B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/
|
|
- Νανα Φλέσσας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ! " # $#% &'(*
2 !""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". The metri of Spae-Time The redshift Distanes Angular Sie The Volume ow to ompute ω The sale parameter....8 Time sales... #$ $ %&Λ'"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". General harateristis... " The solution of and t in parametri form.... The ubble and deeleration parameters elation between ω and ψ... 4 " Expressing ψ in the observables and... 4 "( The geometri distane The o-moving volume Time Sales The loo-ba time τ The age of the Universe (t expressed in and... 8 #% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". Introdutory emars.... The general solution...., and t in terms of the parameter A....4, and τ in terms of A and....5 The geometri distane and volume elements... 6 * % % Λ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", 4. Zero-density model with > The Lemaître model: Λ> and... -&.$ $/% """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( A. The Metri... 6 A. The Einstein Euations... 6 A. General elations & #$$ %Λ' """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", B. General elations (... 8 B. ; < /... 9 B. ; > /... 4 B.4 ;... 4 B.5 ; /... 4 B.6 ; &#% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""* -4&5 %6 %""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""** D. Zero-Density Model with > D. The Einstein model D. The De Sitter model D.4 The Lemaître model... 46
3 .!$ $ $$%%$% $ %! % $ 7 %$ %$ %7/$ " $ % %% -% $% "5$ 5 %-$ % / $% -$%5 8(5 8(/ " % % $% % % / %$ -./ 7 /$ $ / %% %$ -$% 9-5: $ "! / % $ $ $$ % 6/ ;$! %" $ : $%88( % % $ % 7< $%% "! % / % $ / / % " $ / % 7 % - /% %% "5$ %/ % %$ $ %" % - $ >$%? / $ %& $ % /% / % $ %/ / $ 7< $%% % % $ $ - " % % $ A $ - /. /% * " $ 'ρ " $ % $ % / / $%% " " % $ /%$ % $ / % $ / $%% % $ 9$/"! $ $ / / % A $ % % $ "! %$ $ % % ' %! % $ % % %"!%/7%$ 7 $% $ $"#! $% $ ;/ 7: % "!$ / % -$%% B<$ $"
4 $ $ % $%%$ %" 6/%! % % -/ % $%! $ $ $%" / $%$ % - $% $ % % $ $ $ %$ % % %"!%/ % % % ".% % $ " C"" $ $ $D$. & E$$ $% $ %%" $% $% " 4
5 Introdution / % -7%$ % $ $%% % -$% / $ % $ %- % $ $ "6/%% %$%% $ %"6 %% $% $ $% FF $ % D ' $ 7 7 'G "! 7 $ % 7< $%% / $ % % / %$ % Λ % %7 / % / % $ % /%" $ % $ $$ %7/$ " % < %" #! $ % / $ $ % /%$ ;/ 7: % "! &!% -/%$% / $! $ $ %" 5 $ % / #$$ % *%$ % $ % " $ % % / / / % $%" %$/% -" $ $$% %$ - 4". The metri of Spae-Time!% $ $ 7$ % ;/ 7: % $ & dr r dθ r sin θdφ ds dt ( t r 4 /%θφ $ - / ;'; " 7$ θ φ $ /I% - % 7$ " $ / < /% % /%% 7B"!' % %'B ' %" 5
6 $ % $ $ / / ω& r sinω r 4 #'Bω''%' r sinhω r 4 / $ $%& ω r sin r 4 ; $ $/ / - G'-- '-" %$ '" $$ $ & sin ω ds dt ( t{ dω ( dθ sin θdφ } $ %% %". The redshift #$ $ " $$ % - ;": ; % %$ ; % $ $" %/ /.&' ω $ - % θ'φ' & ω t t dt 6
7 % $ $ / "# & ω t t t t dt G ';G;" % ν G %& ν ν em obs. Distanes! %/ ωg "6 % % % / " $ %$ $5'.G*π4 5%-.%$ - 4 $ " % / 8( "(77("! % %- % $ / 4 / & A π π D sin( θ dθdφ 4πD D $ " %% $ 7 & π π sin ω sin ω A sinθ dθ dφ 4π ω " / %/ %- $/ & P P S. A 4π sin( ω / %% % J ωkg % $ " We put the observer at ω and the soure at ero, but in the end put ba the observer at ero; this an be done beause spae-time is homogeneous and isotropi 7
8 : / $ %% " % ε $'ν $ $ "! $ % $ $ $. $' ε $G $" # & % ν/'ν $GB< ε/'ε $GB< " 5 $/ & % % " % $/ $' /GB< $ / B< $ % %" % FF/ $%- $./ & n Pobs ε obs Pem /(. t obs # %& Pem S 4π ( o rg : %$ 4& D ( r g / /%$ %- / %$ / % / $ / / B< %- ν $ νb< ".4 Angular Sie %$%%< θ& θ'9g θ 9 % < θ " 7$ ωθφ ωθ θφ " %/ -$% $ /% " : $ $ $ $$ /% " %% 9 $ / /'ω'φ' '9 '; θ & 8
9 θ : $ θ ' ;GB< % $%5'.G*π4 θ'9g θ $ $/ & ( L. rg D r g ( dθ ( d θ D (.5 The Volume 7$ /I / - " % $/ /I 7$%$ $ %$ % $ ""%$"#$ $ " & sin ω sin ω dv ( ω, θ, ϕ dω dθ sinθdφ! ωθφ %$ ω& ω sin ω V ( ω 4π dω $ ω < ω' ω< % %$ % $%G< <".6 ow to ompute ω 9 / $ $ / % - θφ"5 ' ω t dt t ( t ω '"! 7 - $D< % ω'ωd< %$ " $D <" 9
10 .7 The sale parameter : % %; G; 'B< " %;'; & 8πGρ d p d ( ρ dt dt ρ Λ $%% / / 7 $$ $ "! $ % %% / ρ %Λ"%$ % 7< / %% -$%$% % ρ γ $ % / $ & d d ( ρ ( ρ dt d!$$ D//%$ %$ & 8 πgρ %& Λ p 8πG!% %& Λ Λ
11 .8 Time sales % $$ / /$ D" "'D % % / $ %" D 7 % D//% $ / % / $ #$ $ % Λ' % D 7 " $$ $ %7/$ τ t τ t We see that t t τ, and t τ. The name loo-ba time is obvious.
12 The standard (Friedmann model: Λ. General harateristis #$$ % $$$%%$ %%$ -% % / % $" 5 Λ' $ $%@ & 8πGρ / $/ Λ' $% " L #$$ %% / σρ % %/ ;D& '±"!% 'B >M ' 'M ' <M The solution of and t in parametri form % #$7@ % $ % % $ "! FF %$ %ψ ;';ψ 'ψ " ; $ $/ & d dt dψ dψ But negative pressure now has beome a definite possibility, sine the Quintessene models have been proposed. I should get around disussing these too.
13 dt d d / dψ d t dψ dψ dt / dψ dψ Gψ';G & d d dψ dψ %& a ( os ψ. 5 ';G ψ& a sin ψ t ψ. % % %& #' - '- - G'- & ;' 'Jψ K ' 'G Jψ ψk #'B & ;'B 'Jψ K 'B 'G Jψψ K #' ψ 'ψ G ψ G 'ψbψ G( $%/ < %$ "& ;' 'ψ G ' 'ψ G(! %$ ;/ %GD $ % "@%$ψ 6 / / / / / ( a t t - %$ /D'G $;' GD": 'G* % & ( t t /
14 . The ubble and deeleration parameters D / %%& $ $ $%& os ψ os ψ -% %''B /%/ " #' / %/ ; " %$ $% "$ & D' 'G G ' G".4 elation between ω and ψ $% %/ %7$ ω %$ %ψ"5 G;'ψG " & t dt ψ ω dψ ψ t & d sin( ψ / dψ a ( os ψ ω ψ ψ ωψ $ < 7&ω$ / ω' %ψ /% % ;'ψ'" Expressing ψ in the observables and 5 ψ '7 Gψ/ - $;;';GB< & os ψ os ψ G& 4
15 os ψ ( : $% % %/%$&ω / %$ % / - D<" %/ $ %$ " - ' %$% %%" % %$%% / % - $/ /% % #$$ % 7$ % "! % Λ " The geometri distane N/ % ' ω G & sin ( ψ ψ sin ψ os ψ os ψ sin ψ r g : % "/ $ & / r ( ( g ( / J 7 GK'G; D & / r ( ( g ( $ $% 8, " 5% $ %#$ %8 % $/ $ - <"!% % $% % / " % %$ -$% $ % / /$ $ < " %8OO / % / $$% %. 88O "# %$ 4';B< $/ & '7B< G '7 <B G G " / Mattig's formula was derived without any referene to partiular values of, or, and indeed, it is valid for all and all. For we an tae the limit by expanding the suare-root term in powers of up to the seond order. Zero- and first order terms in in the numerator anel exatly, so the limit exists. 5
16 : <B< & 4'GD <B<G % $%/ %/ "! % $ A'B < G & D ( Q %% % $B <BA GB <BA % % % $%& D ( ( /.7 The o-moving volume %$% %$ / $$ %& π sin ω V ( ω ω : %% ω $D< "% % % %$ -%% / /%! /% $%% / $/ $ & $ % %% $ %% ω $% "*" % / "D $ %% %$ / % $ %": % / %" ' % $ %"5 ω'<b< G GB< - ' %J - B B-K& ω ln( $ $ $%PG ω'ωωq& 4 ( V ( π ln( 4 ( dv d 4π ( ( 6
17 7 5 $ %" %$ $ω$%& 4 V ( ω πω $% r g : & { ( / } ω V ( π dv d 6π / ( 5 / ( "ω 'ω7 ω G & {( / } V ( π ( arsin ( / dv d 4π / ( ( In all other ases we use ω and V(ω..8 Time Sales.8. The loo-ba time τ By definition τ t t t!$%< ' τ' ' τ'"#$ % $ψ " τ/ ψ sin τ ψ sin ψ / ψ / 7
18 8 %$ ψψ $ / /%D<" %! -% - τ / /% 'G" '" %$ / %& $ $ /% $ %& ' $% ;G ';' %& %$$ % - τ" 'M"#$ "& & 'B" ψ'7 G'ψ'πG"%ψ' ψb< GB< '<GB< &.8. The age of the Universe (t expressed in and. - D $ψ "" & τ t t ψ ψ τ ( / τ aros / π τ / sin ( / t ψ ψ
19 '" %% ;';'GD t / %/ / %$ % $%" 'G"N/ " % & t / '"% %$%''& t π : $% #$$ %$% " 9
20 Flat Models (, Λ. Introdutory emars : 7 5 $ %%$ %' $ " < $%% %$%% / $ % / % % % $ " L % 7 $ % / $ % $%" %%% / $ 7#$ $ % % $ " FF% $ % Λ & % $%%$ %/ & % $ 8,, "% $ %/ %" $ $% / % %$ / % %$ / Λ / /%/ ": $ %$ % $%% $ $ / / % $ %$ % "! % %$ %% $ Λ%! $ %Ω'GΩ Λ 'G / % $ % % / $ / $ $ D//%$ %$ $ σ'*πnρgd & Λ ( σ σ! $ % $ % σ Λ Ω 'σ Ω Λ 'ΛGD "! $ / ΩBΩ Λ ''" $ %/ - % /'ΩGΩ Λ "
21 Figure The -σ plane. The lines representing Friedmann models and flat models are drawn. # $%% % %/ / < 5 $ % 7 5 $ % "!" 7σ% " % ΩΩ Λ S ": < & % σ'λ' σ'b' %$% % %$% % % " %%% %/ / /% %$ % * % / / $% /%/ - "!% /$ %$ %'Λ "! % %% - %%$ % % % Λ$ $% %%#$$ %". The general '& 8πGρ Λ
22 Λ!/ % % $ & ε!λ ε'λs ε'b%& A N/ " & ΛS&ΛGD '7σσG%T'σGσ " Λ&σSG %T'σG7σ " : % %%Dτ " % Λ % / %% / %& σ G $%% - % %$ #$ $ % G $% " $ %%% Λ": & D 'T& ( εa 8πGρ Λ γ A A / / sinγ t Λ sinh / ( γt 8πGρ Ω M Λ Ω Λ / γ Λ Ω Λ 5 %%$ %7 $%% % %; $/%/ $% /% 7 $ $ /%$ $ /% - $ %$ "!%%/
23 % % $ - " L % % $ % $%" % $ % /$% % $ / / $ %/% & Ω'G Ω Λ 'G'G"$ % $ $ %" & / sinh / ( t., and t in terms of the parameter A #$ %% $$ %Λ/γ ' G γ 'JB GK G & Λ ( A t #& / Λ Ω Λ A ( Ω A Λ ( A / ln{ A / A ( A / } Ω / Λ Ω ln / Ω M Λ.5 t.4 /.9!/ % %@ 7 5 % D,πNρG GD G"# D ΛG D 5 *" "5$%$%/ / ΛS" / Λ.4, and τ in terms of A and
24 $ % $ % - D< < %7/$ τ< Λ& ( Λ / ( { A( } A ( A( L $ / $$ < % % %"! $ %'" <' '",O" # %7/$ & τ Λ A( / ln[{ A( } ] ln( / ln{ ( A } ln A ln A / Figure The loo-ba time for some flat models with positive osmologial onstant. The full lines represent models with: A.,.5,.. The A.5 model is lose to the Conordane model. Also shown are standard and / models (lower and upper full lines respetively. 4
25 5
26 #'"& ( ( ( ( 4 ( / <' "/ '"" : τ<'" %$" τ % "" 5$%$% ΛS" $B< $ % $% "%/ %$ % $ ".5 The geometri distane and volume elements $ %$ %$ "! & r g t t dt t t $< B< '; G; $ $%& / dζ rg ( A / { A( ζ 74 5 r { } g / ( & A / dt sinh / γt 6
27 r g $%" % % $% $ %%%$% $ % "#$ $$ % % %$ '*π; G %%$ G<'*π; <" < % "" Figure : The geometri distane as a funtion of redshift, for A.,.5,. and.. For omparison also the Friedmann models with and.5 are shown 7
28 4 A seletion of Models with, Λ 4. Zero-density model with > %$ % %/ σ %$ & %/ % $ $/ $ $ % σ' -$"$$ % %$ "$%$/σσs $% Λ S " Λ % %$ / $ " # ρ'& Λ Λ 5 % "σ's'" / & / $ %/%& / $ % % -%%;'; / % /$% ;'/ ": & / sin( t / /& sin( / t / 8
29 D//% %$ & / / ot( t & tan ( / t 5$ $$ & $ % % % % $ ' & ; $-$$GD G ' πgd G < 'πgd G " %$$ ' D 'G D 'πg*"! $/ %/ & ( / [os{ / ( t t } / sin{ ( t t $%-G-'%-G-G'-G-B -'%J -7 B-K/%% & / {( ( } ( r g sinhω %$% -$ %"L % '$ %% / σ Λ σ "! / % %$ / $% - " %7/$ / & / }] / arsin / ( ( τ / arsin & / ar tan t / $% $ %" 9
30 4. The Lemaître model: Λ> and 9 $U $ % $% $ % %/ /% / % % % $ %" $%%$ % "D % %-% / $ /D//% $%%Λ/%"; ;' ;G' ;G / $ & 8πG ρ Λ!%,πNρ' G; ' ρ> Λ": E Λ Λ Λ 4 5 $ %% %$ %$ %"! % $ $ %%$ 9 $U $ %": $$< $ %& e ( t t Λ 9 $U $ % $$$ % 8 $ /8( $ $ -%
31 % <'" $ %/ %"#$ $ -$%. 8(O "! 9 $U $ % 'B $ %"D %%$ $ & 9 $U $ % /% % $ % /" $ $ / $ % - $%% / % % "! % : / 8O "! % $ ;@ - ;G;@": $ % ρ; ' ; 'ρ- 'αρ α" & αρ E αλ ρ x - α/ $ & Λ x ( x x α x Λ x ( x α x %/ % / $/ & -SS & / x ( αλ / t & 74 5 $ %&#S-S 9 $U $ 74 5 $ %"K #- x Λ x t /
32 & Λ #- 9 $U $ %/ 4 5 $ %"L $$ %$ % Λ " 9 $U $ % $ -& - -G $$$& x x min Λ( α α / / $'"5 %'G % %% / $ - % % "/ %& % $%%%-$'α G "#$ $ %% % "D $ - %-G $ " $ $ ; $%% "! ρ 4 5 $ % " : -G$ / $ /%% < /%α " #α% & / / x min Λ( α ( x α x & x α x Λ
33 x /% -'α G B7$ Λ A α Λ B / / ( α ( x α / ( / 5 FF / & % / Λ x α / α / x Λ x α ( x Λ / / sinh{ ( t tm } ( α 5 $ $' % " %$ $ % < % /%α "! % < $ %"!/ $ %/ $ -% <' $ %& $ % <'"9 / % 7-9 $U $ % " 6 $ $$ &%/ /$ % $ % %$ % $ $ % " $% 9 $U $ %"
34 /% " N"8,,!"#$#%$5 7 %& %D %/ L E " "#$ # & % #'$( $ ##*"9 "$$*( " : "8,"L",*8 *" N""8(, - $$!%#!$ D %&9 ". /%.""@"V;# #$$ %./!; ""."O8 (". ""88O$%*$$$, $(* $/. O". 5 "8( 8" 5 "8(/*8( " %"8OO$""."*,(8 " : / 5"8O,$$%#!: % 5&L E 4
35 5
36 Appendix A: Parameters and symbols used General Symbols <& & $ 4& %$ θ& %< 9 % < & %$ 7$ τ& %7/$ G < ψ& %$ % #$$ %Λ' A. The Metri sin ω ds dt ( t dω ( dθ sin θdφ ω& %7$ θ&%7$ φ& %7$ ; & %$ L"" 7$ - %%-" 8πGρ A. The Einstein Euations Λ p 8πG Λ ρ& $ % σ'*πnρgd & % ' Λ& $%% D& D//%$ D';G G; & %$ 'J ;G ;KG;G 6
37 A. General elations B<';G;& ω'g; $& % ' ωg & $ 4'B< ;& %$ θ'b< 9G; & %< ω '*π;pj ωkg Q ω$ω %$ 7
38 8 Appendix B: The Friedmann model (Λ 5 $ $%" B. General elations ( ( ( ( r g (deg ( 57. g r L θ V sin ( ω ω π ω os ( ψ a sin ( a t ψ ψ os ψ os os ψ ψ ψ ψ ω / / ( ( os ( / sin a ψ ψ os ψ
39 dv d τ t dv dω dω d ψ sin ψ sin ( / ψ ψ / sin ψ ψ a(oshψ a t (sinhψ ψ B. ; < / oshψ oshψ oshψ ω ψ ψ / ( sinhψ a ( oshψ oshψ V ( ω π sinh ω ω dv dω π (osh ω d d sinhψ ψ τ sinh ψ ψ 9
40 t (sinhψ ψ / ( a( osψ a t ( ψ sinψ B. ; > / osψ osψ osψ ω ψ ψ / ( sinψ a ( osψ osψ v( ω π ω sin ω dv dω π ( os ω d d ψ sinψ τ ψ sinψ t ( ψ sinψ / ( t B.4 ; 4
41 ω ln( t r g 4 ( V ( π ln( 4 ( dv ( / 4π d ( τ t ω t t / ( / B.5 ; / t r ω g V ( π / ( dv d τ t {( } / 6π 5 / ( ( / / 4
42 4 B.6 ; aros π ω r g / ( ( arsin ( V π / ( ( 4 d dv π aros / π τ π t
43 Appendix C: Flat Models ( ; Λ > 5 $ $%" / A / sinh γt 8πGρ A Λ γ Λ Λ ( A A A A / ( / / t A ln{ A ( A ( Λ Λ ( { A( } A( r g τ / dζ ( A / { A( ζ } } / ln[{ A( } ] ln( / ln{ ( A } ln A ln A 4
44 Appendix D: A Seletion of Other Models 5 *$ $%" / D. Zero-Density Model with > sin( / t / ρ Λ < / sin( t / & ( / [os{ / ( t t } ω arosh ( arosh / / ot( t / tan ( t / / / {( ( } ( r g V ( ω π ( sinh ω ω / arsin / ( ( τ / arsin / / t artan sin{ / / ( t t }] 44
45 Λ > E Λ ρ Λ E 4πG D. The Einstein model Λ > ρ exp{ ( t t } ω Λ r g 4 V ( π D. The De Sitter model 45
46 Λ > x E ρ α x ρ & D.4 The Lemaître model x ( x α x / & -SSα G 74 5 $ %" x Λ ( x x Λ x α α x / Λ t / / t -α G / 4 5 $ %" x x exp{ ( t t } Λ 46
47 - α G #$ #& Λ x α / ( α / / sinh ( t t & / t Λ {ln( α / : $ /%%/ α " 47
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
If we restrict the domain of y = sin x to [ π 2, π 2
Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)
HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.
Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases
10.7 Performance of Second-Order System (Unit Step Response)
Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Trigonometric Formula Sheet
Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics
apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Name: Math Homework Set # VI. April 2, 2010
Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.
Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Bounding Nonsplitting Enumeration Degrees
Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
3+1 Splitting of the Generalized Harmonic Equations
3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065