B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/"

Transcript

1 ! " # $#% &'(*

2 !""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". The metri of Spae-Time The redshift Distanes Angular Sie The Volume ow to ompute ω The sale parameter....8 Time sales... #$ $ %&Λ'"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". General harateristis... " The solution of and t in parametri form.... The ubble and deeleration parameters elation between ω and ψ... 4 " Expressing ψ in the observables and... 4 "( The geometri distane The o-moving volume Time Sales The loo-ba time τ The age of the Universe (t expressed in and... 8 #% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""". Introdutory emars.... The general solution...., and t in terms of the parameter A....4, and τ in terms of A and....5 The geometri distane and volume elements... 6 * % % Λ """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", 4. Zero-density model with > The Lemaître model: Λ> and... -&.$ $/% """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( A. The Metri... 6 A. The Einstein Euations... 6 A. General elations & #$$ %Λ' """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", B. General elations (... 8 B. ; < /... 9 B. ; > /... 4 B.4 ;... 4 B.5 ; /... 4 B.6 ; &#% %'Λ """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""* -4&5 %6 %""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""** D. Zero-Density Model with > D. The Einstein model D. The De Sitter model D.4 The Lemaître model... 46

3 .!$ $ $$%%$% $ %! % $ 7 %$ %$ %7/$ " $ % %% -% $% "5$ 5 %-$ % / $% -$%5 8(5 8(/ " % % $% % % / %$ -./ 7 /$ $ / %% %$ -$% 9-5: $ "! / % $ $ $$ % 6/ ;$! %" $ : $%88( % % $ % 7< $%% "! % / % $ / / % " $ / % 7 % - /% %% "5$ %/ % %$ $ %" % - $ >$%? / $ %& $ % /% / % $ %/ / $ 7< $%% % % $ $ - " % % $ A $ - /. /% * " $ 'ρ " $ % $ % / / $%% " " % $ /%$ % $ / % $ / $%% % $ 9$/"! $ $ / / % A $ % % $ "! %$ $ % % ' %! % $ % % %"!%/7%$ 7 $% $ $"#! $% $ ;/ 7: % "!$ / % -$%% B<$ $"

4 $ $ % $%%$ %" 6/%! % % -/ % $%! $ $ $%" / $%$ % - $% $ % % $ $ $ %$ % % %"!%/ % % % ".% % $ " C"" $ $ $D$. & E$$ $% $ %%" $% $% " 4

5 Introdution / % -7%$ % $ $%% % -$% / $ % $ %- % $ $ "6/%% %$%% $ %"6 %% $% $ $% FF $ % D ' $ 7 7 'G "! 7 $ % 7< $%% / $ % % / %$ % Λ % %7 / % / % $ % /%" $ % $ $$ %7/$ " % < %" #! $ % / $ $ % /%$ ;/ 7: % "! &!% -/%$% / $! $ $ %" 5 $ % / #$$ % *%$ % $ % " $ % % / / / % $%" %$/% -" $ $$% %$ - 4". The metri of Spae-Time!% $ $ 7$ % ;/ 7: % $ & dr r dθ r sin θdφ ds dt ( t r 4 /%θφ $ - / ;'; " 7$ θ φ $ /I% - % 7$ " $ / < /% % /%% 7B"!' % %'B ' %" 5

6 $ % $ $ / / ω& r sinω r 4 #'Bω''%' r sinhω r 4 / $ $%& ω r sin r 4 ; $ $/ / - G'-- '-" %$ '" $$ $ & sin ω ds dt ( t{ dω ( dθ sin θdφ } $ %% %". The redshift #$ $ " $$ % - ;": ; % %$ ; % $ $" %/ /.&' ω $ - % θ'φ' & ω t t dt 6

7 % $ $ / "# & ω t t t t dt G ';G;" % ν G %& ν ν em obs. Distanes! %/ ωg "6 % % % / " $ %$ $5'.G*π4 5%-.%$ - 4 $ " % / 8( "(77("! % %- % $ / 4 / & A π π D sin( θ dθdφ 4πD D $ " %% $ 7 & π π sin ω sin ω A sinθ dθ dφ 4π ω " / %/ %- $/ & P P S. A 4π sin( ω / %% % J ωkg % $ " We put the observer at ω and the soure at ero, but in the end put ba the observer at ero; this an be done beause spae-time is homogeneous and isotropi 7

8 : / $ %% " % ε $'ν $ $ "! $ % $ $ $. $' ε $G $" # & % ν/'ν $GB< ε/'ε $GB< " 5 $/ & % % " % $/ $' /GB< $ / B< $ % %" % FF/ $%- $./ & n Pobs ε obs Pem /(. t obs # %& Pem S 4π ( o rg : %$ 4& D ( r g / /%$ %- / %$ / % / $ / / B< %- ν $ νb< ".4 Angular Sie %$%%< θ& θ'9g θ 9 % < θ " 7$ ωθφ ωθ θφ " %/ -$% $ /% " : $ $ $ $$ /% " %% 9 $ / /'ω'φ' '9 '; θ & 8

9 θ : $ θ ' ;GB< % $%5'.G*π4 θ'9g θ $ $/ & ( L. rg D r g ( dθ ( d θ D (.5 The Volume 7$ /I / - " % $/ /I 7$%$ $ %$ % $ ""%$"#$ $ " & sin ω sin ω dv ( ω, θ, ϕ dω dθ sinθdφ! ωθφ %$ ω& ω sin ω V ( ω 4π dω $ ω < ω' ω< % %$ % $%G< <".6 ow to ompute ω 9 / $ $ / % - θφ"5 ' ω t dt t ( t ω '"! 7 - $D< % ω'ωd< %$ " $D <" 9

10 .7 The sale parameter : % %; G; 'B< " %;'; & 8πGρ d p d ( ρ dt dt ρ Λ $%% / / 7 $$ $ "! $ % %% / ρ %Λ"%$ % 7< / %% -$%$% % ρ γ $ % / $ & d d ( ρ ( ρ dt d!$$ D//%$ %$ & 8 πgρ %& Λ p 8πG!% %& Λ Λ

11 .8 Time sales % $$ / /$ D" "'D % % / $ %" D 7 % D//% $ / % / $ #$ $ % Λ' % D 7 " $$ $ %7/$ τ t τ t We see that t t τ, and t τ. The name loo-ba time is obvious.

12 The standard (Friedmann model: Λ. General harateristis #$$ % $$$%%$ %%$ -% % / % $" 5 Λ' $ $%@ & 8πGρ / $/ Λ' $% " L #$$ %% / σρ % %/ ;D& '±"!% 'B >M ' 'M ' <M The solution of and t in parametri form % #$7@ % $ % % $ "! FF %$ %ψ ;';ψ 'ψ " ; $ $/ & d dt dψ dψ But negative pressure now has beome a definite possibility, sine the Quintessene models have been proposed. I should get around disussing these too.

13 dt d d / dψ d t dψ dψ dt / dψ dψ Gψ';G & d d dψ dψ %& a ( os ψ. 5 ';G ψ& a sin ψ t ψ. % % %& #' - '- - G'- & ;' 'Jψ K ' 'G Jψ ψk #'B & ;'B 'Jψ K 'B 'G Jψψ K #' ψ 'ψ G ψ G 'ψbψ G( $%/ < %$ "& ;' 'ψ G ' 'ψ G(! %$ ;/ %GD $ % "@%$ψ 6 / / / / / ( a t t - %$ /D'G $;' GD": 'G* % & ( t t /

14 . The ubble and deeleration parameters D / %%& $ $ $%& os ψ os ψ -% %''B /%/ " #' / %/ ; " %$ $% "$ & D' 'G G ' G".4 elation between ω and ψ $% %/ %7$ ω %$ %ψ"5 G;'ψG " & t dt ψ ω dψ ψ t & d sin( ψ / dψ a ( os ψ ω ψ ψ ωψ $ < 7&ω$ / ω' %ψ /% % ;'ψ'" Expressing ψ in the observables and 5 ψ '7 Gψ/ - $;;';GB< & os ψ os ψ G& 4

15 os ψ ( : $% % %/%$&ω / %$ % / - D<" %/ $ %$ " - ' %$% %%" % %$%% / % - $/ /% % #$$ % 7$ % "! % Λ " The geometri distane N/ % ' ω G & sin ( ψ ψ sin ψ os ψ os ψ sin ψ r g : % "/ $ & / r ( ( g ( / J 7 GK'G; D & / r ( ( g ( $ $% 8, " 5% $ %#$ %8 % $/ $ - <"!% % $% % / " % %$ -$% $ % / /$ $ < " %8OO / % / $$% %. 88O "# %$ 4';B< $/ & '7B< G '7 <B G G " / Mattig's formula was derived without any referene to partiular values of, or, and indeed, it is valid for all and all. For we an tae the limit by expanding the suare-root term in powers of up to the seond order. Zero- and first order terms in in the numerator anel exatly, so the limit exists. 5

16 : <B< & 4'GD <B<G % $%/ %/ "! % $ A'B < G & D ( Q %% % $B <BA GB <BA % % % $%& D ( ( /.7 The o-moving volume %$% %$ / $$ %& π sin ω V ( ω ω : %% ω $D< "% % % %$ -%% / /%! /% $%% / $/ $ & $ % %% $ %% ω $% "*" % / "D $ %% %$ / % $ %": % / %" ' % $ %"5 ω'<b< G GB< - ' %J - B B-K& ω ln( $ $ $%PG ω'ωωq& 4 ( V ( π ln( 4 ( dv d 4π ( ( 6

17 7 5 $ %" %$ $ω$%& 4 V ( ω πω $% r g : & { ( / } ω V ( π dv d 6π / ( 5 / ( "ω 'ω7 ω G & {( / } V ( π ( arsin ( / dv d 4π / ( ( In all other ases we use ω and V(ω..8 Time Sales.8. The loo-ba time τ By definition τ t t t!$%< ' τ' ' τ'"#$ % $ψ " τ/ ψ sin τ ψ sin ψ / ψ / 7

18 8 %$ ψψ $ / /%D<" %! -% - τ / /% 'G" '" %$ / %& $ $ /% $ %& ' $% ;G ';' %& %$$ % - τ" 'M"#$ "& & 'B" ψ'7 G'ψ'πG"%ψ' ψb< GB< '<GB< &.8. The age of the Universe (t expressed in and. - D $ψ "" & τ t t ψ ψ τ ( / τ aros / π τ / sin ( / t ψ ψ

19 '" %% ;';'GD t / %/ / %$ % $%" 'G"N/ " % & t / '"% %$%''& t π : $% #$$ %$% " 9

20 Flat Models (, Λ. Introdutory emars : 7 5 $ %%$ %' $ " < $%% %$%% / $ % / % % % $ " L % 7 $ % / $ % $%" %%% / $ 7#$ $ % % $ " FF% $ % Λ & % $%%$ %/ & % $ 8,, "% $ %/ %" $ $% / % %$ / % %$ / Λ / /%/ ": $ %$ % $%% $ $ / / % $ %$ % "! % %$ %% $ Λ%! $ %Ω'GΩ Λ 'G / % $ % % / $ / $ $ D//%$ %$ $ σ'*πnρgd & Λ ( σ σ! $ % $ % σ Λ Ω 'σ Ω Λ 'ΛGD "! $ / ΩBΩ Λ ''" $ %/ - % /'ΩGΩ Λ "

21 Figure The -σ plane. The lines representing Friedmann models and flat models are drawn. # $%% % %/ / < 5 $ % 7 5 $ % "!" 7σ% " % ΩΩ Λ S ": < & % σ'λ' σ'b' %$% % %$% % % " %%% %/ / /% %$ % * % / / $% /%/ - "!% /$ %$ %'Λ "! % %% - %%$ % % % Λ$ $% %%#$$ %". The general '& 8πGρ Λ

22 Λ!/ % % $ & ε!λ ε'λs ε'b%& A N/ " & ΛS&ΛGD '7σσG%T'σGσ " Λ&σSG %T'σG7σ " : % %%Dτ " % Λ % / %% / %& σ G $%% - % %$ #$ $ % G $% " $ %%% Λ": & D 'T& ( εa 8πGρ Λ γ A A / / sinγ t Λ sinh / ( γt 8πGρ Ω M Λ Ω Λ / γ Λ Ω Λ 5 %%$ %7 $%% % %; $/%/ $% /% 7 $ $ /%$ $ /% - $ %$ "!%%/

23 % % $ - " L % % $ % $%" % $ % /$% % $ / / $ %/% & Ω'G Ω Λ 'G'G"$ % $ $ %" & / sinh / ( t., and t in terms of the parameter A #$ %% $$ %Λ/γ ' G γ 'JB GK G & Λ ( A t #& / Λ Ω Λ A ( Ω A Λ ( A / ln{ A / A ( A / } Ω / Λ Ω ln / Ω M Λ.5 t.4 /.9!/ % %@ 7 5 % D,πNρG GD G"# D ΛG D 5 *" "5$%$%/ / ΛS" / Λ.4, and τ in terms of A and

24 $ % $ % - D< < %7/$ τ< Λ& ( Λ / ( { A( } A ( A( L $ / $$ < % % %"! $ %'" <' '",O" # %7/$ & τ Λ A( / ln[{ A( } ] ln( / ln{ ( A } ln A ln A / Figure The loo-ba time for some flat models with positive osmologial onstant. The full lines represent models with: A.,.5,.. The A.5 model is lose to the Conordane model. Also shown are standard and / models (lower and upper full lines respetively. 4

25 5

26 #'"& ( ( ( ( 4 ( / <' "/ '"" : τ<'" %$" τ % "" 5$%$% ΛS" $B< $ % $% "%/ %$ % $ ".5 The geometri distane and volume elements $ %$ %$ "! & r g t t dt t t $< B< '; G; $ $%& / dζ rg ( A / { A( ζ 74 5 r { } g / ( & A / dt sinh / γt 6

27 r g $%" % % $% $ %%%$% $ % "#$ $$ % % %$ '*π; G %%$ G<'*π; <" < % "" Figure : The geometri distane as a funtion of redshift, for A.,.5,. and.. For omparison also the Friedmann models with and.5 are shown 7

28 4 A seletion of Models with, Λ 4. Zero-density model with > %$ % %/ σ %$ & %/ % $ $/ $ $ % σ' -$"$$ % %$ "$%$/σσs $% Λ S " Λ % %$ / $ " # ρ'& Λ Λ 5 % "σ's'" / & / $ %/%& / $ % % -%%;'; / % /$% ;'/ ": & / sin( t / /& sin( / t / 8

29 D//% %$ & / / ot( t & tan ( / t 5$ $$ & $ % % % % $ ' & ; $-$$GD G ' πgd G < 'πgd G " %$$ ' D 'G D 'πg*"! $/ %/ & ( / [os{ / ( t t } / sin{ ( t t $%-G-'%-G-G'-G-B -'%J -7 B-K/%% & / {( ( } ( r g sinhω %$% -$ %"L % '$ %% / σ Λ σ "! / % %$ / $% - " %7/$ / & / }] / arsin / ( ( τ / arsin & / ar tan t / $% $ %" 9

30 4. The Lemaître model: Λ> and 9 $U $ % $% $ % %/ /% / % % % $ %" $%%$ % "D % %-% / $ /D//% $%%Λ/%"; ;' ;G' ;G / $ & 8πG ρ Λ!%,πNρ' G; ' ρ> Λ": E Λ Λ Λ 4 5 $ %% %$ %$ %"! % $ $ %%$ 9 $U $ %": $$< $ %& e ( t t Λ 9 $U $ % $$$ % 8 $ /8( $ $ -%

31 % <'" $ %/ %"#$ $ -$%. 8(O "! 9 $U $ % 'B $ %"D %%$ $ & 9 $U $ % /% % $ % /" $ $ / $ % - $%% / % % "! % : / 8O "! % $ ;@ - ;G;@": $ % ρ; ' ; 'ρ- 'αρ α" & αρ E αλ ρ x - α/ $ & Λ x ( x x α x Λ x ( x α x %/ % / $/ & -SS & / x ( αλ / t & 74 5 $ %&#S-S 9 $U $ 74 5 $ %"K #- x Λ x t /

32 & Λ #- 9 $U $ %/ 4 5 $ %"L $$ %$ % Λ " 9 $U $ % $ -& - -G $$$& x x min Λ( α α / / $'"5 %'G % %% / $ - % % "/ %& % $%%%-$'α G "#$ $ %% % "D $ - %-G $ " $ $ ; $%% "! ρ 4 5 $ % " : -G$ / $ /%% < /%α " #α% & / / x min Λ( α ( x α x & x α x Λ

33 x /% -'α G B7$ Λ A α Λ B / / ( α ( x α / ( / 5 FF / & % / Λ x α / α / x Λ x α ( x Λ / / sinh{ ( t tm } ( α 5 $ $' % " %$ $ % < % /%α "! % < $ %"!/ $ %/ $ -% <' $ %& $ % <'"9 / % 7-9 $U $ % " 6 $ $$ &%/ /$ % $ % %$ % $ $ % " $% 9 $U $ %"

34 /% " N"8,,!"#$#%$5 7 %& %D %/ L E " "#$ # & % #'$( $ ##*"9 "$$*( " : "8,"L",*8 *" N""8(, - $$!%#!$ D %&9 ". /%.""@"V;# #$$ %./!; ""."O8 (". ""88O$%*$$$, $(* $/. O". 5 "8( 8" 5 "8(/*8( " %"8OO$""."*,(8 " : / 5"8O,$$%#!: % 5&L E 4

35 5

36 Appendix A: Parameters and symbols used General Symbols <& & $ 4& %$ θ& %< 9 % < & %$ 7$ τ& %7/$ G < ψ& %$ % #$$ %Λ' A. The Metri sin ω ds dt ( t dω ( dθ sin θdφ ω& %7$ θ&%7$ φ& %7$ ; & %$ L"" 7$ - %%-" 8πGρ A. The Einstein Euations Λ p 8πG Λ ρ& $ % σ'*πnρgd & % ' Λ& $%% D& D//%$ D';G G; & %$ 'J ;G ;KG;G 6

37 A. General elations B<';G;& ω'g; $& % ' ωg & $ 4'B< ;& %$ θ'b< 9G; & %< ω '*π;pj ωkg Q ω$ω %$ 7

38 8 Appendix B: The Friedmann model (Λ 5 $ $%" B. General elations ( ( ( ( r g (deg ( 57. g r L θ V sin ( ω ω π ω os ( ψ a sin ( a t ψ ψ os ψ os os ψ ψ ψ ψ ω / / ( ( os ( / sin a ψ ψ os ψ

39 dv d τ t dv dω dω d ψ sin ψ sin ( / ψ ψ / sin ψ ψ a(oshψ a t (sinhψ ψ B. ; < / oshψ oshψ oshψ ω ψ ψ / ( sinhψ a ( oshψ oshψ V ( ω π sinh ω ω dv dω π (osh ω d d sinhψ ψ τ sinh ψ ψ 9

40 t (sinhψ ψ / ( a( osψ a t ( ψ sinψ B. ; > / osψ osψ osψ ω ψ ψ / ( sinψ a ( osψ osψ v( ω π ω sin ω dv dω π ( os ω d d ψ sinψ τ ψ sinψ t ( ψ sinψ / ( t B.4 ; 4

41 ω ln( t r g 4 ( V ( π ln( 4 ( dv ( / 4π d ( τ t ω t t / ( / B.5 ; / t r ω g V ( π / ( dv d τ t {( } / 6π 5 / ( ( / / 4

42 4 B.6 ; aros π ω r g / ( ( arsin ( V π / ( ( 4 d dv π aros / π τ π t

43 Appendix C: Flat Models ( ; Λ > 5 $ $%" / A / sinh γt 8πGρ A Λ γ Λ Λ ( A A A A / ( / / t A ln{ A ( A ( Λ Λ ( { A( } A( r g τ / dζ ( A / { A( ζ } } / ln[{ A( } ] ln( / ln{ ( A } ln A ln A 4

44 Appendix D: A Seletion of Other Models 5 *$ $%" / D. Zero-Density Model with > sin( / t / ρ Λ < / sin( t / & ( / [os{ / ( t t } ω arosh ( arosh / / ot( t / tan ( t / / / {( ( } ( r g V ( ω π ( sinh ω ω / arsin / ( ( τ / arsin / / t artan sin{ / / ( t t }] 44

45 Λ > E Λ ρ Λ E 4πG D. The Einstein model Λ > ρ exp{ ( t t } ω Λ r g 4 V ( π D. The De Sitter model 45

46 Λ > x E ρ α x ρ & D.4 The Lemaître model x ( x α x / & -SSα G 74 5 $ %" x Λ ( x x Λ x α α x / Λ t / / t -α G / 4 5 $ %" x x exp{ ( t t } Λ 46

47 - α G #$ #& Λ x α / ( α / / sinh ( t t & / t Λ {ln( α / : $ /%%/ α " 47

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1) HW 3 Solutions a) I use the autoarima R function to search over models using AIC and decide on an ARMA3,) b) I compare the ARMA3,) to ARMA,0) ARMA3,) does better in all three criteria c) The plot of the

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics apter - Heat Engines, Entropy, and te Seond Law o ermodynamis.1 (a).0 J e 0.069 4 or 6.94% 60 J (b) 60 J.0 J J. e eat to melt 1.0 g o Hg is 4 ml 1 10 kg 1.18 10 J kg 177 J e energy absorbed to reeze 1.00

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Name: Math Homework Set # VI. April 2, 2010

Name: Math Homework Set # VI. April 2, 2010 Name: Math 4567. Homework Set # VI April 2, 21 Chapter 5, page 113, problem 1), (page 122, problem 1), (page 128, problem 2), (page 133, problem 4), (page 136, problem 1). (page 146, problem 1), Chapter

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

3+1 Splitting of the Generalized Harmonic Equations

3+1 Splitting of the Generalized Harmonic Equations 3+1 Splitting of the Generalized Harmonic Equations David Brown North Carolina State University EGM June 2011 Numerical Relativity Interpret general relativity as an initial value problem: Split spacetime

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a) hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065

Διαβάστε περισσότερα