδή 5 και στη μεταβλητή p το γινόμενο δηλαδή 6.

8 Βασικές εντολές x = input('enter a value for x') eps format long format short Μήνυμα για εξωτερική εισαγωγή μεταβλητής (δεν προτείνεται) Παράμετρος που δίνει το μέγιστο απόλυτο σφάλμα κάθε πράξης στη Matlab στο συγκεκριμένο υπολογιστή (π.χ e-016) Θέτει ως προεπιλεγμένο τρόπο εμφάνισης των αριθμών τα 15 δεκαδικά ψηφία. Όμοια, εμφανίζει 4 δεκαδικά ψηφία. Ανάγνωση και εγγραφή σε αρχείο save('xyfile','x','y') Δημιουργεί το αρχείο xyfile.mat και αποθηκεύει τα x και y. load xyfile Φορτώνει στο workspace τις μεταβλητές που είναι αποθηκευμένες (x και y) στο xyfile.mat. save xyfile x y -ascii Δημιουργεί το αρχείο xyfile.txt και αποθηκεύει τα x και y σε μορφή κειμένου. D = load('xyfile.txt') Δημιουργεί από τα x και y, που είναι αποθηκευμένα στο xyfile.txt τον πίνακα D. Τα x και y όμως πρέπει να συμφωνούν σε διαστάσεις (ίδιο αριθμό στηλών). Γενικά δε συνίσταται το φόρτωμα από αρχείο τύπου -ascii. fnum = fopen('results.dat','wt') Ανοίγει το αρχείο results.dat για εγγραφή (δημιουργεί ένα νέο αρχείο είτε αυτό υπάρχει είτε όχι, σβήνοντας προηγούμενα δεδομένα) και καταχωρεί μια τιμή (θετική για επιτυχημένη δημιουργία, -1 για αποτυχημένη) στο fnum, που είναι και ο αριθμός αναγνώρισης του αρχείου. Η άδεια μπορεί να είναι 'wt', 'rt', όπου ανοίγει ένα υπάρχον αρχείο για ανάγνωση ή 'at', όπου δημιουργεί το αρχείο, αν αυτό δεν υπάρχει ή προσθέτει στο τέλος του αρχείου τα νέα δεδομένα, αν υπάρχει ήδη. fprintf(fnum, 'Example %s:\n %7.4f %11.3e\n \t...\n', 'One', -100*pi, pi) Εκτυπώνει στο αρχείο με αριθμό αναγνώρισης fnum (ή αν έχει παραληφθεί, στο command window) τις μεταβλητές 'One' (string), - 100*pi και pi με format που δίνεται από το δεύτερο όρισμα. Το %s εμφανίζει την πρώτη μεταβλητή κατά σειρά σαν συμβολοσειρά. Το %7.4f σημαίνει ότι ο (δεύτερος) αριθμός θα εμφανίζεται με 4 δεκαδικά ψηφία και μαζί με τα ψηφία του ακέραιου μέρους, την τελεία και το πρόσημο θα καταλαμβάνει τουλάχιστον 7 θέσεις. Όμοια για το %11.3e με τη διαφορά ότι εμφανίζει τον αριθμό σε μορφή a 10 b. Το \t προσθέτει το χαρακτήρα tab και το \n αλλάζει γραμμή. Κάθε άλλος χαρακτήρας εμφανίζεται κανονικά. Οι δύο αριθμοί στοιχίζονται δεξιά

9 a = fgetl(fnum) στο χώρο που τους αναλογεί, επειδή ο πρώτος αριθμός μετά το % είναι θετικός. Αν ήταν αρνητικός, θα στοιχίζονταν αριστερά. Το αποτέλεσμα στο παράδειγμα είναι: Exapmle One: e Διαβάζει μια γραμμή από το αρχείο με αριθμό αναγνώρισης fnum και το καταχωρεί στη μεταβλητή a ως συμβολοσειρά. Για το προηγούμενο δίνει: a = Example One: b = fscanf(fnum,'%f %f',3) Διαβάζει 2 αριθμούς από το αρχείο με αριθμό αναγνώρισης fnum και τους αποθηκεύει στο διάνυσμα - στήλη b. Το τρίτο όρισμα 3 σημαίνει ότι θα διαβάσει το πολύ 3 αριθμούς (εδώ δεν επηρεάζει). Αν ο αριθμός είναι μεγαλύτερος από το πλήθος των μεταβλητών που καλείται να διαβάσει μέσω του 2 ου ορίσματος, τότε επαναλαμβάνεται π.χ. ισοδύναμα θα μπορούσαμε να δώσουμε b = fscanf(fnum,'%f',2). Η εμφάνιση του αποτελέσματος επηρεάζεται από το προεπιλεγμένο format: b = fclose(fnum) Τόσο για την fgetl όσο και για την fscanf, η ανάγνωση αρχίζει από το σημείο που σταμάτησε τελευταία φορά η ανάγνωση και τελειώνει όταν έχει τελειώσει η γραμμή για την fgetl ή όταν έχει διαβάσει τις μεταβλητές για την fscanf. Τερματίζει την επικοινωνία του προγράμματος με το αρχείο που έχει αριθμό αναγνώρισης fnum και σώζει τα αποτελέσματα. type results.dat Εμφανίζει τα περιεχόμενα του αρχείου results.dat που βρίσκεται στον ενεργό κατάλογο στο command window. Σύγκριση τιμών μεταβλητών x=3<4, y=4>=5 Επιστρέφει x=1 και y=0. To 1 αντιπροσωπεύει το αληθές και το 0 το ψευδές. Τα 0 και 1 είναι τύπου logical και όχι double. Επίσης χρησιμοποιούμε == (ισότητα), ~ (αντίθετο), & (και), (ή). π.χ. το a = 3==3 & (4~=4 ~1) δίνει a=0.

10 Εντολές υπό συνθήκες if x>0 disp('positive') elseif x==0 disp('zero') elseif x<0 else end disp('negative') disp('error') Εμφανίζει το ανάλογο μήνυμα, για θετικό, μηδενικό, αρνητικό και εσφαλμένο (μιγαδικό ή που δεν μπορεί να υπολογιστεί, π.χ. NaN Not a Number) αντίστοιχα. To disp εμφανίζει μήνυμα στο command window. switch sign(x) case 1 disp('positive') case 0 disp('zero') case -1 disp('negative') otherwise disp('error') end Ισοδύναμος κώδικας με τον προηγούμενο. Λιγότερο ευέλικτος, αφού οι τιμές που εξετάζονται πρέπει να είναι ακέραιοι, λογικά 0 και 1 ή συμβολοσειρές. Το sign επιστρέφει 1,0,-1 για θετικό, μηδενικό και αρνητικό όρισμα αντίστοιχα. Βρόχοι επανάληψης for k=1:10 fprintf('%3.0f',k) end Δίνει k = k=1; while k<=10 fprintf('%3.0f',k) k=k+1; end Δίνει ότι και πριν

11 Διάφορες εντολές break return y = [ ]; x = [ ]; z = y(x) zb = z>10 z(zb) zi = find(z>10) z(zi) z(z>10) all(zb) any(zb) nargin, nargout global V feval('cos',0) Άμεσος τερματισμός του βρόχου επανάληψης Άμεσος τερματισμός της συνάρτησης Επιστρέφει z = Το x λειτουργεί ως δείκτης. Επιστρέφει zb = To zb είναι logical array. Επιστρέφει To zb λειτουργεί ως δείκτης (λογικός). Αν δημιουργήσουμε εμείς ένα zb = [ ] και δώσουμε μετά z(zb), θα βγάλει σφάλμα, γιατί τα 0 και 1 δεν είναι λογικά αλλά ακέραιοι συμπεριλαμβανομένου του 0. Επιστρέφει 2 4, δηλαδή τους δείκτες (θέσεις) των στοιχείων που ικανοποιούν τη συνθήκη. Επιστρέφει Δίνει ότι και το z(zb). Εδώ δεν υπάρχει σφάλμα, γιατί οι ακέραιοι 2 και 4 είναι στα όρια 1 έως length(z) εδώ 5. Όμοια με πριν Επιστρέφει 0 (false). Επιστρέφει 1, όταν όλα τα στοιχεία είναι διάφορα του 0. Επιστρέφει 1 (true). Επιστρέφει 1, όταν κάποιο στοιχείο είναι διάφορο του 0. Επιστρέφουν τον αριθμό των εισαγόμενων και εξαγόμενων μεταβλητών σε μία συνάρτηση. Κάνει την παράμετρο V κοινή για όσες συναρτήσεις έχουν την εντολή αυτή (συμπεριλαμβανομένου και του workspace). Επιστρέφει 1, ό,τι δηλαδή θα έδινε και το cos(0). trig_fun = inline('cos(x)*sin(x)') Ορίζει τη συνάρτηση trig_fun που φαίνεται από το workspace και από κάθε συνάρτηση, ανεξάρτητα από το πού την έχουμε ορίσει.

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες). Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,

Διαβάστε περισσότερα

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού

Διαβάστε περισσότερα

Βασικά στοιχεία του MATLAB

Βασικά στοιχεία του MATLAB ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟ Εξοικείωση µε το περιβάλλον του MATLAB και χρήση βασικών εντολών και τεχνικών δηµιουργίας προγραµµάτων, συναρτήσεων

Διαβάστε περισσότερα

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ

ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΜΑΗΣ 2007 - ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΟΔΗΓΙΕΣ: ΝΑ ΑΠΑΝΤΗΣΕΤΕ ΣΕ ΟΛΕΣ ΤΙΣ ΕΡΩΤΗΣΕΙΣ. Το εξεταστικό δοκίμιο αποτελείται από δύο Ενότητες Α και Β. ΕΝΟΤΗΤΑ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ορθή απάντηση

Διαβάστε περισσότερα

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε

Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2006 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τρίτη, 6 Ιουνίου 2006 07:30 10:30

Διαβάστε περισσότερα

Έναρξη Τερματισμός του MatLab

Έναρξη Τερματισμός του MatLab Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος

Διαβάστε περισσότερα

Οι εντολές του MaLT+

Οι εντολές του MaLT+ Έλεγχος του χαρακτήρα Οι εντολές του MaLT+ Ελληνική Εντολή Αγγλική Εντολή Περιγραφή Παράδειγμα Κίνηση του χαρακτήρα Μπροστά/μ Πίσω/π fw/fd/forward bw/bk/backward προχωράει μπροστά τόσα βήματα όσο ο προχωράει

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ

ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ ΑΣΚΗΣΗ 2: ΔΟΜΗ ΠΡΟΓΡΑΜΜΑΤΟΣ C, ΧΕΙΡΙΣΜΟΣ ΜΕΤΑΒΛΗΤΩΝ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΟΔΟΥ ΚΑΙ ΕΞΟΔΟΥ Σκοπός της Άσκησης Ο σκοπός αυτής της εργαστηριακής άσκησης είναι η ανάλυση των βασικών χαρακτηριστικών της Γλώσσας

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές

Είδη εντολών. Απλές εντολές. Εντολές ελέγχου. Εκτελούν κάποια ενέργεια. Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Μορφές Εντολών Είδη εντολών Απλές εντολές Εκτελούν κάποια ενέργεια Εντολές ελέγχου Ορίζουν τον τρόπο με τον οποίο εκτελούνται άλλες εντολές Εντολές και παραστάσεις Μιαεντολήείναιμιαπαράστασηπου ακολουθείται

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Βασικά Στοιχεία Το αλφάβητο της C Οι βασικοί τύποι της C Δηλώσεις μεταβλητών Είσοδος/Έξοδος Βασικές εντολές της C Αλφάβητο

Διαβάστε περισσότερα

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων

2.1. Εντολές. 2.2. Σχόλια. 2.3. Τύποι Δεδομένων 2 Βασικές Εντολές 2.1. Εντολές Οι στην Java ακολουθούν το πρότυπο της γλώσσας C. Έτσι, κάθε εντολή που γράφουμε στη Java θα πρέπει να τελειώνει με το ερωτηματικό (;). Όπως και η C έτσι και η Java επιτρέπει

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων

Πίνακες >>A = [ 1,6; 7, 11]; Ή τον πίνακα >> B = [2,0,1; 1,7,4; 3,0,1]; Πράξεις πινάκων Πίνακες Ένας πίνακας είναι μια δισδιάστατη λίστα από αριθμούς. Για να δημιουργήσουμε ένα πίνακα στο Matlab εισάγουμε κάθε γραμμή σαν μια ακολουθία αριθμών που ξεχωρίζουν με κόμμα (,) ή κενό (space) και

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client

Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client ΕΣΔ 516 Τεχνολογίες Διαδικτύου Δυναμικές Ιστοσελίδες Εισαγωγή στην Javascript για προγραμματισμό στην πλευρά του client Περιεχόμενα Περιεχόμενα Javascript και HTML Βασική σύνταξη Μεταβλητές Τελεστές Συναρτήσεις

Διαβάστε περισσότερα

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y)

Λογικά Διανύσματα. >>x = -3/2*pi : pi/100 : 3/2*pi; >>y = tan(x); >>plot(x, y) Λογικά Διανύσματα Τα λογικά διανύσματα του Matlab είναι πολύ χρήσιμα εργαλεία. Για παράδειγμα ας υποθέσουμε ότι θέλουμε να κάνουμε την γραφική παράσταση της tan(x) στο διάστημα από -3π/2 μέχρι 3π/2. >>x

Διαβάστε περισσότερα

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών

Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Εργαστήριο Δομημένος Προγραμματισμός (C#) Τμήμα Μηχανολογίας Νικόλαος Ζ. Ζάχαρης Καθηγητής Εφαρμογών Σκοπός Να αναπτύξουν ένα πρόγραμμα όπου θα επαναλάβουν τα βήματα ανάπτυξης μιας παραθυρικής εφαρμογής.

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου

Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου Προτεινόμενες εργασίες Προγραμματισμού Διαδικτύου Ιωάννης Γ. Τσούλος Εργασία Πρώτη - Αριθμομηχανή Με την χρήση του περιβάλλοντος AWT ή του SWING θα πρέπει να δημιουργηθεί αριθμομηχανή για την εκτέλεση

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Έλεγχος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Σχεσιακοί Τελεστές και Ισότητας Ένα πρόγραμμα εκτός από αριθμητικές πράξεις

Διαβάστε περισσότερα

a = 10; a = k; int a,b,c; a = b = c = 10;

a = 10; a = k; int a,b,c; a = b = c = 10; C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 4 ο Τελεστές Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Ο τελεστής εκχώρησης = Ο τελεστής = χρησιµοποιείται για την απόδοση τιµής (ή αλλιώς ανάθεση τιµής) σε µία µεταβλητή Π.χ.

Διαβάστε περισσότερα

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm

Γενικό πλαίσιο. Απαιτήσεις Μοντέλο εδοµένων. MinusXLRequirements. Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm MinusXLRequirements Απόστολος Ζάρρας http://www.cs.uoi.gr/~zarras/se.htm Γενικό πλαίσιο Μια από τις πιο γνωστές και ευρέως διαδεδομένες εμπορικές εφαρμογές για τη διαχείριση λογιστικών φύλλων είναι το

Διαβάστε περισσότερα

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων

Κεφάλαιο 1. Τι θα μάθουμε σήμερα: -AND, OR, NOT. -Ενσωματωμένες συναρτήσεις. -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD. -Προτεραιότητα πράξεων Κεφάλαιο 1 Αρχή ήμισυ παντός. Πλάτων, 427-347 π.χ., Φιλόσοφος Τι θα μάθουμε σήμερα: -AND, OR, NOT -Ενσωματωμένες συναρτήσεις -Μαθηματικοί τελεστές -ΤΕΛΕΣΤΕΣ DIV ΚΑΙ MOD -Προτεραιότητα πράξεων 1 Λογικές

Διαβάστε περισσότερα

Εντολές της LOGO (MicroWorlds Pro)

Εντολές της LOGO (MicroWorlds Pro) Εντολές της LOGO (MicroWorlds Pro) Εντολές εμφάνισης (εξόδου) και αριθμητικές πράξεις δείξε Εμφανίζει στην οθόνη έναν αριθμό, το αποτέλεσμα πράξεων, μια λέξη ή μια λίστα (ομάδα) λέξεων. δείξε 200 200 δείξε

Διαβάστε περισσότερα

Π Α Ρ Α Ρ Τ Η Μ Α. Για μια Εισαγωγή στο MATLAB

Π Α Ρ Α Ρ Τ Η Μ Α. Για μια Εισαγωγή στο MATLAB 195 Π Α Ρ Α Ρ Τ Η Μ Α Για μια Εισαγωγή στο MATLAB 196 Παράρτημα 1. Υπολογίζοντας στο Αλληλεπιδραστικό Περιβάλλον του MATLAB 198 1.1 Τρέχοντας το MATLAB... 198 1.1.1 Το MATLAB ως υπολογιστής παραστάσεων...

Διαβάστε περισσότερα

Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος

Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος Διάλεξη 3η: Τύποι Μεταβλητών, Τελεστές, Είσοδος/Έξοδος Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Μεταβλητές,

Διαβάστε περισσότερα

SPSS Statistical Package for the Social Sciences

SPSS Statistical Package for the Social Sciences SPSS Statistical Package for the Social Sciences Ξεκινώντας την εφαρμογή Εισαγωγή εδομένων Ορισμός Μεταβλητών Εισαγωγή περίπτωσης και μεταβλητής ιαγραφή περιπτώσεων ή και μεταβλητών ΣΤΑΤΙΣΤΙΚΗ Αθανάσιος

Διαβάστε περισσότερα

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C

ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C ΣΥΝΟΠΤΙΚΟΣ ΟΔΗΓΟΣ ΓΛΩΣΣΑΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C 1 Εισαγωγή Ο προγραμματισμός είναι μια διαδικασία επίλυσης προβλημάτων με χρήση Η/Υ. Ένα πρόγραμμα είναι ένα σύνολο εντολών κάποιας γλώσσας προγραμματισμού,

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 1: Εισαγωγικά Μαθήματος & Κυριότερες Συναρτήσεις του Microsoft Excel 2010 Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στο GNU Octave/MATLAB

Εισαγωγή στο GNU Octave/MATLAB Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Βασικά στοιχεία για τη χρήση του MATLAB & Εφαρμογή σε προβλήματα κατασκευών

ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ. Βασικά στοιχεία για τη χρήση του MATLAB & Εφαρμογή σε προβλήματα κατασκευών ΔΙΔΑΚΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Βασικά στοιχεία για τη χρήση του MATLAB & Εφαρμογή σε προβλήματα κατασκευών Κατσάνος Ευάγγελος Διπλ. Πολιτικός Μηχανικός, MSc ΤΕΧΝΙΚΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΑΙ ΧΡΗΣΗ ΛΟΓΙΣΜΙΚΟΥ Η/Υ ΣΤΙΣ

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Διάλεξη 3: Προγραμματισμός σε JAVA I. Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 3: Προγραμματισμός σε JAVA I. Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 3: Προγραμματισμός σε JAVA I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: - Στοιχειώδης Προγραμματισμός - Προγραμματισμός με Συνθήκες - Προγραμματισμός με Βρόγχους

Διαβάστε περισσότερα

1.5 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ μικρόκοσμου «Προγραμματισμός Η/Υ»

1.5 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ μικρόκοσμου «Προγραμματισμός Η/Υ» 1.5 ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ μικρόκοσμου «Προγραμματισμός Η/Υ» 1. Πήγαινε στο μενού Αρχείο και επίλεξε Άνοιγμα. Άνοιξε το αρχείο sample.x. Ανοίγουν δυο παράθυρα. Παρατήρησε τα ονόματα τους: Πηγαίος κώδικας... και

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο

C: Από τη Θεωρία στην Εφαρµογή 2 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 2 ο Τύποι Δεδοµένων Δήλωση Μεταβλητών Έξοδος Δεδοµένων Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Μνήµη και Μεταβλητές Σχέση Μνήµης Υπολογιστή και Μεταβλητών Η µνήµη (RAM) ενός

Διαβάστε περισσότερα

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ

Διάλεξη 2. Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις. Διοργάνωση : ΚΕΛ ΣΑΤΜ Διάλεξη 2 Μεταβλητές - Δομές Δεδομένων - Eίσοδος δεδομένων - Έξοδος: Μορφοποίηση - Συναρτήσεις Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 2 Internal

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Ακαδημαϊκό έτος 2001-2002 ΤΕΤΡΑΔΙΟ ΕΡΓΑΣΤΗΡΙΟΥ #4 «Προγραμματισμός Η/Υ» - Τετράδιο Εργαστηρίου #4 2 Γενικά Στο Τετράδιο #4 του Εργαστηρίου θα αναφερθούμε σε θέματα διαχείρισης πινάκων

Διαβάστε περισσότερα

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του.

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. MATrix LABoratory Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. Τι είναι το MATLAB ; Μια γλώσσα υψηλού επιπέδου η οποία είναι χρήσιµη για τεχνικούς υπολογισµούς.

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Πίνακες Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Πίνακες Πολλές φορές θέλουμε να κρατήσουμε στην μνήμη πολλά αντικείμενα

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Αριθμητική Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2012-2013 Δεύτερο Πρόγραμμα 1 / * Second Simple Program : add 2 numbers * / 2

Διαβάστε περισσότερα

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής

Διάλεξη 1. Πράξεις Τελεστές Έλεγχος Ροής Διάλεξη 1 Πράξεις Τελεστές Έλεγχος Ροής Διοργάνωση : ΚΕΛ ΣΑΤΜ Διαφάνειες: Skaros, MadAGu Παρουσίαση: MadAGu Άδεια: Creative Commons 3.0 Αριθμητικοί Τελεστές- Αριθμητικές Πράξεις 2 Internal use only Αριθμητικοί

Διαβάστε περισσότερα

ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB

ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ MATLAB ΚΩΝΣΤΑΝΤΙΝΟΣ ΔΙΑΜΑΝΤΑΡΑΣ Καθηγητής ΚΩΝΣΤΑΝΤΙΝΟΣ ΓΟΥΛΙΑΝΑΣ Επίκουρος Καθηγητής ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ Θεσσαλονίκη 2013 Σύντομο Εγχειρίδιο Matlab Διαμαντάρας

Διαβάστε περισσότερα

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο

if(συνθήκη) {... // οµάδα εντολών } C: Από τη Θεωρία στην Εφαρµογή 5 ο Κεφάλαιο C: Από τη Θεωρία στην Εφαρµογή Κεφάλαιο 5 ο Έλεγχος Προγράµµατος Γ. Σ. Τσελίκης Ν. Δ. Τσελίκας Η εντολή if (Ι) Η εντολή if είναι µία από τις βασικότερες δοµές ελέγχου ροής στη C, αλλά και στις περισσότερες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab

Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel. Δημιουργία κώδικα στο Matlab Προσεγγιστική λύση Γραμμικών Συστημάτων με την μέθοδο Gauss-Seidel Δημιουργία κώδικα στο Matlab Χατζηγεωργίου Αντώνης Νοέμβριος 2013 Περιεχόμενα 1. Αρχικό πρόβλημα.... 3 2. Εφαρμογή της θεωρίας.... 4 3.

Διαβάστε περισσότερα

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών.

MATLAB. Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. MATLAB Tι είναι το λογισµικό MATLAB? Λογισµικό υλοποίησης αλγορίθµων και διεξαγωγής υπολογισµών. Σύστηµα αλληλεπίδρασης µε τοχρήστηγια πραγµατοποίηση επιστηµονικών υπολογισµών (πράξεις µε πίνακες επίλυση

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel

Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel Επεξεργασία πολλαπλών φύλλων εργασίας - Γραφημάτων Excel 11.1. Πολλαπλά φύλλα εργασίας Στο προηγούμενο κεφάλαιο δημιουργήσαμε ένα φύλλο εργασίας με τον προϋπολογισμό δαπανών του προσωπικού που θα συμμετάσχει

Διαβάστε περισσότερα

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος

Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος Εισαγωγή στη Γεώργιος Γεωργίου & Χρίστος Ξενοφώντος Τμήμα Μαθηματικών και Στατιστικής Πανεπιστήμιο Κύπρου Μάϊος 7 . ΕΙΣΑΓΩΓΗ Το MATLAB είναι ένα σύγχρονο ολοκληρωμένο μαθηματικό λογισμικό πακέτο που χρησιμοποιείται

Διαβάστε περισσότερα

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης

1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης 1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 1 Παράγραφοι: 2.2.1 ορισμός αλγορίθμου (σελ.19) 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34) 34) ΑΛΓΟΡΙΘΜΟΣ Πεπερασμένη σειρά βημάτων

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ

Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Προγραμματισμός Η/Υ Ι (Χρήση της C) 6 η Θεωρία ΜΟΝΟΔΙΑΣΤΑΤΟΙ ΠΙΝΑΚΕΣ Σκοπός του μαθήματος Σκοπός του παρόντος μαθήματος είναι να μάθετε να κάνετε εισαγωγή δεδομένων σε πίνακες και περαιτέρω επεξεργασία

Διαβάστε περισσότερα

ΜΕΡΟΣ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ερώτηση βαθμολογείται με έξι μονάδες.

ΜΕΡΟΣ Α - Αποτελείται από δέκα (10) ερωτήσεις. Κάθε ερώτηση βαθμολογείται με έξι μονάδες. ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2008 Μάθημα: ΠΛΗΡΟΦΟΡΙΚΗ Ημερομηνία και ώρα εξέτασης: Τετάρτη, 4 Ιουνίου 2008 07:30

Διαβάστε περισσότερα

Επανάληψη Μιγαδικών Αριθμών

Επανάληψη Μιγαδικών Αριθμών Σήματα και Συστήματα ΗΜΥ0 //006 Επανάληψη Μιγαδικών Αριμών Δημήτρης Ηλιάδης, eldemet@ucy.ac.cy Που χρησιμεύει: Από τη εωρία των Σειρών Fourier, γνωρίζουμε πως οποιοδήποτε περιοδικό σήμα ανεξαρτήτως πολυπλοκότητας,

Διαβάστε περισσότερα

Παρουσίαση του Mathematica

Παρουσίαση του Mathematica Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός

Διαβάστε περισσότερα

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB)

1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 1 η ΕΝΟΤΗΤΑ ΕΙΣΑΓΩΓΗ (Προγραμματισμός & MATLAB) Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη.

Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη. Δημιουργία και εκτέλεση προγραμμάτων. Εντολές εισόδου από το πληκτρολόγιο και εξόδου στην οθόνη. Σε αυτήν την ενότητα θα δημιουργήσετε και θα εκτελέσετε τα πρώτα σας απλά προγράμματα. Επίσης, θα δείτε

Διαβάστε περισσότερα

Κεφάλαιο Πέµπτο: Η Εξάσκηση

Κεφάλαιο Πέµπτο: Η Εξάσκηση Κεφάλαιο Πέµπτο: Η Εξάσκηση 1. Γενικά Η εξάσκηση στο Εργαστήριο προϋποθέτει τη γνώση των εντολών (τουλάχιστον) τις οποίες καλείται ο σπουδαστής κάθε φορά να εφαρµόσει. Αυτές παρέχονται µέσω της Θεωρίας

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY)

ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) ΚΕΦΑΛΑΙΟ 3 ο ΣΥΝΑΡΤΗΣΕΙΣ, ΤΡΙΓΩΝΟΜΕΤΡΙΑ( FUNCTIONS,TRIGONOMETRY) 3.1 ΘΕΩΡΙΑ-ΤΥΠΟΛΟΓΙΟ-ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση, ή απεικόνιση όπως ονομάζεται διαφορετικά, είναι μια αντιστοίχιση μεταξύ δύο συνόλων,

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ι

Αρχιτεκτονική Υπολογιστών Ι Αρχιτεκτονική Υπολογιστών Ι ΥΠΟΔΕΙΞΕΙΣ ΓΙΑ ΤΗ ΛΥΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ Από το βιβλίο Αρχιτεκτονική Υπολογιστών & Προγραμματισμός Assembly (Συγγραφέας / Εκδότης : Παναγιώτης Παπάζογλου) Δρ. Παναγιώτης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012)

ΕΠΑΝΑΛΗΠΤΙΚΗ ΕΞΕΤΑΣΗ (14/9/2012) Φτιάξε ένα πρόγραµµα FORTRAN που θα βρίσκει αν ο ακέραιος N που θα εισάγει ο χρήστης είναι άρτιος ή περιττός. Φτιάξε ένα πρόγραµµα FORTRAN που να προσδιορίζει και να τυπώνει την θέση των στοιχείων ενός

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Πανεπιστήμιο Δυτικής Μακεδονίας Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΔΟΜΗΜΕΝΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ Διαμόρφωση Ελέγχου Ροής Προγράμματος Δομημένος Προγραμματισμός Ο πιο απλός και συνηθισμένος

Διαβάστε περισσότερα

Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B:

Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B: Συστήματα floppy disk Τοποθετήστε τη δισκέτα στο drive B και σε περιβάλλον MS-DOS πληκτρολογήστε: B: Συστήματα σκληρού δίσκου Οι χρήστες σκληρού δίσκου θα πρέπει να δημιουργήσουν ένα directory με το όνομα

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Συναρτήσεις εισόδου/εξόδου, τελεστές Η συνάρτηση scanf() είσοδος δεδομένων Διαβάζει από το πληκτρολόγιο (stdin) μορφοποιημένες τιμές μεταβλητών. scanf (ΣΕΙΡΑ_ΕΛΕΓΧΟΥ, δείκτης_μεταβλητής-1,

Διαβάστε περισσότερα

Ανάπτυξη και Σχεδίαση Λογισμικού

Ανάπτυξη και Σχεδίαση Λογισμικού Ανάπτυξη και Σχεδίαση Λογισμικού Η γλώσσα προγραμματισμού C Γεώργιος Δημητρίου Εκφράσεις και Λίγες Εντολές Οι εκφράσεις της C Τελεστές Απλές και σύνθετες εντολές Εντολές ελέγχου (επιλογής) Εισαγωγή σε

Διαβάστε περισσότερα

Παιχνιδάκια με τη LOGO

Παιχνιδάκια με τη LOGO Όταν σβήνει ο υπολογιστής ξεχνάω τα πάντα. Κάτι πρέπει να γίνει Κάθε φορά που δημιουργώ ένα πρόγραμμα στη Logo αυτό αποθηκεύεται προσωρινά στη μνήμη του υπολογιστή. Αν θέλω να διατηρηθούν τα προγράμματά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εξετάσεις Προσομοίωσης 06/04/2015 Θέμα Α Α1. Να γράψετε στο τετράδιο σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή και ΛΑΘΟΣ αν

Διαβάστε περισσότερα

To SIMULINK του Matlab

To SIMULINK του Matlab ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ Β ΧΗΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΘ. Κ. ΚΥΠΑΡΙΣΣΙΔΗΣ, ΛΕΚΤΟΡΑΣ Χ. ΧΑΤΖΗΔΟΥΚΑΣ Τ.Θ. 472 54 124 ΘΕΣΣΑΛΟΝΙΚΗ Μάθημα: ΡΥΘΜΙΣΗ ΣΥΣΤΗΜΑΤΩΝ Ακαδ.

Διαβάστε περισσότερα

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL

ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΜΕ ΕXCEL 1. Εισαγωγή δεδομένων σε φύλλο εργασίας του Microsoft Excel Για να τοποθετήσουμε τις μετρήσεις μας σε ένα φύλλο Excel, κάνουμε κλικ στο κελί στο οποίο θέλουμε να τοποθετήσουμε

Διαβάστε περισσότερα

Προγραμματισμός Ι. Είσοδος/Έξοδος. Δημήτρης Μιχαήλ. Ακ. Έτος 2009-2010. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Είσοδος/Έξοδος. Δημήτρης Μιχαήλ. Ακ. Έτος 2009-2010. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Είσοδος/Έξοδος Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Είσοδος/Έξοδος Μέχρι τώρα όποτε θέλαμε να διαβάσουμε χρησιμοποιούσαμε πάντα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α A1. Να γράψετε στο τετράδιό σας τους

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07

ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με Α.Μ. σε 3, 7, 8 & 9 22/11/07 Ακαδ έτος 2007-2008 ΠΛΗΡΟΦΟΡΙΚΗ Ι Φερεντίνος 22/11/07 ΠΛΗΡΟΦΟΡΙΚΗ Ι JAVA Τμήμα θεωρίας με ΑΜ σε 3, 7, 8 & 9 22/11/07 Παράδειγμα με if/else if και user input: import javautil*; public class Grades public

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 5 Δομές Ελέγχου Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Δομές Ελέγχου Οι Boehm και Jacopini απέδειξαν ότι οποιοσδήποτε αλγόριθμος

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Εκφώνηση Να δημιουργήσετε ένα πρόγραμμα το οποίο θα δέχεται δύο ακεραίους αριθμούς έστω α και β και θα υπολογίζει το α υψωμένο στην δύναμη του β (α β

Εκφώνηση Να δημιουργήσετε ένα πρόγραμμα το οποίο θα δέχεται δύο ακεραίους αριθμούς έστω α και β και θα υπολογίζει το α υψωμένο στην δύναμη του β (α β Εκφώνηση Να δημιουργήσετε ένα πρόγραμμα το οποίο θα δέχεται δύο ακεραίους αριθμούς έστω α και β και θα υπολογίζει το α υψωμένο στην δύναμη του β (α β ). Για παράδειγμα αν οι αριθμοί είναι το 2 και 4 το

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ii ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. Εντολές εκχώρησης (αντικατάστασης)....1 1.1 Εισαγωγή...4 1.1.1 Χρήση ΛΣ και IDE της Turbo Pascal....4 1.1.2 Αίνιγμα...6 1.2 Με REAL...7 1.2.1 Ερώτηση...9 1.2.2 Επίλυση δευτεροβάθμιας

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

Υπολογιστικά Συστήματα

Υπολογιστικά Συστήματα Υπολογιστικά Συστήματα Ενότητα 6: Ασκήσεις στη Visual Basic for Applications (VBA) Σαπρίκης Ευάγγελος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα