Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε"

Transcript

1 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 1 Άσκηση 1 η : Εισαγωγή στο Matlab Αντικείμενο Εξοικείωση με τις βασικές λειτουργίες του Matlab (πρόγραμμα αριθμητικής ανάλυσης και επεξεργασίας δεδομένων). Υπάρχουν πολλά διαφορετικά εργαλεία (toolboxes) που επεκτείνουν τις βασικές λειτουργίες του Matlab σε διάφορες περιοχές εφαρμογών. Στη σειρά των ασκήσεων που ακολουθεί χρησιμοποιείται εκτενώς το εργαλείο των συστημάτων ελέγχου control systems toolbox Διανύσματα (Vectors) Απαιτούμενες Θεωρητικές Γνώσεις Για τη δημιουργία ενός απλού διανύσματος, εισάγουμε όλα τα στοιχεία του διανύσματος (διαχωρίζοντάς τα με ένα κενό) ανάμεσα σε αγκύλες και το θέτουμε ίσο με μια μεταβλητή: a = [ ] Το Matlab επιστρέφει a = Για τη δημιουργία ενός διανύσματος με στοιχεία από το 0 μέχρι το 20 με βήμα το 2 (χρησιμοποιείται συνήθως για διανύσματα χρόνου) δίνουμε t = 0:2:20 t = Οι πράξεις με τα διανύσματα είναι το ίδιο εύκολες με τη δημιουργία τους. Αν υποθέσουμε ότι θέλουμε να προσθέσουμε το 2 σε όλα τα στοιχεία του διανύσματος a δίνουμε b = a + 2 b = Για να προσθέσουμε δύο διανύσματα ίδιου μήκους μεταξύ τους δίνουμε c = a + b

2 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 2 c = Η αφαίρεση γίνεται με τον ίδιο τρόπο Συναρτήσεις (Functions) Μ-Files Το Matlab διαθέτει πολλές τυποποιημένες συναρτήσεις. Κάθε συνάρτηση είναι ένας κώδικας που πραγματοποιεί συγκεκριμένη εργασία. Έτσι το Matlab περιέχει συναρτήσεις όπως οι sin, cos, log, exp, sqrt και πολλές άλλες. Επίσης, περιέχει και γνωστές σταθερές, όπως τα pi, i ή j για την τετραγωνική ρίζα του 1. Αν δώσουμε το Matlab επιστρέφει sin(pi/4) Το Matlab διαθέτει πολύ καλό on-line help (βοήθεια). Για να δούμε τη χρήση της κάθε συνάρτησης ή εντολής, πληκτρολογούμε help [function ή command name] στη γραμμή εντολών του Matlab. Το Matlab μας δίνει τη δυνατότητα να γράψουμε τις δικές μας συναρτήσεις με την εντολή function και τα m-files. Αυτό που πραγματικά γίνεται όταν δίνουμε μια εντολή στο Matlab, είναι η εκτέλεση ενός m-file το οποίο εκτελεί μια συγκεκριμένη εργασία. Τα m-files είναι όμοια με τις υπορουτίνες των γλωσσών προγραμματισμού και έχουν εισόδους (παράμετροι που εισάγονται στο m-file), εξόδους (παράμετροι που επιστρέφονται από το m-file) και ένα κύριο σώμα από εντολές που μπορεί να περιέχει τοπικές μεταβλητές. Το Matlab ονομάζει αυτά τα m-files functions. Στη νέα συνάρτηση δίνεται ένα όνομα αρχείου με κατάληξη «..m». Το αρχείο αυτό αποθηκεύεται στον ίδιο φάκελο που βρίσκεται και το Matlab ή σε ένα φάκελο που βρίσκεται στο path του Matlab. Μια συνάρτηση μπορεί να έχει πολλές μεταβλητές εισόδου και εξόδου. Η πρώτη γραμμή του αρχείου πρέπει να περιέχει τη σύνταξη αυτής της συνάρτησης ως function[output1,output2] = filename[input1,input2,input3] Οι επόμενες γραμμές περιέχουν, συνήθως, κείμενο που περιγράφει τον κώδικα του m-file ή οδηγίες που είναι χρήσιμες στο χρήστη για μελλοντική τροποποίηση του κώδικα. Οι βοηθητικές αυτές γραμμές ξεκινούν με % για να τις αγνοεί το Matlab. Τέλος, μετά το βοηθητικό κείμενο, ακολουθεί το κύριο μέρος του m-file που περιλαμβάνει όλες τις εντολές. Ακολουθεί ένα παράδειγμα για την add.m. function[var3] = add(var1,var2) %η add είναι μια συνάρτηση που προσθέτει δύο αριθμούς var3 = var1+var2; Σώζοντας αυτές τις γραμμές με το όνομα add.m στο φάκελο του Matlab, μπορούμε να το χρησιμοποιήσουμε δίνοντας y=add(3,8)

3 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 3 y = Διαγράμματα (Plots) Ας υποθέσουμε ότι θέλουμε να σχεδιάσουμε την κυματομορφή ενός ημιτόνου σε συνάρτηση με το χρόνο. Πρώτα δημιουργούμε ένα διάνυσμα χρόνου και μετά υπολογίζουμε την τιμή του ημιτόνου σε κάθε χρονική στιγμή. Το ερωτηματικό στο τέλος κάθε γραμμής δίνει στο Matlab την εντολή να μην δείχνει κάθε φορά τα αποτελέσματα. Έτσι t = 0:0.25:7; y = sin(t); plot (t,y) Η βασική σύνταξη της εντολής plot είναι plot(x,y) οπότε και σχεδιάζονται τα στοιχεία του διανύσματος x στον οριζόντιο άξονα και τα στοιχεία του διανύσματος y στον κατακόρυφο άξονα. Για να σχεδιάσουμε τον απλό τύπο y=3x δίνουμε x = 0:0.1:100; y = 3*x; plot (x,y) Είναι σημαντικό να τονιστεί ότι τα διανύσματα x και y πρέπει να είναι του ίδιου μήκους. Το χρώμα και το είδος της γραμμής στη γραφική παράσταση μπορούν να αλλάξουν προσθέτοντας μια τρίτη παράμετρο στην εντολή plot μέσα σε απλά εισαγωγικά. Για παράδειγμα, για να σχεδιαστεί η παραπάνω γραφική παράσταση με κόκκινο χρώμα και με κουκίδες δίνουμε x = 0:0.1:100; y = 3*x; plot (x,y, r: )

4 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 4 Η παράμετρος αυτή αποτελείται από έναν έως τρεις χαρακτήρες που υποδηλώνουν τα παρακάτω y yellow. point m magenta o circle c cyan x x-mark r red + plus g green - solid b blue * star w white : dotted k black -. dashdot -- dashed Μπορούμε να σχεδιάσουμε περισσότερα από ένα διαγράμματα στους ίδιους άξονες. Έστω ότι θέλουμε να σχεδιάσουμε ένα ημίτονο και ένα συνημίτονο στους ίδιους άξονες με διαφορετικό χρώμα και διαφορετικό τύπο γραμμής για το καθένα: x = linspace(0,2*pi,50); y = sin(x); z = cos(x); plot (x,y, r, x,z, gx ) Η linspace δημιουργεί 50 σημεία ανάμεσα στο 0 και το 2π. Προσθέτοντας και άλλες παραμέτρους μπορούμε να σχεδιάσουμε όσες διαφορετικές συναρτήσεις θέλουμε στο ίδιο σχεδιάγραμμα. Όταν σχεδιάζει κανείς πολλά διαγράμματα στους ίδιους άξονες είναι χρήσιμο να τα διαφοροποιεί με διαφορετικό χρώμα και τύπο γραμμής. Το ίδιο μπορεί να επιτευχθεί με τις εντολές hold on και hold off. Τα παραπάνω διαγράμματα μπορούν να παραχθούν και ως x = linspace(0,2*pi,50); y = sin(x); plot (x,y, r ); z = cos(x); hold on plot (x,z, gx ) hold off Χρησιμοποιώντας την εντολή hold on, όλα τα διαγράμματα από εκεί και στο εξής σχεδιάζονται πάνω στους ίδιους άξονες, χωρίς να σβήνεται το προηγούμενο διάγραμμα, μέχρι να χρησιμοποιηθεί η εντολή hold off. Περισσότερα από ένα διαγράμματα μπορούν να τοποθετηθούν στην ίδια εικόνα με την εντολή subplot. Αυτή η εντολή διαχωρίζει την εικόνα σε τόσα διαγράμματα όσα θέλουμε και τα τοποθετεί όλα στην ίδια εικόνα. Η εντολή χρησιμοποιείται ως subplot(m,n,p). Η εικόνα χωρίζεται σε m γραμμές και n στήλες δημιουργώντας m*n διαγράμματα σε μια εικόνα. Το p-στο διάγραμμα επιλέγεται ως το τρέχον ενεργό διάγραμμα. Ας υποθέσουμε ότι θέλουμε να σχεδιάσουμε ένα

5 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 5 ημίτονο, ένα συνημίτονο και μια εφαπτομένη σε μια εικόνα αλλά όχι στους ίδιους άξονες. Θα δώσουμε x = linspace(0,2*pi,50); y = sin(x); z = cos(x); w= tan(x); subplot (2,2,1) plot (x,y) subplot (2,2,2) plot (x,z) subplot (2,2,3) plot (x,w) Πρέπει να τονιστεί ότι κάθε διάγραμμα που δημιουργείται με την εντολή plot μετά την subplot τοποθετείται εκεί που χρησιμοποιήθηκε τελευταία φορά η subplot αντικαθιστώντας το διάγραμμα που βρισκόταν εκεί. Για να λυθεί αυτό το πρόβλημα, η εικόνα πρέπει να εκκαθαρίζεται (χρησιμοποιώντας την εντολή clf) ή να δημιουργείται νέα εικόνα (χρησιμοποιώντας την εντολή figure). Η εντολή axis αλλάζει τους άξονες του διαγράμματος ώστε να παρατηρούμε μόνο το τμήμα της γραφικής παράστασης που μας ενδιαφέρει και εισάγεται ως axis([xmin, xmax, ymin, ymax]). Ας υποθέσουμε ότι θέλουμε να δούμε το διάγραμμα της συνάρτησης y=e 5t -1. Θα δώσουμε στο Matlab t = 0:0.01:5; y = exp(5*t)-1; plot (t,y) Όπως φαίνεται η γραφική παράσταση πηγαίνει στο άπειρο. Παρατηρώντας τον άξονα y (κλίμακα: 8e10) είναι φανερό ότι δεν μπορούμε να αποκομίσουμε πολλά από αυτή τη γραφική παράσταση. Για να δούμε καλύτερα θα εστιάσουμε στο πρώτο μισό του διαγράμματος ως axis ([0, 1, 0, 50]) Αυτό το διάγραμμα είναι πολύ πιο χρήσιμο. Μπορεί να δει κανείς πιο καθαρά τι γίνεται καθώς η συνάρτηση πλησιάζει προς το άπειρο. Η εντολή axis μπορεί να χρησιμοποιηθεί και με την εντολή subplot αρκεί να εισάγεται πριν από αυτήν.

6 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 6 Πολύ χρήσιμη στα διαγράμματα είναι και η πρόσθεση κειμένου. Μπορεί κανείς να δώσει τίτλο σε ένα διάγραμμα (με την εντολή title), υπότιτλο στον άξονα x (με την εντολή xlabel), υπότιτλο στον άξονα y (με την εντολή ylabel) και να προσθέσει κείμενο. Όλες αυτές οι εντολές εισάγονται μετά την εντολή plot. Ο τίτλος τοποθετείται κεντραρισμένος πάνω από το διάγραμμα με την εντολή title( title string ). Ο υπότιτλος στον άξονα x τοποθετείται με την εντολή xlabel( x-axis string ). Ο υπότιτλος στον άξονα y τοποθετείται με την εντολή ylabel( y-axis string ). Το κείμενο μπορεί να τοποθετηθεί πάνω στο διάγραμμα με δύο τρόπους, την εντολή text και την εντολή gtext. Η πρώτη εντολή προϋποθέτει ότι ξέρει κανείς τις συντεταγμένες του σημείου που θέλει να τοποθετήσει το κείμενο. Η εντολή είναι τότε text(xcor,ycor, text string ). Για τη δεύτερη εντολή δε χρειάζεται να γνωρίζει κανείς τις συντεταγμένες. Η εντολή είναι τότε gtext( text string ) και απλά μετακινεί κανείς ένα σταυρό με το mouse στην επιθυμητή περιοχή και κάνει κλικ εκεί που θέλει να τοποθετηθεί το κείμενο. Έστω, ότι έχουμε δημιουργήσει ένα διάγραμμα βηματικής απόκρισης. Στο Matlab θα δώσουμε title ( step response of something ) xlabel ( time (sec) ) ylabel ( position, velocity, or something like that ) gtext ( unnecessary labeling ) Το κείμενο «unnecessary labeling» τοποθετήθηκε στη θέση που κάναμε κλικ. Το αποτέλεσμα είναι το παρακάτω. Άλλες εντολές που χρησιμοποιούνται με την εντολή plot είναι: clf (εκκαθαρίζει το τρέχον διάγραμμα) figure (ανοίγει νέα εικόνα) close (κλείνει την τρέχουσα εικόνα) loglog (ότι και η plot αλλά οι δύο άξονες είναι λογαριθμικοί με βάση το 10) semilogx (ότι και η plot αλλά ο άξονας x είναι λογαριθμικός με βάση το 10) semilogy (ότι και η plot αλλά ο άξονας y είναι λογαριθμικός με βάση το 10 grid (προσθέτει πλέγμα στο διάγραμμα) 1.4. Πολυώνυμα (Polynomials) Στο Matlab ένα πολυώνυμο αναπαριστάνεται με ένα διάνυσμα. Για να το δημιουργήσει κανείς απλά εισάγει κάθε συντελεστή του πολυωνύμου με αύξουσα σειρά. Ας υποθέσουμε ότι θέλουμε να εισάγουμε το πολυώνυμο s 4 +3s 3-15s 2-2s+9: Το Matlab επιστρέφει x = [ ]

7 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 7 x = Το Matlab μπορεί να μεταχειριστεί κάθε διάνυσμα μήκους n+1 ως ένα πολυώνυμο n-οστής τάξης. Αν από το πολυώνυμο λείπουν κάποιοι συντελεστές, πρέπει κανείς να εισάγει μηδενικά στην κατάλληλη θέση στο διάνυσμα. Για παράδειγμα το πολυώνυμο s 4 +1 αναπαρίσταται στο Matlab ως y = [ ] Η τιμή ενός πολυωνύμου μπορεί να βρεθεί με τη συνάρτηση polyval. Για παράδειγμα, για να βρεθεί η τιμή του παραπάνω πολυωνύμου για s=2 θέτουμε z = polyval([ ],2) z = 17 Πολύ εύκολα υπολογίζονται και οι ρίζες ενός πολυωνύμου. Αυτό είναι χρήσιμο κυρίως για τα πολυώνυμα μεγάλου βαθμού όπως το s 4 +3s 3-15s 2-2s+9: roots([ ]) Ας θεωρήσουμε ότι θέλουμε να πολλαπλασιάσουμε δύο πολυώνυμα μεταξύ τους. Το γινόμενο βρίσκεται παίρνοντας τη συνέλιξη (convolution) των συντελεστών τους. Αυτό το κάνει η εντολή conv. Για παράδειγμα x = [1 2]; y = [1 4 8]; z = conv(x,y) z = Το ίδιο εύκολη είναι και η διαίρεση δύο πολυωνύμων. Η συνάρτηση deconv επιστρέφει το υπόλοιπο και το πηλίκο. Ας διαιρέσουμε το z με το y για να δούμε αν θα πάρουμε το x. [xx, R] = deconv(z,y) xx = 1 2 R =

8 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 8 Αν η διαίρεση δεν ήταν τελεία το υπόλοιπο θα ήταν κάτι διαφορετικό από μηδέν. Για την πρόσθεση δύο πολυωνύμων του ίδιου βαθμού χρησιμοποιούμε απλά z=x+y (τα διανύσματα x και y πρέπει να είναι του ίδιου βαθμού). Για την πρόσθεση πολυωνύμων ανόμοιου βαθμού πρέπει κανείς να δημιουργήσει την κατάλληλη συνάρτηση με m-file. Εδώ χρησιμοποιούμε τη συνάρτηση polyadd ως z = polyadd(x,y) x = 1 2 y = z = Πίνακες (Matrices) Η εισαγωγή πινάκων στο Matlab είναι το ίδιο με την εισαγωγή διανυσμάτων, με τη διαφορά ότι κάθε γραμμή στοιχείων διαχωρίζεται με ένα ερωτηματικό (;) ή enter, δηλαδή Β = [ ; ; ] Β = ή Β = [ ] πάλι Β = Η διαχείριση των πινάκων στο Matlab γίνεται με πολλούς τρόπους. Μπορεί να κανείς να βρει τον transpose πίνακα με το σήμα της αποστρόφου όπως C = B C =

9 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 9 Να σημειωθεί ότι αν ο C ήταν μιγαδικός, η απόστροφος θα έδινε το συζυγή μιγαδικό transpose. Για να πάρουμε τον transpose δίνουμε τελεία και απόστροφο (. ) (οι δύο εντολές είναι ίδιες αν ο πίνακας είναι μη μιγαδικός). Δύο πίνακες μπορούν να πολλαπλασιαστούν μεταξύ τους. Να υπενθυμιστεί ότι η τάξη παίζει ρόλο στον πολλαπλασιασμό πινάκων. ενώ D = B * C D = D = C * B D = Άλλος τρόπος διαχείρισης πινάκων είναι ο πολλαπλασιασμός των αντίστοιχων στοιχείων δύο πινάκων χρησιμοποιώντας τον τελεστή.* (οι πίνακες πρέπει να είναι του ίδιου μεγέθους για να γίνει αυτό): Ε = [1 2;3 4] F = [2 3;4 5] G = Ε.* F Ε = F = G = Για τετραγωνικό πίνακα, όπως ο Ε, μπορεί να γίνει πολλαπλασιασμός με τον εαυτό του όσες φορές θέλουμε υψώνοντάς τον στην αντίστοιχη δύναμη: Ε^

10 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 10 Αν θέλαμε να υψώσουμε στην τρίτη δύναμη κάθε στοιχείο του πίνακα, μπορεί να γίνει υψώνοντας το κάθε ένα χωριστά ως Ε.^ Για να βρούμε τον αντίστροφο ενός πίνακα X = inv(e) X = ή για τον υπολογισμό των ιδιοτιμών του eig(ε) Υπάρχει και συνάρτηση για την εύρεση των συντελεστών του χαρακτηριστικού πολυωνύμου ενός πίνακα. Η συνάρτηση poly δημιουργεί ένα διάνυσμα που περιλαμβάνει τους συντελεστές του χαρακτηριστικού πολυωνύμου. p = poly(e) p = Να υπενθυμίσουμε εδώ ότι οι ιδιοτιμές ενός πίνακα είναι οι ίδιες με τις ρίζες του χαρακτηριστικού πολυωνύμου: roots(p) Χρήσιμες Συμβουλές - Εκτύπωση Μπορούμε να δούμε τις τιμές μιας συγκεκριμένης μεταβλητής ανά πάσα χρονική στιγμή πληκτρολογώντας απλά το όνομά της. Επίσης, παραπάνω από μια εντολές μπορούν να γραφούν στην ίδια γραμμή αρκεί να διαχωρίζονται με ερωτηματικό ή κόμμα. Όσο δεν δίνουμε όνομα σε μια μεταβλητή το Matlab την αποθηκεύει με το όνομα «ans». Για να εκτυπώσουμε ένα διάγραμμα ή ένα m-file απλά επιλέγουμε print από το file menu του παραθύρου του διαγράμματος ή του m-file.

11 Εργαστήριο Συστημάτων Αυτομάτου Ελέγχου Άσκηση 1 η Εισαγωγή στο Matlab 11 Διαδικασία 1.1. Δημιουργήστε ένα διάνυσμα a με στοιχεία τους αριθμούς 2,4,6,8,10,12 και ένα διάνυσμα t με στοιχεία από το 0 μέχρι το 15 με βήμα το Στη συνέχεια κάνετε τις πράξεις b=a+3, c=a+b, d=a-2 και e=a-d Υπολογίστε το ημίτονο, συνημίτονο και εφαπτομένη των 45 ο. Στη συνέχεια κάνετε τις πράξεις log10, ln10, e 10 και 10. Όπου απαιτείται χρησιμοποιείστε το help για να βρείτε τις κατάλληλες συναρτήσεις Δημιουργήστε ένα m-file που να υπολογίζει τον μέσο όρο των βαθμών που παίρνει ένας μαθητής. Οι είσοδοι πρέπει να είναι οι βαθμοί και ο αριθμός των μαθημάτων Για τις τιμές του διανύσματος t της διαδικασίας 1.1 σχεδιάστε το ημίτονο, το συνημίτονο και την εφαπτομένη πάνω στους ίδιους άξονες με διαφορετικά χρώματα και διαφορετικού τύπου σημεία Για 10<x<10 να σχεδιαστεί η συνάρτηση y=5χ+3 με βήμα Χρησιμοποιείστε πράσινο χρώμα και αστεράκια Τα τέσσερα διαγράμματα των διαδικασιών 1.4 και 1.5 να σχεδιαστούν ξανά, όχι πάνω στους ίδιους άξονες, αλλά στην ίδια εικόνα αφού πρώτα χωριστεί σε τέσσερα μικρότερα υποδιαγράμματα Να σχεδιαστεί η συνάρτηση y=5t-e 2t. Εστιάστε στο σημείο καμπής της γραφικής παράστασης με την βοήθεια της εντολής axis. Στη συνέχεια προσθέστε τίτλο στο διάγραμμα και υπότιτλους στους άξονες x και y Υπολογίστε την τιμή του πολυωνύμου s 5 +3s 4-2s 2 +1 για s=3. Στη συνέχεια βρείτε τις ρίζες του πολυωνύμου Έστω τα πολυώνυμα s 5 +3s 4-2s 2 +1 και 3s 3 +2s 2 -s+2. Να υπολογιστεί το γινόμενο, το πηλίκο τους και το άθροισμά τους (με απλή πρόσθεση πολυωνύμων) Προσπαθήστε να δημιουργήστε το m-file για τη συνάρτηση polyadd Εισαγάγετε έναν πίνακα 5x5 με όποια στοιχεία θέλετε και ονομάστε τον Β. Υπολογίστε τον ανάστροφό του C. Κάνετε τους πολλαπλασιασμούς BC και CB Δημιουργήστε δύο πίνακες E και F 3x3 με όποια στοιχεία θέλετε. Υπολογίστε τον πίνακα G που προκύπτει από τον πολλαπλασιασμό των αντίστοιχων στοιχείων των δύο πινάκων. Υψώστε τον πίνακα Ε στο τετράγωνο και στη συνέχεια υπολογίστε τον πίνακα που προκύπτει υψώνοντας κάθε στοιχείο του Ε στο τετράγωνο. Βρείτε τον αντίστροφο του Ε καθώς και τις ιδιοτιμές του. Ποιο είναι το χαρακτηριστικό πολυώνυμο του Ε;

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Τυπικές χρήσεις της Matlab

Τυπικές χρήσεις της Matlab Matlab Μάθημα 1 Τι είναι η Matlab Ολοκληρωμένο Περιβάλλον Περιβάλλον ανάπτυξης Διερμηνευμένη γλώσσα Υψηλή επίδοση Ευρύτητα εφαρμογών Ευκολία διατύπωσης Cross platform (Wintel, Unix, Mac) Τυπικές χρήσεις

Διαβάστε περισσότερα

2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 2 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΜΑΘΑΙΝΟΝΤΑΣ ΤΟ MATLAB, ΜΕΡΟΣ B Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Η ονομασία τους είναι δεσμευμένη. Παραδείγματος χάριν: sin(x) cos(x) tan(x) exp(x)

Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Η ονομασία τους είναι δεσμευμένη. Παραδείγματος χάριν: sin(x) cos(x) tan(x) exp(x) Εσωτερικές (built-in) συναρτήσεις του Matlab Γενικός τρόπος σύνταξης: Όνομα_συνάρτησης(όρισμα1,όρισμα2,,όρισμαΝ) Επιτελούν διάφορες προκαθορισμένες λειτουργίες Η ονομασία τους είναι δεσμευμένη Παραδείγματος

Διαβάστε περισσότερα

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου

ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ. Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου ΑΕΝ / ΑΣΠΡΟΠΥΡΓΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΑΥΤΟΜΑΤΙΣΜΟΥ Σημειώσεις για τη χρήση του MATLAB στα Συστήματα Αυτομάτου Ελέγχου Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Κ. ΝΑΣΟΠΟΥΛΟΣ - Α. ΧΡΗΣΤΙ ΟΥ Οκτώβριος 011 MATLAB

Διαβάστε περισσότερα

Εισαγωγή στη Matlab Βασικές Συναρτήσεις

Εισαγωγή στη Matlab Βασικές Συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας Εισαγωγή στη Matlab Βασικές Συναρτήσεις 2016-2017 Εισαγωγή στη Matlab Matlab

Διαβάστε περισσότερα

Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής

Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής Εισαγωγή στη Matlab Εισαγωγή στην Αριθμητική Ανάλυση Διδάσκων: Γεώργιος Ακρίβης Βοηθός: Δημήτριος Ζαβαντής email: dzavanti@cs.uoi.gr Περιεχόμενα Τι είναι η Matlab; Ιστορικά Χρήσεις και στοιχεία της Matlab

Διαβάστε περισσότερα

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του.

Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. MATrix LABoratory Ηβασική δοµή δεδοµένων είναι ο πίνακας που δεν χρειάζεται να οριστεί η διάσταση του. Τι είναι το MATLAB ; Μια γλώσσα υψηλού επιπέδου η οποία είναι χρήσιµη για τεχνικούς υπολογισµούς.

Διαβάστε περισσότερα

Έναρξη Τερματισμός του MatLab

Έναρξη Τερματισμός του MatLab Σύντομος Οδηγός MATLAB Β. Χ. Μούσας 1/6 Έναρξη Τερματισμός του MatLab Η έναρξη της λειτουργίας του MatLab εξαρτάται από το λειτουργικό σύστημα. Στα συστήματα UNIX πληκτρολογούμε στη προτροπή του συστήματος

Διαβάστε περισσότερα

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι

3) το παράθυρο Πίνακας τιμών όπου εμφανίζονται οι τιμές που παίρνουν οι παράμετροι Ο Δ Η Γ Ι Ε Σ Γ Ι Α Τ Ο M O D E L L U S 0.0 4. 0 5 Για να κατεβάσουμε το πρόγραμμα Επιλέγουμε Download στη διεύθυνση: http://modellus.co/index.php/en/download. Στη συνέχεια εκτελούμε το ModellusX_windows_0_4_05.exe

Διαβάστε περισσότερα

Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών.

Μαρία Λουκά. Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή. Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Μαρία Λουκά Εργαστήριο Matlab Πολυώνυμα - Παρεμβολή Τμήμα Πληροφορικής και Τηλεπικοινωνιών. Στη MATLAB τα πολυώνυμα αναπαριστώνται από πίνακες που περιέχουν τους συντελεστές τους σε φθίνουσα διάταξη. Για

Διαβάστε περισσότερα

Εισαγωγή στο Πρόγραμμα Maxima

Εισαγωγή στο Πρόγραμμα Maxima Εισαγωγή στο Πρόγραμμα Maxima Το Maxima είναι ένα πρόγραμμα για την εκτέλεση μαθηματικών υπολογισμών, συμβολικών μαθηματικών χειρισμών, αριθμητικών υπολογισμών και γραφικών παραστάσεων. Το Maxima λειτουργεί

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13

1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ 1. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB... 13 1.1. Τι είναι το Matlab... 13 1.2. Περιβάλλον εργασίας... 14 1.3. Δουλεύοντας με το Matlab... 16 1.3.1. Απλές αριθμητικές πράξεις... 16 1.3.2. Σχόλια...

Διαβάστε περισσότερα

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος

Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink. Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος Εισαγωγή στο Περιβάλλον Επιστημονικού Προγραμματισμού MATLAB-Simulink Δημήτριος Τζεράνης Λεωνίδας Αλεξόπουλος 1 Τι είναι τα Matlab και Simulink? Το Matlab (MATrix LABoratory) είναι ένα περιβάλλον επιστημονικού

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι κ. ΠΕΤΑΛΙΔΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται

Διαβάστε περισσότερα

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45

Περιεχόμενα. 26 Γραφικά δύο διαστάσεων... 11. 27 Γραφικά τριών διαστάσεων... 45 Περιεχόμενα 26 Γραφικά δύο διαστάσεων... 11 26.1 Η συνάρτηση plot...11 26.2 Στυλ γραμμών, σημειωτές, και χρώματα...14 26.3 Κάνναβοι διαγραμμάτων, πλαίσιο αξόνων, και ετικέτες...16 26.4 Προσαρμογή αξόνων

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 8: Γραφικές παραστάσεις Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού

Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΟ ΚΕΝΤΡΟ Προγραμματισμός και Χρήση Ηλεκτρονικών Υπολογιστών - Βασικά Εργαλεία Λογισμικού Μάθημα 5ο Aντώνης Σπυρόπουλος Πράξεις μεταξύ των

Διαβάστε περισσότερα

5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB

5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 5 η ΕΝΟΤΗΤΑ Γραφήματα στο MATLAB Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες Χρήσης Creative

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας

Διαβάστε περισσότερα

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75

1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 1. Κατασκευάστε ένα διάνυσμα με στοιχεία τους ζυγούς αριθμούς μεταξύ του 31 και 75 2. Έστω x = [2 5 1 6] α. Προσθέστε το 16 σε κάθε στοιχείο β. Προσθέστε το 3 σε κάθε στοιχείο που βρίσκεται σε μονή θέση.

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 5 ο : MATLAB

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Ηλεκτρονική Υγεία. Εργαστήριο 5 ο : MATLAB Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Ηλεκτρονική Υγεία Εργαστήριο 5 ο : MATLAB Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Βασικά στοιχεία στο Matlab

Βασικά στοιχεία στο Matlab Αριθμητική : + - * / ^ 3ˆ2 - (5 + 4)/2 + 6*3 >> 3^2 - (5 + 4)/2 + 6*3 22.5000 Βασικά στοιχεία στο Matlab Το Matlab τυπώνει την απάντηση και την καταχωρεί σε μια μεταβλητή που την ονομάζει ans. Αν θέλουμε

Διαβάστε περισσότερα

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB

Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Αυτοματισμού. Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου. Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Σχολή Τεχνολογικών Εφαρμογών Τμήμα Αυτοματισμού Σημειώσεις Εργαστηρίου Ψηφιακού Ελέγχου Σχεδίαση Συστημάτων Ελέγχου με χρήση MATLAB Επιμέλεια: Ξανθή Παπαγεωργίου E-mail: xanthi.papageorgiou@gmail.com Τμήματα:

Διαβάστε περισσότερα

M files RCL Κυκλώματα

M files RCL Κυκλώματα M files RCL Κυκλώματα Στο MATLAB γράφουμε τις δικές μας εντολές και προγράμματα μέσω αρχείων που καλούνται m-files. Έχουν το επίθεμα.m π.χ compute.m Υπάρχουν δύο είδη m-files: τα αρχεία script (script

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών

ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ. Ακέραιοι αριθμοί (int) Πράξεις μεταξύ ακεραίων αριθμών ΥΠΟΛΟΓΙΣΤΕΣ ΙΙ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΠΡΑΞΕΙΣ ΜΕΤΑΒΛΗΤΕΣ 1 Τύποι δεδομένων Η γλώσσα προγραμματισμού C++ υποστηρίζει τους παρακάτω τύπους δεδομένων: 1) Ακέραιοι αριθμοί (int). 2) Πραγματικοί αριθμοί διπλής ακρίβειας

Διαβάστε περισσότερα

Εισαγωγή στο GNU Octave/MATLAB

Εισαγωγή στο GNU Octave/MATLAB Εισαγωγή στο GNU Octave/MATLAB Δρ. Βασίλειος Δαλάκας Καλώς ήρθατε στο εργαστήριο Σημάτων και Συστημάτων με το λογισμικό Octave (Οκτάβα). Οι σημειώσεις αυτές έχουν βασιστεί στις σημειώσεις του εργαστηρίου

Διαβάστε περισσότερα

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 3 ο ΕΡΓΑΣΤΗΡΙΟ ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα: ΔΟΥΛΕΥΟΝΤΑΣ ΜΕ ΣΗΜΑΤΑ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4. Εισαγωγή στο Matlab

4. Εισαγωγή στο Matlab ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 4. Εισαγωγή στο Matlab Εαρινό εξάμηνο 2006 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www. www.eng. eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στο Matlab

Διαβάστε περισσότερα

Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού

Εργαστήριο Γραμμικής Άλγεβρας. H Matlab ως γλώσσα προγραμματισμού Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής με Εφαρμογές στη Βιοϊατρική Εργαστήριο Γραμμικής Άλγεβρας H Matlab ως γλώσσα προγραμματισμού Προγραμματιστικές δομές Έλεγχος ροής if if

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #6: Προγραμματισμός στο MATLAB Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προγραμματισμός στο MATLAB Εντολή ελέγχου ροής if Γενική μορφή σύνταξης:

Διαβάστε περισσότερα

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB

Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB Ο ΗΓΙΕΣ ΧΡΗΣΗΣ ΤΟΥ MATLAB (το παρόν αποτελεί τροποποιηµένη έκδοση του οµόνυµου εγχειριδίου του κ. Ν. Μαργαρη) 1 ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ 1.1.1 ΠΡΟΣΘΕΣΗ» 3+5 8 % Το σύµβολο

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 7: Πολυώνυμα Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Βασικά στοιχεία του MATLAB

Βασικά στοιχεία του MATLAB ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΕΡΓΑΣΤΗΡΙΟ Εξοικείωση µε το περιβάλλον του MATLAB και χρήση βασικών εντολών και τεχνικών δηµιουργίας προγραµµάτων, συναρτήσεων

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Τύποι δεδομένων. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Τύποι δεδομένων Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Μαρία Λουκά. Εργαστήριο Matlab Γραφικές Παραστάσεις. Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Μαρία Λουκά. Εργαστήριο Matlab Γραφικές Παραστάσεις. Τμήμα Πληροφορικής και Τηλεπικοινωνιών Μαρία Λουκά Εργαστήριο Matlab Γραφικές Παραστάσεις Τμήμα Πληροφορικής και Τηλεπικοινωνιών 2-d Γραφικές Παραστάσεις Γραφικές Παραστάσεις 2 Διαστάσεων Εντολή plot Οι γραφικές παραστάσεις 2 διαστάσεων ( στο

Διαβάστε περισσότερα

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες).

Νέο υλικό. www.cs.uoi.gr/~develeg. Matlab2.pdf - Παρουσίαση μαθήματος 2. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (13 σελίδες). Matlab Μάθημα Νέο υλικό www.cs.uoi.gr/~develeg Matlab.pdf - Παρουσίαση μαθήματος. Matlab-reference.pdf Σημειώσεις matlab στα ελληνικά (3 σελίδες). Επαναληπτικές δομές Όταν εκτελείται μια πράξη σε ένα διάνυσμα,

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

ΥΠΟΛΟΓΙΣΤΕΣ ΙI. Άδειες Χρήσης. Τύποι δεδομένων, μεταβλητές, πράξεις. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης ΥΠΟΛΟΓΙΣΤΕΣ ΙI Τύποι δεδομένων, μεταβλητές, πράξεις Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

1. Εισαγωγή στο Sage.

1. Εισαγωγή στο Sage. 1. Εισαγωγή στο Sage. 1.1 Το μαθηματικό λογισμικό Sage Το Sage (System for Algebra and Geometry Experimentation) είναι ένα ελεύθερο (δωρεάν) λογισμικό μαθηματικών ανοιχτού κώδικα που υποστηρίζει αριθμητικούς

Διαβάστε περισσότερα

Γνωριμία με το MATLAB

Γνωριμία με το MATLAB Γνωριμία με το MATLAB Εισαγωγή Πινάκων u = [8 5-9] Εισάγει ένα διάνυσμα-γραμμή. s = [2;-5; 7] Εισάγει ένα διάνυσμα-στήλη. Α = [5-2 5; -2 7-8; 2 6 4] Εισάγει πίνακα 3x3. Βασικές Συναρτήσεις sa = abs(s)

Διαβάστε περισσότερα

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14

ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14 ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ιάλεξη 14 20 Οκτωβρίου, 2005 Ηλίας Κυριακίδης Λέκτορας ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ 2005Ηλίας Κυριακίδης,

Διαβάστε περισσότερα

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων

Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής Επεξεργασίας Σημάτων Πρόγραμμα Μεταπτυχιακών Σπουδών: «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» Μάθημα: «Επεξεργασία Ψηφιακού Σήματος και Σχεδιασμός Υλικού» Σύντομη Αναφορά σε Βασικές Έννοιες Ψηφιακής

Διαβάστε περισσότερα

Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση

Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Επιστηµονικός Υπολογισµός Ι - Πρώτη εργαστηριακή άσκηση Ηµεροµηνία επιστροφής : Τετάρτη 4/11/2010 18 Οκτωβρίου 2010 1 Γραµµική άλγεβρα (20 µονάδες) Η παράγωγος ενός µητρώου H ορίζεται ως η παράγωγος κάθε

Διαβάστε περισσότερα

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες

Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες Γ. Ν. Π Α Π Α Δ Α Κ Η Σ Μ Α Θ Η Μ Α Τ Ι Κ Ο Σ ( M S C ) ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΠΡΟΓΡΑΜΜΑ: Σπουδές στις Φυσικές Επιστήμες ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΦΥΕ10 (Γενικά Μαθηματικά Ι) ΠΕΡΙΕΧΕΙ ΤΙΣ

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 8 Επεξεργασία Σήματος με την Ανάλυση Fourier. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος στο LabVIEW. Εμπρόσθιο Πλαίσιο (front

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ. Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6

Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ. Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6 Εισαγωγή στην Επιστήμη των Η/Υ ΙΙ Παλινδρόμηση Δημιουργία Video Συναρτήσεις GUI Μάθημα 6 Σημειώσεις 1. Φορτώνουμε το αρχείο στη Matlab με την εντολή load και αποθηκεύουμε τα αποτελέσματα στην μεταβλητή

Διαβάστε περισσότερα

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1

Τετραγωνικά μοντέλα. Τετραγωνικό μοντέλο συνάρτησης. Παράδειγμα τετραγωνικού μοντέλου #1. Παράδειγμα τετραγωνικού μοντέλου #1 Τετραγωνικό μοντέλο συνάρτησης Τετραγωνικά μοντέλα Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo Για συνάρτηση μιας

Διαβάστε περισσότερα

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ

ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΟΥ ΧΡΟΝΟΥ ΚΑΙ ΤΩΝ ΣΥΧΝΟΤΗΤΩΝ ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σημαντική πληροφορία για τη συμπεριφορά και την ευστάθεια ενός γραμμικού συστήματος, παίρνεται, μελετώντας την απόκρισή του

Διαβάστε περισσότερα

Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI)

Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI) Γραφικά περιβάλλοντα από τον χρήστη Graphical User Interfaces (GUI) Θα γράψουμε το πρώτο μας GUI το οποίο : 1. Θα σχεδιάζει μια συνάρτηση 2. Θα παρέχει κουμπιά για να αλλάζουμε το χρώμα του γραφήματος

Διαβάστε περισσότερα

Συναρτήσεις στη Visual Basic 6.0

Συναρτήσεις στη Visual Basic 6.0 Προγραμματισμός & Εφαρμογές Υπολογιστών Μάθημα 4ο Συναρτήσεις στη Visual Basic 6.0 Κ. Κωστοπούλου Σειρά εκτέλεσης των πράξεων Όταν ορίζετε μια ακολουθία αριθμητικών πράξεων είναι δυνατόν να προκύψει αμφισημία.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΣΤΟ MATHLAB Α ΜΕΡΟΣ ΕΙΣΑΓΩΓΗ ΠΙΝΑΚΩΝ ΣΤΟ MATHLAB Αν θέλουμε να εισάγουμε έναν πίνακα στο mathlab και να προβληθεί στην οθόνη βάζουμε τις τιμές του σε άγκιστρα χωρίζοντάς τις με κόμματα ή κενό

Διαβάστε περισσότερα

Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων

Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σημαντικές δυνατότητες των σύγχρονων υπολογιστικών μηχανών: Γρήγορες προσθέσεις αριθμών Γρήγορες συγκρίσεις αριθμών Αξιόπιστη καταγραφή πολύ μεγάλου όγκου δεδομένων Σχετικά γρήγορη μετάδοση και πρόσληψη

Διαβάστε περισσότερα

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος.

Σημειώσεις Matlab. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος. ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Μάθημα: Αριθμητική Ανάλυση Διδάσκων: Καθηγητής Θ.Η. Σίμος Σημειώσεις Matlab Γενικά a = 2 Εκχώρηση της τιμής 2 στη μεταβλητή a. b = 3; Εκχώρηση της τιμής

Διαβάστε περισσότερα

Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανολογίας. Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ. Μηχανικός Πληροφορικής, MSc

Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανολογίας. Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ. Μηχανικός Πληροφορικής, MSc Α.Τ.Ε.Ι Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Εισαγωγή στο MATLAB ΙΩΑΝΝΗΣ ΜΟΥΣΤΑΚΑΣ Μηχανικός Πληροφορικής, MSc Σέρρες, Φεβρουάριος 2011 Περιεχόμενα 1. Γενικά... 2 1.1. Τι είναι το MATLAB;...

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.)

ΣΥΝΑΡΤΗΣΕΙΣ. Η σύνταξη μιας συνάρτησης σ ένα κελί έχει την γενική μορφή: =όνομα_συνάρτησης(όρισμα1; όρισμα2;.) ΣΥΝΑΡΤΗΣΕΙΣ Συνάρτηση είναι ένας έτοιμος τύπος ο οποίος δέχεται σαν είσοδο τιμές ή συνθήκες και επιστρέφει ένα αποτέλεσμα, το οποίο μπορεί να είναι μια τιμή αριθμητική, αλφαριθμητική, λογική, ημερομηνίας

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων

Διαβάστε περισσότερα

Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο

Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο ΠΟΛΥΩΝΥΜΑ. Γενικά περί πολυωνύμων Στη MATLAB τα πολυώνυμα αναπαριστώνται από διανύσματα που περιέχουν τους συντελεστές τους σε κατιούσα διάταξη. Για παράδειγμα το πολυώνυμο αναπαριστάται από το διάνυσμα

Διαβάστε περισσότερα

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε

Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε Κανόνες των προσήμων Στην πρόσθεση Όταν οι αριθμοί είναι ομόσημοι Βάζουμε το κοινό πρόσημο και προσθέτουμε (+) και (+) κάνει (+) + + 3 = +5 (-) και (-) κάνει (-) - - 3 = -5 Όταν οι αριθμοί είναι ετερόσημοι

Διαβάστε περισσότερα

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών

Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Συλλογή & Επεξεργασία Δεδομένων Εργαστήριο 9 Ανάλυση Fourier: Από τη Θεωρία στην Πρακτική Εφαρμογή των Μαθηματικών Τύπων. Σύστημα Συλλογής & Επεξεργασίας Μετρήσεων Σκοπός Βασική δομή ενός προγράμματος

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 1: Εισαγωγή στο Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB. Κολοβού Αθανασία Ε.Τ.Ε.Π.

ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB. Κολοβού Αθανασία Ε.Τ.Ε.Π. ΕΙΣΑΓΩΓΗ ΣΤΟ MATLAB Κολοβού Αθανασία Ε.Τ.Ε.Π. http://users.uoa.gr/~akolovou/ MATRIX LABORATORY Μαθηματικό λογισμικό πακέτο Everything is a matrix Εύκολο να ορίσουμε τους πίνακες >> A = [6 3; 5 0] A = 6

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3 ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΔΗΜΙΟΥΡΓΙΑ ΔΙΑΝΥΣΜΑΤΩΝ Χ (ΤΕΤΜΗΜΕΝΩΝ) ΚΑΙ Υ (ΤΕΤΑΓΜΕΝΩΝ) ΤΩΝ ΣΗΜΕΙΩΝ

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σήματος

Ψηφιακή Επεξεργασία Σήματος Ψηφιακή Επεξεργασία Σήματος Εργαστήριο 3 Εισαγωγή στα Σήματα Αλέξανδρος Μανουσάκης Τι είναι σήμα; Ως σήμα ορίζουμε το σύνολο των τιμών που λαμβάνει μια ποσότητα (εξαρτημένη μεταβλητή) όταν αυτή μεταβάλλεται

Διαβάστε περισσότερα

Παρουσίαση του Mathematica

Παρουσίαση του Mathematica Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός

Διαβάστε περισσότερα

Αλληλεπίδραση με το Matlab

Αλληλεπίδραση με το Matlab Αλληλεπίδραση με το Matlab Περιγραφή της διαδικασίας πως εργαζόμαστε με το Matlab, και της προετοιμασίας και παρουσίασης των αποτελεσμάτων μιας εργασίας με το Matlab. Ειδικότερα θα συζητήσουμε μερικά στοιχεία

Διαβάστε περισσότερα

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL

Σκοπός. Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Αλγεβρικοί και Λογικοί Υπολογισμοί στη PASCAL Δυνατότητα ανάπτυξης, μεταγλώττισης και εκτέλεσης προγραμμάτων στη PASCAL. Κατανόηση της σύνταξης των προτάσεων της PASCAL. Κατανόηση της εντολής εξόδου για

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος

ΕΡΓΑΣΤΗΡΙΟ ΙV. ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΤΜΗΜΑ ΙΕΘΝΟΥΣ ΕΜΠΟΡΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΟΙΚΟΝΟΜΙΚΗΣ ΑΝΑΛΥΣΗΣ Ι Μονοβασίλης Θεόδωρος ΕΡΓΑΣΤΗΡΙΟ ΙV Συναρτήσεις στο Mathematica Στο Mathematica υπάρχουν ορισμένες πολλές βασικές συναρτήσεις όπως ημίτονο, συνημίτονο,

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών. Εγχειρίδιο. 2.3.08.6 Εισαγωγή στη Θεωρία και Τεχνολογία του Αυτομάτου Ελέγχου

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών. Εγχειρίδιο. 2.3.08.6 Εισαγωγή στη Θεωρία και Τεχνολογία του Αυτομάτου Ελέγχου Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανολόγων Μηχανικών Εγχειρίδιο MATLAB SIMULINK 2.3.08.6 Εισαγωγή στη Θεωρία και Τεχνολογία του Αυτομάτου Ελέγχου Καθηγητής Ευάγγελος Παπαδόπουλος Εαρινό εξάμηνο 2012

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασίας Σήματος σε Πραγματικό Χρόνο 2009 10 ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΤΗΛΕΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Συστήματα Ψηφιακής Επεξεργασία Σήματος σε Πραγματικό

Διαβάστε περισσότερα

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών

ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών Προγραµµατισµός Αρχεία εντολών (script files) Τυπικό hello world πρόγραµµα σε script ηµιουργία αρχείου στον matlab editor Πληκτρολόγηση ακολουθίας εντολών disp( ( 'HELLO WORLD!'); % τυπική εντολή εξόδου

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ

Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε

Διαβάστε περισσότερα

ΛΧ1004 Μαθηματικά για Οικονομολόγους

ΛΧ1004 Μαθηματικά για Οικονομολόγους ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ 1 Συναρτήσεις Όταν αναφερόμαστε σε μια συνάρτηση, ουσιαστικά αναφερόμαστε σε μια σχέση ή εξάρτηση. Στα μαθηματικά που θα μας απασχολήσουν, με απλά λόγια, η σχέση

Διαβάστε περισσότερα

Μαθηµατικοί Υπολογισµοί στην R

Μαθηµατικοί Υπολογισµοί στην R Κεφάλαιο 3 Μαθηµατικοί Υπολογισµοί στην R Ενα µεγάλο µέρος της ανάλυσης δεδοµένων απαιτεί διάφορους µαθηµατικούς υπολογισµούς. Αυτό το κεφάλαιο εισαγάγει τον αναγνώστη στις διάφορες δυνατότητες που έχει

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

Ηλεκτρονικοί Υπολογιστές

Ηλεκτρονικοί Υπολογιστές ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Εντολές Αντικατάστασης, Συναρτήσεις και Σχόλια στη C++ Ζαχαρούλα Ανδρεοπούλου Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες

Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου

Συστήματα Αυτομάτου Ελέγχου ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Καθ. Εφαρμογών: Σ. Βασιλειάδου Εργαστήριο Συστήματα Αυτομάτου Ελέγχου για Ηλεκτρολόγους Μηχανικούς Εργαστηριακές Ασκήσεις Χειμερινό

Διαβάστε περισσότερα

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5

Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο

Διαβάστε περισσότερα

Γραφικά υπολογιστών Εργαστήριο 1 Εισαγωγή στην Python

Γραφικά υπολογιστών Εργαστήριο 1 Εισαγωγή στην Python Γραφικά υπολογιστών Εργαστήριο 1 Εισαγωγή στην Python Σκοπός της 1ης άσκησης είναι η εξοικείωση με τη γλώσσα προγραμματισμού Python, την οποία και θα χρησιμοποιήσουμε και στις υπόλοιπες εργαστηριακές ασκήσεις.

Διαβάστε περισσότερα

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 1 ο Εργαστήριο. Εισαγωγή στο Matlab

Εργαστήρια Αριθμητικής Ανάλυσης Ι. 1 ο Εργαστήριο. Εισαγωγή στο Matlab Εργαστήρια Αριθμητικής Ανάλυσης Ι 1 ο Εργαστήριο Εισαγωγή στο Matlab 2017 Εισαγωγή Στα εργαστήρια θα ασχοληθούμε με την υλοποίηση των αριθμητικών μεθόδων που βλέπουμε στο θεωρητικό μέρος του μαθήματος,

Διαβάστε περισσότερα

Οι εντολές του MaLT+

Οι εντολές του MaLT+ Έλεγχος του χαρακτήρα Οι εντολές του MaLT+ Ελληνική Εντολή Αγγλική Εντολή Περιγραφή Παράδειγμα Κίνηση του χαρακτήρα Μπροστά/μ Πίσω/π fw/fd/forward bw/bk/backward προχωράει μπροστά τόσα βήματα όσο ο προχωράει

Διαβάστε περισσότερα

Το παράθυρο έναρξης του Μatlab

Το παράθυρο έναρξης του Μatlab Εισαγωγή στο Matlab Το παράθυρο έναρξης του Μatlab Αν οποιοδήποτε από αυτά τα παράθυρα είναι κρυμμένο μπορείτε να το εμφανίσετε από το menu με όνομα Desktop. Desktop > Desktop Layout > Default Ένα παράθυρο

Διαβάστε περισσότερα

Υπολογισμός αθροισμάτων

Υπολογισμός αθροισμάτων Υπολογισμός αθροισμάτων Τα αθροίσματα θα τα δημιουργούμε σαν συναρτήσεις και θα τα αποθηκεύουμε σε αρχείο (m-file) με την ίδια ονομασία με τη συνάρτηση. Για να δημιουργήσουμε ένα άθροισμα ξεκινάμε μηδενίζοντας

Διαβάστε περισσότερα

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011

Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Συστήματα Διακριτού Χρόνου (Discrete-Time Systems) Κυριακίδης Ιωάννης 2011 Τελευταία ενημέρωση: 11/11/2011 Πράξεις διακριτών σημάτων (υπενθύμιση) Πρόσθεση x(n) + y(n) Αφαίρεση x(n) y(n) Πολλαπλασιασμός

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,

Διαβάστε περισσότερα

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)

Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά

Διαβάστε περισσότερα

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!).

Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). ΑΛΦΑΡΙΘΜΗΤΙΚΑ Τα αλφαριθμητικά αποτελούνται από γράμματα, λέξεις ή άλλους χαρακτήρες (π.χ. μήλο, Ιούλιος 2009, You win!). Αποθηκεύονται σε μεταβλητές ή σε λίστες (όπως ή ). Μπορείτε να ενώσετε δυο αλφαριθμητικά

Διαβάστε περισσότερα

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1)

x[n] = e u[n 1] 4 x[n] = u[n 1] 4 X(z) = z 1 H(z) = (1 0.5z 1 )(1 + 4z 2 ) z 2 (βʹ) H(z) = H min (z)h lin (z) 4 z 1 1 z 1 (z 1 4 )(z 1) (1) Ασκήσεις με Συστήματα στο Χώρο του Ζ Επιμέλεια: Γιώργος Π. Καφεντζης Δρ. Επιστήμης Η/Υ Πανεπιστημίου Κρήτης Δρ. Επεξεργασίας Σήματος Πανεπιστημίου Rennes 1 7 Νοεμβρίου 015 1. Υπολόγισε τον μετ. Ζ και την

Διαβάστε περισσότερα

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων

HMY 102 Ανάλυση Ηλεκτρικών Κυκλωμάτων HMY Ανάλυση Ηλεκτρικών Κυκλωμάτων Παράρτημα Α Μιγαδικοί Αριμοί Οι μιγαδικοί αριμοί είναι μια από τις πιο σημαντικές έννοιες στον τομέα της ηλεκτρολογίας. Τι είναι οι μιγαδικοί αριμοί (compl numbrs; Ξέρουμε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python

ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ. Εισαγωγή στη Python ΠΑΝΕΠΙΣΤΗΜΙΟ AΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Εισαγωγή στη Python Νικόλαος Ζ. Ζάχαρης Αναπληρωτής

Διαβάστε περισσότερα

Ασκήσεις Ρομποτικής με την χρήση του MATLAB

Ασκήσεις Ρομποτικής με την χρήση του MATLAB Ασκήσεις Ρομποτικής με την χρήση του MATLAB Δρ. Φασουλάς Ιωάννης Επίκουρος Καθηγητής Τ.Ε.Ι. Κρήτης Τµήµα Μηχανολόγων Μηχανικών Τ.Ε. 2 ~Μέρος 1 ο ~ Βασικές Δραστηριότητες με το MATLAB Δραστηριότητα 1: Εξοικείωση

Διαβάστε περισσότερα