3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός"

Transcript

1 3 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης. Η έξοδος εξαρτάται από τις εισόδους και την κατάσταση του κυκλώµατος. Η κατάσταση εξαρτάται από τις εισόδους και την προηγούµενη κατάσταση. Ακολουθιακά Κυκλώµατα Σύγχρονα: οι τιµές των σηµάτων του αλλάζουν σε διακριτές χρονικές στιγµές (ρολόι). Ασύγχρονα: οι τιµές των σηµάτων του αλλάζουν σε οποιαδήποτε χρονική στιγµή (συνδυαστικά κυκλώµατα µε ανάδραση). Σύγχρονα Ακολουθιακά Κυκλώµατα 2

3 Ρολόι και Συγχρονισµός Τ = Περίοδος Ρολογιού F = 1/T T Η αποθήκευση γίνεται σε συγκεκριµένες διακριτές χρονικές στιγµές: θετικές ή αρνητικές ακµές Σύγχρονα Ακολουθιακά Κυκλώµατα 3

4 Latches & Flip Flops Αποθηκευτικά Στοιχεία Latches (Μανδαλωτές) Αποθηκεύουν σε επίπεδο Χρησιµοποιούνται πολύ σε ασύγχρονα συστήµατα Είναι δοµικά στοιχεία των Flip Flop Flip Flops (ακµοπυροδότητα) Αποθηκεύουν σε ακµή Χρησιµοποιούνται σε σύγχρονα συστήµατα Σχεδιάζονται από Latches Σύγχρονα Ακολουθιακά Κυκλώµατα 4

5 Βασικό Κύκλωµα RS Μανδαλωτής (ΟΥΤΕ) Ένα κύκλωµα latch µπορεί να διατηρήσει την εσωτερική του κατάσταση επ αόριστο έως ότου κάποιο σήµα εισόδου το κάνει να αλλάξει κατάσταση. 1 0 Μανταλωτής SR (latch) 01? Q : κανονική έξοδος Q : συµπληρωµατική έξοδος R : είσοδος επαναφοράς S : είσοδος θέσης Για ίδια είσοδο δίνει διαφορετική έξοδο. Κρατάει την προηγούµενη κατάσταση (ακολουθιακό). Σύγχρονα Ακολουθιακά Κυκλώµατα 5

6 Βασικό Κύκλωµα RS Μανδαλωτή Το κύκλωµα λειτουργεί µε τις δύο του εισόδους κανονικά στο 1 εκτός αν θέλουµε να αλλάξουµε κατάσταση. Με την εφαρµογή ενός στιγµιαίου 0 στην είσοδο θέσης, η έξοδος Q γίνεται 1. Με την εφαρµογή ενός στιγµιαίου 0 στην είσοδο επαναφοράς, η έξοδος Q γίνεται 0. Σύγχρονα Ακολουθιακά Κυκλώµατα 6

7 RS Μανδαλωτής Οι ψηφιακές πύλες έχουν καθυστέρηση Οι είσοδοι των flip flop µπορεί να αλλάζουν συνεχώς µέχρι να σταθεροποιηθούν ns ns ns R 01 t = ns ns S 1 0 Οι είσοδοι των Latches πρέπει να αποµονώνονται µέχρι το συνδυαστικό κύκλωµα να ηρεµήσει Σύγχρονα Ακολουθιακά Κυκλώµατα 7

8 RS Μανδαλωτής µε επίτρεψη S' 1 10 R' 1 H λειτουργία του flip flop τροποποιείται µε την τοποθέτηση πρόσθετης εισόδου ελέγχου που καθορίζει πότε θα αλλαχθεί η κατάστασή του. Σύγχρονα Ακολουθιακά Κυκλώµατα 8

9 D Μανδαλωτής Εξασφαλίζει ότι οι είσοδοι του flip flop δεν θα πάνε ποτέ στο 1 ταυτόχρονα. Ταυτόχρονα όµως δεν πάνε ποτέ ούτε στο 0 οπότε χάνουµε την διατήρηση της προηγούµενης κατάστασης Φυλασσόµενος Μανταλωτής D (gated D-latch). Σύγχρονα Ακολουθιακά Κυκλώµατα 9

10 Γραφικά Σύµβολα Μανδαλωτών Στη σχεδίαση των ακολουθιακών κυκλωµάτων δεν µας ενδιαφέρει το εσωτερικό των µανδαλωτών αλλά µόνο η διεπαφή τους Σύγχρονα Ακολουθιακά Κυκλώµατα 10

11 Πρόβληµα Μανδαλωτών Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Μανδαλωτές Οι µανδαλωτές δηµιουργούν αστάθεια στα σύγχρονα κυκλώµατα καθώς αλλαζουν τιµή για µεγάλο χρονικό διάστηµα Όσο οι µαδαλωτές αλλάζουν τιµή το συνδυαστικό κύκλωµα επαναϋπολογίζει την κατάσταση του και µπορεί να αλλάξει την τιµή στις εισόδους των µανδαλωτών Σύγχρονα Ακολουθιακά Κυκλώµατα 11

12 Πυροδότηση των Flip-Flops The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again. The image cannot 1 be displayed. Your computer may not have enough memory to open 01 the image, or the image may have been corrupted. Restart your computer, 01 and then open the file again. If the red x still appears, you may have to delete the image and then insert it again Η πυροδότηση εξαλείφει το πρόβληµα της αστάθειας ακολουθώντας δύο διαφορετικές µεθοδολογίες: 1. Τοποθετεί ένα δεύτερο αποθηκευτικό στοιχείο το οποίο λειτουργεί συµπληρωµατικά µε το 1ο και κόβει την ανάδραση που δηµιουργεί το πρόβληµα. 2. Επιτρέπει την αποθήκευση να γίνεται στιγµιαία (κατά την άνοδο ή κάθοδο του ρολογιού) ώστε να µην υπάρχει χρόνος ενεργοποίησης της ανάδρασης και πρόκλησης έτσι αστάθειας. Σύγχρονα Ακολουθιακά Κυκλώµατα 12

13 Πυροδότηση των Flip-Flops Πυροδότηση είναι η αλλαγή κάποιας εισόδου του flip-flop που προκαλεί αλλαγή στην κατάστασή του. Είδη: level sensitive - edge triggered Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Σε δειγµατοληψία µε τον παλµό ρολογιού (level) το κύκλωµα µπορεί να οδηγηθεί σε αστάθεια. Σε δειγµατοληψία µε την ακµή ρολογιού (edge) το κύκλωµα δεν θα έχει πρόβληµα. Θετικός Παλµός Αρνητικός Παλµός Θετική Ακµή Αρνητική Ακµή Θετική Ακµή Σύγχρονα Ακολουθιακά Κυκλώµατα 13

14 Flip-Flop Αφέντη-Σκλάβου Το flip flop Αφέντη-Σκλάβου περιέχει δύο απλά flip flops. Το ένα εκτελεί χρέη αφέντη και το άλλο χρέη σκλάβου. Μπορούν να κατασκευαστούν όλοι οι τύποι flip-flops. 0 1 Αρνητικά ακµοπυροδότητο CLK = 0 à Αφέντης: απενεργοποιηµένος, Σκλάβος: ενεργός CLK = 1 à. Αφέντης: ενεργός, Σκλάβος: απενεργοποιηµένος Σύγχρονα Ακολουθιακά Κυκλώµατα 14

15 Flip-Flop Αφέντη-Σκλάβου a D D Q a D Q Q Qa t-1 CP Q 01 CP Q Q 10 CP CP = 0 à Αφέντης: απενεργοποιηµένος, Σκλάβος: ενεργός CP = 1 à. Αφέντης: ενεργός, Σκλάβος: απενεργοποιηµένος Σύγχρονα Ακολουθιακά Κυκλώµατα 15

16 Ακµοπυροδότητα Flip-Flops Στο ακµοπυροδότητο flip-flop όλες οι αλλαγές στις εξόδους συµβαίνουν σε µία ακµή. Αποτελείται ουσιαστικά από τρία βασικά flip-flops. Μερικά ακµοπυροδότητα flipflops αντιδρούν στην αρνητική ακµή του ρολογιού και άλλα στη θετική ακµή. Σύγχρονα Ακολουθιακά Κυκλώµατα 16

17 Ακµοπυροδότητα Flip-Flops Επιβάλει την τήρηση ορισµένων χρονικών προδιαγραφών για να λειτουργήσει σωστά: Χρόνος Προετοιµασίας και Χρόνος Κρατήµατος Όταν CP=0, το 3 ο FF παίρνει εισόδους (1,1) και διατηρεί την κατάσταση του. Σύγχρονα Ακολουθιακά Κυκλώµατα 17

18 Ακµοπυροδότητα Flip-Flops Σύγχρονα Ακολουθιακά Κυκλώµατα 18

19 Ακµοπυροδότητα Flip-Flops Setup Time: Χρόνος Προετοιµασίας πριν την ακµή στον οποίο η είσοδος D πρέπει να κρατηθεί σταθερή για να κλειδωθεί. Hold Time: Χρόνος Κρατήµατος µετά την ακµή στον οποίο η είσοδος D πρέπει να κρατηθεί σταθερή για να κλειδωθεί. Σύγχρονα Ακολουθιακά Κυκλώµατα 19

20 JK Flip-Flop H απροσδιόριστη κατάσταση του RS εδώ προσδιορίζεται και αξιοποιείται. 0 0 Q t-1 Q t Q t-1 Q t Με JK=00 διατηρεί την προηγούµενη κατάσταση Σύγχρονα Ακολουθιακά Κυκλώµατα 20

21 JK Flip-Flop H απροσδιόριστη κατάσταση του RS εδώ προσδιορίζεται και αξιοποιείται Q0 t-1 Q0 t-1 Q1 t Q t-1 Με JK=01 µηδενίζεται Σύγχρονα Ακολουθιακά Κυκλώµατα 21

22 JK Flip-Flop Q t-1 1 Q0 t-1 Q1 t-1 Q0 t-1 0 Με JK=10 τίθεται Σύγχρονα Ακολουθιακά Κυκλώµατα 22

23 JK Flip-Flop Με JK=11 αντιστρέφει την προηγούµενη κατάσταση Σύγχρονα Ακολουθιακά Κυκλώµατα 23

24 JK Flip-Flop H απροσδιόριστη κατάσταση του RS εδώ προσδιορίζεται και αξιοποιείται. R S Αν CP=1 για αρκετό χρόνο και J=K=1 τότε οι έξοδοι θα αντιστρέφονται συνεχώς. Για τον λόγο αυτό χρησιµοποιούνται τα edge-triggered, master-slave ffs. retain set-reset invert Σύγχρονα Ακολουθιακά Κυκλώµατα 24

25 JK Flip-Flop Με JK = 00 διατηρεί την προηγούµενη κατάσταση Q Q Σύγχρονα Ακολουθιακά Κυκλώµατα 25

26 JK Flip-Flop Με JK = 01 µηδενίζει το D Flip Flop Σύγχρονα Ακολουθιακά Κυκλώµατα 26

27 JK Flip-Flop Με JK = 10 θέτει το FF στην µονάδα 1 0 Q' Q 1 Σύγχρονα Ακολουθιακά Κυκλώµατα 27

28 JK Flip-Flop Με JK = 11 αντιστρέφει 1 1 Q' 0 Q' Η θετική ακµή εξασφαλίζει ότι θα γίνει µία φορά η αντιστροφή Σύγχρονα Ακολουθιακά Κυκλώµατα 28

29 T Flip-Flop Είναι µία παραλλαγή του JK µε µία µόνο είσοδο Τ και όταν Τ=1 αντιστρέφει την κατάστασή του. Σύγχρονα Ακολουθιακά Κυκλώµατα 29

30 T Flip-Flop Υπάρχουν πολλοί τρόποι σχεδίασης ενός Flip Flop Σύγχρονα Ακολουθιακά Κυκλώµατα 30

31 Χαρακτηριστικοί Πίνακες Q(t+1) = JQ'+K'Q Q(t+1) = D Q(t+1) = T xor Q Σύγχρονα Ακολουθιακά Κυκλώµατα 31

32 Ασύγχρονες είσοδοι Παρέχουν δυνατότητα θέσης /µηδένισης ανεξάρτητης του ρολογιού Σύγχρονα Ακολουθιακά Κυκλώµατα 32

33 Γραφικά Σύµβολα Flip-Flops Το τρίγωνο δείχνει λειτουργία στη θετική ακµή. Το τρίγωνο µε ένα κύκλο δείχνει λειτουργία στην αρνητική ακµή. Παρέχονται και οι δύο συµπληρωµατικές έξοδοι. Παρέχονται ασύγχρονες είσοδοι θέσης και µηδένισης. Σύγχρονα Ακολουθιακά Κυκλώµατα 33

34 Ανάλυση Ακολουθιακών Κυκλωµάτων Η ανάλυση των ακολουθιακών κυκλωµάτων έγκειται στην εύρεση ενός πίνακα ή διαγράµµατος για τη χρονική ακολουθία εισόδων, εξόδων και εσωτερικών καταστάσεων. Επόµενη Κατάσταση Παρούσα Κατάσταση Εξισώσεις κατάστασης Α(t+1)=A(t)x(t)+B(t)x(t) B(t+1)=A (t)x(t) A(t+1)=Ax+Bx B(t+1)=A x y(t)=(a+b)x Υπολογισµός Επόµενης Κατάστασης Σύγχρονα Ακολουθιακά Κυκλώµατα 34

35 Πίνακας Καταστάσεων A(t+1)=Ax+Bx B(t+1)=A x y(t)=(a+b)x Η µετάβαση καταστάσεων προϋποθέτει την έλευση ακµών ρολογιού οι οποίες όµως δεν συµπεριλαµβάνονται στον πίνακα Αντιµετωπίζεται όπως το αριστερό µέρος των πινάκων αλήθειας Σύγχρονα Ακολουθιακά Κυκλώµατα 35

36 Πίνακας Καταστάσεων Εναλλακτική µορφή του Πίνακα Καταστάσεων Οι πληροφορίες που περιέχονται στον πίνακα καταστάσεων µπορούν να παρασταθούν σχηµατικά µε το διάγραµµα καταστάσεων. Χρήση σε HDLs Σύγχρονα Ακολουθιακά Κυκλώµατα 36

37 Συναρτήσεις εισόδου των Flip Flops Ένα ακολουθιακό κύκλωµα µπορεί να περιγραφτεί από τις συναρτήσεις εξόδου καθώς και τις συναρτήσεις εισόδων των flip flops. J A =BC x+b Cx K A =B+y Κάθε είσοδος ενός FF ονοµάζεται όπως και η έξοδος Με τον ίδιο τρόπο προσπαθούµε να σχεδιάσουµε ένα ακολουθιακό κύκλωµα Σύγχρονα Ακολουθιακά Κυκλώµατα 37

38 Ανάλυση Ακολουθιακού Κυκλώµατος Ανάλυση ακολουθιακού κυκλώµατος: 1. Υπολογισµός των δυαδικών τιµών κάθε συνάρτησης εισόδου flip flop µε την παρούσα κατάσταση και τις µεταβλητές εισόδου. 2. Χρήση του χαρακτηριστικού πίνακα για καθορισµό της επόµενης κατάστασης. Σύγχρονα Ακολουθιακά Κυκλώµατα 38

39 Κύκλωµα µε D flip flop D A = A xor x xor y Η επόµενη κατάσταση ταυτίζεται µε την είσοδο D A Σύγχρονα Ακολουθιακά Κυκλώµατα 39

40 Ακολουθιακό κύκλωµα µε JK FFs JA = B KA = Bx JB = x KB = A x Σύγχρονα Ακολουθιακά Κυκλώµατα 40

41 Παράδειγµα: Ακολουθιακό κύκλωµα µε JK FFs JA = B KA = Bx JB = x KB = A x Σύγχρονα Ακολουθιακά Κυκλώµατα 41

42 Ακολουθιακό κύκλωµα µε T FFs T A = Bx T B = x y = AB Σύγχρονα Ακολουθιακά Κυκλώµατα 42

43 Ακολουθιακό κύκλωµα µε T FFs Προσοχή: η έξοδος δηλώνεται και εσωτερικά στην κάθε κατάσταση Σύγχρονα Ακολουθιακά Κυκλώµατα 43

44 Μοντέλα Mealy και Moore Οι έξοδοι είναι συναρτήσεις της παρούσας κατάστασης και των εισόδων. Οι έξοδοι είναι συναρτήσεις της παρούσας κατάστασης µόνο. Σύγχρονα Ακολουθιακά Κυκλώµατα 44

45 Ελαχιστοποίηση Καταστάσεων Ελαχιστοποίηση του κυκλώµατος: ελαχιστοποίηση πυλών και αριθµού flip flops (ή αλλιώς αριθµού καταστάσεων). Οι αλγόριθµοι ελαχιστοποιούν τις εσωτερικές καταστάσεις χωρίς να αλλάζουν τις προδιαγραφές εισόδου/εξόδου. Κατάσταση Είσοδος Έξοδος a a b c d e f f g f g a Οι εσωτερικές καταστάσεις είναι αδιάφορες. Στόχος είναι να διατηρηθεί ίδια η ακολουθία εισόδων-εξόδων. Σύγχρονα Ακολουθιακά Κυκλώµατα 45

46 Ελαχιστοποίηση Καταστάσεων Κανόνας: Δύο καταστάσεις είναι ισοδύναµες αν για κάθε είσοδο δίνουν ακριβώς την ίδια έξοδο και στέλνουν το κύκλωµα στην ίδια ή σε ισοδύναµη κατάσταση. Όταν δύο καταστάσεις είναι ισοδύναµες τότε η µία από τις δύο µπορεί να απαλειφθεί. e d d Αντικατάσταση της g µε την ισοδύναµη της Σύγχρονα Ακολουθιακά Κυκλώµατα 46

47 Ελαχιστοποίηση Καταστάσεων Σύγχρονα Ακολουθιακά Κυκλώµατα 47

48 Ελαχιστοποίηση Καταστάσεων Σύγχρονα Ακολουθιακά Κυκλώµατα 48

49 Ελαχιστοποίηση Καταστάσεων Κατάσταση a a b c d e f f g f g a Είσοδος Έξοδος a a b c d e d d e d e a Κατάσταση Είσοδος Έξοδος a a b c d e d d e d e a Η µείωση των εσωτερικών καταστάσεων µπορεί να οδηγήσει σε µείωση του αριθµού των flip flops αλλά και απλοποίηση των συνδυαστικών κυκλωµάτων αφού οι αχρησιµοποίητες καταστάσεις ισοδυναµούν µε αδιάφορους όρους. Σύγχρονα Ακολουθιακά Κυκλώµατα 49

50 Κωδικοποίηση Καταστάσεων Κάθε κατάσταση πρέπει να έχει διακριτή τιµή Σε κυκλώµατα που δεν µας ενδιαφέρουν οι εσωτερικές καταστάσεις (οι έξοδοι δεν οδηγούνται κατευθείαν από αυτές) µπορούµε να τις κωδικοποιήσουµε µε δυαδικά ψηφία όπως θέλουµε για να ελαχιστοποιήσουµε το κόστος του κυκλώµατος. Μεγάλη εφαρµογή σε περιγραφές υψηλού επιπέδου Σύγχρονα Ακολουθιακά Κυκλώµατα 50

51 Κωδικοποίηση Καταστάσεων Πόσα δυαδικά ψηφία χρειαζόµαστε; Επηρεάζει ο αριθµός των ψηφίων το κύκλωµα; Διαφορετική ανάθεση συνδυασµών επηρεάζει το κύκλωµα; Σύγχρονα Ακολουθιακά Κυκλώµατα 51

52 Γνωστές Κωδικοποιήσεις Σύγχρονα Ακολουθιακά Κυκλώµατα 52

53 Σχεδίαση Ακολουθιακών Κυκλωµάτων Είναι η αντίστροφη διαδικασία της ανάλυσης. Θέτουµε κάποιες προδιαγραφές για ένα κύκλωµα (πχ διάγραµµα καταστάσεων) Ελαχιστοποιούµε το πλήθος των καταστάσεων Αυτοµατοποιηµένα βήµατα µε αλγόριθµους σύνθεσης Αναθέτουµε δυαδικές τιµές στις καταστάσεις Σχεδιάζουµε το λογικό διάγραµµα Φτιάχνουµε τον κωδικοποιηµένο πίνακα καταστάσεων Απλοποιούµε τις συναρτήσεις κατάστασης και εξόδου Σύγχρονα Ακολουθιακά Κυκλώµατα 53

54 Παράδειγµα µε D-FF Προδιαγραφές: Ζητείται κύκλωµα που θα ανιχνεύει µία ακολουθία τριών ή περισσοτέρων µονάδων σε µία σειριακή ακολουθία δυαδικών ψηφίων. Σύγχρονα Ακολουθιακά Κυκλώµατα 54

55 Παράδειγµα µε D-FF Έχουµε 4 καταστάσεις και τις κωδικοποιούµε µε 4 δυαδικές λέξεις των 2 ψηφίων η κάθε µία: S 0 :00, S 1 :01, S 2 :10, S 3 :11 Σύγχρονα Ακολουθιακά Κυκλώµατα 55

56 Παράδειγµα µε D-FF Στην περίπτωση των D-FF η επόµενη κατάσταση ταυτίζεται µε την τιµή της εισόδου πριν την έλευση της ακµής του ρολογιού Στους χάρτες τοποθετούµε τις τιµές των εισόδων των D-FF που ταυτίζονται µε τις τιµές της επόµενης κατάστασης. Σύγχρονα Ακολουθιακά Κυκλώµατα 56

57 Παράδειγµα µε D-FF Σύγχρονα Ακολουθιακά Κυκλώµατα 57

58 Πίνακες Διέγερσης των flip flops Όταν χρησιµοποιούνται RS, T, JK Flip Flop η διαδικασία σχεδίασης είναι πιο περίπλοκη καθώς οι συναρτήσεις εισόδων πρέπει να υπολογιστούν από την µετάβαση µεταξύ καταστάσεων Πίνακας Διέγερσης (Excitation Table): Πίνακας που δίνει τις απαιτούµενες εισόδους για ορισµένη αλλαγή της κατάστασης. Σύγχρονα Ακολουθιακά Κυκλώµατα 58

59 Πίνακες Διέγερσης των flip flops Πίνακας Διέγερσης (Excitation Table): Πίνακας που δίνει τις απαιτούµενες εισόδους για ορισµένη αλλαγή της κατάστασης. Σύγχρονα Ακολουθιακά Κυκλώµατα 59

60 Παράδειγµα Σχεδίασης µε JK FF Σύγχρονα Ακολουθιακά Κυκλώµατα 60

61 Παράδειγµα Σχεδίασης µε JK FF Σύγχρονα Ακολουθιακά Κυκλώµατα 61

62 Παράδειγµα Σχεδίασης µε JK FF Σύγχρονα Ακολουθιακά Κυκλώµατα 62

63 Σχεδίαση µε T Flip Flops Προδιαγραφές: Ζητείται µετρητής από το Μετρητής: κύκλωµα που διέρχεται από όλες τις καταστάσεις 000, 001, 010, 011, 100, 101, 110, 111, 000,... Σύγχρονα Ακολουθιακά Κυκλώµατα 63

64 Σχεδίαση µε T Flip Flops Οι αχρησιµοποίητες καταστάσεις αποτελούν αδιάφορους όρους. Σύγχρονα Ακολουθιακά Κυκλώµατα 64

65 Σχεδίαση µε T Flip Flops Σύγχρονα Ακολουθιακά Κυκλώµατα 65

66 Σχεδίαση µε Αχρησιµοποίητες Καταστάσεις Οι αχρησιµοποίητες καταστάσεις αποτελούν αδιάφορους όρους. Παράδειγµα: Υλοποίηση ακολουθιακού κυκλώµατος µε RS FFs Σύγχρονα Ακολουθιακά Κυκλώµατα 66

67 Παράδειγµα Σύγχρονα Ακολουθιακά Κυκλώµατα 67

68 Παράδειγµα Σύγχρονα Ακολουθιακά Κυκλώµατα 68

69 Σχεδίαση µε Αχρησιµοποίητες Καταστάσεις Το κύκλωµα δεν πρέπει να βρεθεί σε µία από τις αχρησιµοποίητες καταστάσεις του γιατί τότε θα έχει απροσδιόριστη συµπεριφορά. Έτσι αρχικά τα Flip Flops αρχικοποιούνται σε προκαθορισµένη κατάσταση. Πρέπει να εξασφαλίζουµε ότι δεν υπάρχει περίπτωση να ταλαντεύεται το κύκλωµα ανάµεσα σε δύο ή περισσότερες 000 αχρησιµοποίητες καταστάσεις µε κίνδυνο να µην µπορεί να εξέλθει από αυτές Π.χ αχρησ.: 000, 110, 111 Αν συµβεί αυτό τότε ξανασχεδιάζουµε το κύκλωµα έτσι ώστε να σπάσουµε τους κύκλους. Σύγχρονα Ακολουθιακά Κυκλώµατα 69

70 Σχεδίαση µε Αχρησιµοποίητες Καταστάσεις Αποφυγή άκυρων καταστάσεων µε κύκλους Όλες οι αδιάφορες καταστάσεις θα πηγαίνουν σε µοναδική επόµενη που θα χειρίζεται το λάθος. Όλες οι αδιάφορες καταστάσεις θα πηγαίνουν σε οποιαδήποτε έγκυρη επόµενη. State Machines µε χειρισµό λάθους Το κύκλωµα µπορεί να είναι απλούστερο αλλά δεν υπάρχει χειρισµός λάθους Σχεδίαση µε αδιάφορες καταστάσεις και σε περίπτωση κύκλων επανασχεδίαση Σύγχρονα Ακολουθιακά Κυκλώµατα 70

71 Σχεδίαση Μετρητών Ένα ακολουθιακό κύκλωµα που περνάει από µία προδιαγεγραµµένη ακολουθία καταστάσεων µε απλούς παλµούς ονοµάζεται µετρητής. Δεν έχει εισόδους Παράδειγµα: Δυαδικός µετρητής 3 bit 0 Σύγχρονα Ακολουθιακά Κυκλώµατα 71

72 Παράδειγµα Σύγχρονα Ακολουθιακά Κυκλώµατα 72

73 Παράδειγµα: Μετρητής µε µη δυαδική ακολουθία Σύγχρονα Ακολουθιακά Κυκλώµατα 73

74 Παράδειγµα: Μετρητής µε µη δυαδική ακολουθία JA = B KA = B JB = C KB = 1 JC = B KC = 1 Με ανάλυση εξετάζουµε αχρησιµοποίητες καταστάσεις Σύγχρονα Ακολουθιακά Κυκλώµατα 74

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα

Κυκλώµατα. Εισαγωγή. Συνδυαστικό Κύκλωµα 6 η Θεµατική Ενότητα : Σύγχρονα Ακολουθιακά Κυκλώµατα Εισαγωγή Είσοδοι Συνδυαστικό Κύκλωµα Έξοδοι Στοιχεία Μνήµης Κατάσταση Ακολουθιακού Κυκλώµατος : περιεχόµενα στοιχείων µνήµης Η έξοδος εξαρτάται από

Διαβάστε περισσότερα

5. Σύγχρονα Ακολουθιακά Κυκλώματα

5. Σύγχρονα Ακολουθιακά Κυκλώματα 5. Σύγχρονα Ακολουθιακά Κυκλώματα Ακολουθιακό (sequential) λέμε το σύστημα που περιέχει στοιχεία μνήμης, δηλ. κυκλώματα αποθήκευσης δυαδικής πληροφορίας Γενικό διάγραμμα ακολουθιακού κυκλώματος - Αποτελείται

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 9. Tα Flip-Flop

ΑΣΚΗΣΗ 9. Tα Flip-Flop ΑΣΚΗΣΗ 9 Tα Flip-Flop 9.1. ΣΚΟΠΟΣ Η κατανόηση της λειτουργίας των στοιχείων μνήμης των ψηφιακών κυκλωμάτων. Τα δομικά στοιχεία μνήμης είναι οι μανδαλωτές (latches) και τα Flip-Flop. 9.2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων. Ψηφιακή Σχεδίαση. Κεφάλαιο 5: Σύγχρονη Ακολουθιακή ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ (Τ.Ε.Ι.) ΚΡΗΤΗΣ Τµήµα Εφαρµοσµένης Πληροφορικής & Πολυµέσων Ψηφιακή Σχεδίαση Κεφάλαιο 5: Σύγχρονη Ακολουθιακή Λογική Σύγχρονα Ακολουθιακά Κυκλώµατα Είσοδοι Συνδυαστικό κύκλωµα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008

ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2008 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops και Μετρητές Ριπής Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops

K24 Ψηφιακά Ηλεκτρονικά 9: Flip-Flops K24 Ψηφιακά Ηλεκτρονικά 9: TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 1 2 3 Γενικά Ύστερα από τη μελέτη συνδυαστικών ψηφιακών κυκλωμάτων, θα μελετήσουμε

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f.

6.1 Καταχωρητές. Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. 6. Καταχωρητές Ένας καταχωρητής είναι μια ομάδα από f/f αλλά μπορεί να περιέχει και πύλες. Καταχωρητής των n ψηφίων αποτελείται από n f/f. Καταχωρητής 4 ψηφίων Καταχωρητής με παράλληλη φόρτωση Η εισαγωγή

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops 1 ΗΜΥ-211: Εργαστήριο Σχεδιασμού Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα (συν.) Κυκλώματα που Κυκλώματα που αποθηκεύουν εξετάσαμε μέχρι τώρα πληροφορίες Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches), Flip-FlopsFlops

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 100 ΕΡΩΤΗΣΕΙΣ ΜΕ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΑΠΑΝΤΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 1) Να μετατρέψετε τον δεκαδικό αριθμό (60,25) 10, στον αντίστοιχο δυαδικό 11111,11 111001,01 111100,01 100111,1 111100,01 2)

Διαβάστε περισσότερα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα

Άσκηση 3 Ένα νέο είδος flip flop έχει τον ακόλουθο πίνακα αληθείας : I 1 I 0 Q (t+1) Q (t) 1 0 ~Q (t) Κατασκευάστε τον πίνακα Άσκηση Δίδονται οι ακόλουθες κυματομορφές ρολογιού και εισόδου D που είναι κοινή σε ένα D latch και ένα D flip flop. Το latch είναι θετικά ενεργό, ενώ το ff θετικά ακμοπυροδοτούμενο. Σχεδιάστε τις κυματομορφές

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ

ΑΣΚΗΣΗ 10 ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ ΑΣΚΗΣΗ ΣΧΕΔΙΑΣΗ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ.. ΣΚΟΠΟΣ Η σχεδίαση ακολουθιακών κυκλωμάτων..2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ.2.. ΑΛΓΟΡΙΘΜΟΣ ΣΧΕΔΙΑΣΗΣ ΑΚΟΛΟΥΘΙΑΚΩΝ ΚΥΚΛΩΜΑΤΩΝ Τα ψηφιακά κυκλώματα με μνήμη ονομάζονται ακολουθιακά.

Διαβάστε περισσότερα

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009.

Αυγ-13 Ακολουθιακά Κυκλώματα: Μανδαλωτές και Flip-Flops. ΗΜΥ 210: Σχεδιασμό Ψηφιακών Συστημάτων, Χειμερινό Εξάμηνο 2009. ΗΜΥ-20: Σχεδιασμός Ψηφιακών Συστημάτων Ακολουθιακά Κυκλώματα: Μανδαλωτές (Latches) και Flip-Flops Flops Διδάσκουσα: Μαρία Κ. Μιχαήλ Ακολουθιακά Κυκλώματα Συνδυαστική Λογική: Η τιμή σε μία έξοδο εξαρτάται

Διαβάστε περισσότερα

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS

Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Ενότητα ΑΡΧΕΣ ΑΚΟΛΟΥΘΙΑΚΗΣ ΛΟΓΙΚΗΣ LATCHES & FLIP-FLOPS Γενικές Γραμμές Ακολουθιακή Λογική Μεταστάθεια S-R RLatch h( (active high h&l low) S-R Latch with Enable Latch Flip-Flop Ασύγχρονοι είσοδοι PRESET

Διαβάστε περισσότερα

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης

7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Μονάδες Μνήµης 7 η Θεµατική Ενότητα : Καταχωρητές, Μετρητές και Εισαγωγή Καταχωρητής: είναι µία οµάδα από δυαδικά κύτταρα αποθήκευσης και από λογικές πύλες που διεκπεραιώνουν την µεταφορά πληροφοριών. Οι µετρητές είναι

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ FLIP-FLOP ΤΟ ΒΑΣΙΚΟ FLIP-FLOP ΧΡΟΝΙΖΟΜΕΝΑ FF ΤΥΠΟΥ FF ΤΥΠΟΥ D FLIP-FLOP Τ FLIP-FLOP ΠΥΡΟΔΟΤΗΣΗ ΤΩΝ FLIP-FLOP ΚΥΡΙΟ - ΕΞΑΡΤΗΜΕΝΟ FLIP-FLOP ΑΚΜΟΠΥΡΟΔΟΤΟΥΜΕΝΑ FLIP-FLOP ΚΥΚΛΩΜΑΤΑ

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7 FLIP - FLOP

ΑΣΚΗΣΗ 7 FLIP - FLOP ΑΣΚΗΣΗ 7 FLIP - FLOP Αντικείμενο της άσκησης: Η κατανόηση της δομής και λειτουργίας των Flip Flop. Flip - Flop Τα Flip Flop είναι δισταθή λογικά κυκλώματα με χαρακτηριστικά μνήμης και είναι τα πλέον βασικά

Διαβάστε περισσότερα

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ

Α. ΣΚΟΔΡΑΣ ΠΛΗ21 ΟΣΣ#2. 14 Δεκ 2008 ΠΑΤΡΑ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ 2008 Α. ΣΚΟΔΡΑΣ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ ΠΛΗ21 ΟΣΣ#2 14 Δεκ 2008 ΠΑΤΡΑ ΧΡΟΝΟΔΙΑΓΡΑΜΜΑ ΜΕΛΕΤΗΣ 7-segment display 7-segment display 7-segment display Αποκωδικοποιητής των 7 στοιχείων (τμημάτων) (7-segment decoder) Κύκλωμα αποκωδικοποίησης του στοιχείου

Διαβάστε περισσότερα

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

4 η Θεµατική Ενότητα : Συνδυαστική Λογική. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Επιµέλεια διαφανειών: Χρ. Καβουσιανός Λογικά Κυκλώµατα Ø Τα λογικά κυκλώµατα διακρίνονται σε συνδυαστικά (combinational) και ακολουθιακά (sequential). Ø Τα συνδυαστικά

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 11: Ακολουθιακά Κυκλώµατα (Κεφάλαιο 5, 6.1, 6.3, 6.4) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Ακολουθιακά

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE

Πανεπιστήµιο Κύπρου DEPARTMENT OF COMPUTER SCIENCE Πανεπιστήµιο Κύπρου DEPARTMENT OF OMPUTER SIENE S 121 Ψηφιακά Εργαστήρια LAB EXERISE 4 Sequential Logic Χρίστος ιονυσίου Σωτήρης ηµητριάδης Άνοιξη 2002 Εργαστήριο 4 Sequential ircuits A. Στόχοι Ο σκοπός

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος B) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗΛΟΓΙΚΗΣΧΕΔΙΑΣΗ Μάθημα 5: Στοιχεία µνήµης ενός ψηφίου Διδάσκων: Καθηγητής Ν. Φακωτάκης Στοιχεία μνήμης Ένα ψηφιακό λογικό κύκλωμα

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Καταχωρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές

Διαβάστε περισσότερα

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ

26-Nov-09. ΗΜΥ 210: Λογικός Σχεδιασμός, Χειμερινό Εξάμηνο Καταχωρητές 1. Διδάσκουσα: Μαρία Κ. Μιχαήλ ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009 Καταχωρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Καταχωρητές Παράλληλης

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Ανάλυση Ακολουθιακών Κυκλωμάτων 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Ανάλυση Ακολουθιακών Κυκλωμάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Ανάλυση Ακολουθιακών Κυκλωμάτων Ανάλυση: Ο καθορισμός μιας κατάλληλης περιγραφής η οποία επιδεικνύει

Διαβάστε περισσότερα

Καταστάσεων. Καταστάσεων

Καταστάσεων. Καταστάσεων 8 η Θεµατική Ενότητα : Εισαγωγή Ησχεδίαση ενός ψηφιακού συστήµατος µπορεί να διαιρεθεί σε δύο µέρη: τα κυκλώµατα επεξεργασίας δεδοµένων και τα κυκλώµατα ελέγχου. Το κύκλωµα ελέγχου δηµιουργεί σήµατα για

Διαβάστε περισσότερα

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών

Περίληψη. ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Εξάµηνο Παράδειγµα: Καταχωρητής 2-bit. Καταχωρητής 4-bit. Μνήµη Καταχωρητών ΗΜΥ-210: Λογικός Σχεδιασµός Εαρινό Κεφάλαιο 7 i: Καταχωρητές Περίληψη Καταχωρητές Παράλληλης Φόρτωσης Καταχωρητές Ολίσθησης Σειριακή Φόρτωση Σειριακή Ολίσθηση Καταχωρητές Ολίσθησης Παράλληλης Φόρτωσης

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώματα Flip-Flops

Ακολουθιακά Κυκλώματα Flip-Flops Ακολουθιακά Κυκλώματα Flip-Flops . Συνδυαστικα κυκλωματα Ακολουθιακα κυκλωματα x x 2 x n Συνδυαστικο κυκλωμα z z 2 z m z i =f i (x,x 2,,x n ) i =,2,,m 2. Ακολουθιακα κυκλωματα: x n Συνδυαστικο m z y κυκλωμα

Διαβάστε περισσότερα

βαθµίδων µε D FLIP-FLOP. Μονάδες 5

βαθµίδων µε D FLIP-FLOP. Μονάδες 5 Κεφάλαιιο: 6 ο Τίίτλος Κεφαλαίίου:: Μανταλωτές & Flip Flop (Ιούνιος 2004 ΤΕΕ Ηµερήσιο) Να σχεδιάσετε καταχωρητή δεξιάς ολίσθησης τεσσάρων βαθµίδων µε D FLIP-FLOP. Μονάδες 5 (Ιούνιος 2005 ΤΕΕ Ηµερήσιο)

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή

ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ. 6.1 Εισαγωγή ΚΕΦΑΛΑΙΟ 6 ΒΑΣΙΚΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 6. Εισαγωγή Τα ψηφιακά κυκλώματα διακρίνονται σε συνδυαστικά και ακολουθιακά. Τα κυκλώματα που εξετάσαμε στα προηγούμενα κεφάλαια ήταν συνδυαστικά. Οι τιμές των

Διαβάστε περισσότερα

Σύγχρονα ακολουθιακά κυκλώματα. URL:

Σύγχρονα ακολουθιακά κυκλώματα.   URL: DeÔtero Ex mhno FoÐthshc Σύγχρονα ακολουθιακά κυκλώματα Ge rgioc. Alexandrìpouloc Lèktorac P.D. 47/8 e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg Tm ma Epist mhc kai TeqnologÐac

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 8: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Α ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Κυκλώµατα οδηγούµενα από

Διαβάστε περισσότερα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα

Ακολουθιακά Κυκλώµατα (Sequential Circuits) Συνδυαστικά Κυκλώµατα (Combinational Circuits) Σύγχρονα και Ασύγχρονα Συνδυαστικά Κυκλώµατα (Combinational Circuits) Εξοδος οποιαδήποτε στιγµή εξαρτάται µόνο από τις τιµές στην είσοδο την ίδια στιγµή κολουθιακά Κυκλώµατα (Sequential Circuits) Aποθηκεύουν κατάσταση (state)

Διαβάστε περισσότερα

Εργαστήριο Ψηφιακής Σχεδίασης

Εργαστήριο Ψηφιακής Σχεδίασης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Εργαστήριο Ψηφιακής Σχεδίασης 8 Εργαστηριακές Ασκήσεις Χρ. Καβουσιανός Επίκουρος Καθηγητής 2014 Εργαστηριακές Ασκήσεις Ψηφιακής Σχεδίασης 2 Εργαστηριακές Ασκήσεις

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Νίκος Φακωτάκης, Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 7 ο. Γ. Τσιατούχας. VLSI Technology and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Ακολουθιακή Λογική Κεφάλαιο 7 ο Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταστάθεια 2. Μανδαλωτές 3. Flip Flops Flops 4. Δομές διοχέτευσης 5. Διανομή ρολογιού 6. Συγχρονισμός

Διαβάστε περισσότερα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα

K24 Ψηφιακά Ηλεκτρονικά 10: Ακολουθιακά Κυκλώματα K24 Ψηφιακά Ηλεκτρονικά : TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ ΤΕΧΝΟΛΟΓΙΚΟ Περιεχόμενα 2 3 Γενικά Όπως είδαμε και σε προηγούμενα μαθήματα, ένα ψηφιακό κύκλωμα ονομάζεται

Διαβάστε περισσότερα

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 )

Η συχνότητα f των παλµών 0 και 1 στην έξοδο Q n είναι. f Qn = 1/(T cl x 2 n+1 ) ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 9 ΥΑ ΙΚΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των απαριθµητών. Υλοποίηση ασύγχρονου απαριθµητή 4-bit µε χρήση JK Flip-Flop. Κατανόηση της αλλαγής του υπολοίπου

Διαβάστε περισσότερα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. 1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.  1 ΗΥ330 - Διάλεξη 7η - Ακολουθιακά Κυκλώματα HY330 Ψηφιακά - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/ce330 1 Μανταλωτές θετικής, αρνητικής πολικότητας Σχεδίαση με Μανταλωτές

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters)

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 16: Μετρητές (Counters) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Μετρητής Ριπής q Σύγχρονος

Διαβάστε περισσότερα

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ 13. ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΥΓΧΡΟΝΟ ΑΚΟΛΟΥΘΙΑΚΟ ΚΥΚΛΩΜΑ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 6: Απαριθµητές (µετρητές) Διδάσκων: Καθηγητής Ν. Φακωτάκης Ακολουθιακά κυκλώµατα Σύγχρονα (οδηγούµενα από

Διαβάστε περισσότερα

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ.

σύνθεση και απλοποίησή τους θεωρήµατα της άλγεβρας Boole, αξιώµατα του Huntington, κλπ. Εισαγωγή Εργαστήριο 2 ΛΟΓΙΚΑ ΚΥΚΛΩΜΑΤΑ Σκοπός του εργαστηρίου είναι να κατανοήσουµε τον τρόπο µε τον οποίο εκφράζεται η ψηφιακή λογική υλοποιώντας ασκήσεις απλά και σύνθετα λογικά κυκλώµατα (χρήση του

Διαβάστε περισσότερα

7 η διάλεξη Ακολουθιακά Κυκλώματα

7 η διάλεξη Ακολουθιακά Κυκλώματα 7 η διάλεξη Ακολουθιακά Κυκλώματα 1 2 3 4 5 6 7 Παραπάνω βλέπουμε ακολουθιακό κύκλωμα σχεδιασμένο με μανταλωτές διαφορετικής φάσης. Παρατηρούμε ότι συνδυαστική λογική μπορεί να προστεθεί μεταξύ και των

Διαβάστε περισσότερα

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1

ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων. Μετρητές 1 ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός Μετρητής

Διαβάστε περισσότερα

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2

Κεφάλαιο 10 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab. Ακολουθιακή Λογική 2 ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων Ακολουθιακή Λογική Κεφάλαιο 10 ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. Δισταθή κυκλώματα Μεταευστάθεια 2. Μανδαλωτές 3. Flip

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ

ΑΣΚΗΣΗ 10 ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ ΑΣΚΗΣΗ ΣΥΓΧΡΟΝΟΙ ΑΠΑΡΙΘΜΗΤΕΣ Στόχος της άσκησης: Η διαδικασία σχεδίασης σύγχρονων ακολουθιακών κυκλωμάτων. Χαρακτηριστικό παράδειγμα σύγχρονων ακολουθιακών κυκλωμάτων είναι οι σύγχρονοι μετρητές. Τις αδυναμίες

Διαβάστε περισσότερα

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21

Περιεχόµενα. Πρόλογος 11. 0 Εισαγωγή 21 Περιεχόµενα Πρόλογος 11 Σκοπός αυτού του βιβλίου 11 Σε ποιους απευθύνεται αυτό το βιβλίο 12 Βασικά χαρακτηριστικά του βιβλίου 12 Κάλυψη συστηµάτων CAD 14 Εργαστηριακή υποστήριξη 14 Συνοπτική παρουσίαση

Διαβάστε περισσότερα

C D C D C D C D A B

C D C D C D C D A B Απλοποίηση µέσω Πίνακα Karnaugh: Παράδειγµα - 2 Στον παρακάτω πίνακα έχει ήδη γίνει το «βήμα- 1». Επομένως: Βήμα 2: Δεν υπάρχουν απομονωμένα κελιά. Βήμα 3: Στο ζεύγος (3,7) το κελί 3 γειτνιάζει μόνο με

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ

ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΣΥΓΧΡΟΝΑ ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ Σύγχρονο ακολουθιακό κύκλωμα είναι εκείνο του οποίου όλα τα FFs χρονίζονταιμετοίδιο ρολόι (clock). Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Σχεδίαση Σύγχρονων Ακολουθιακών

Διαβάστε περισσότερα

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων

ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων ΗΜΥ-2: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Μετρητές Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Περίληψη Μετρητής Ριπής Σύγχρονος υαδικός

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 3: Ψηφιακή Λογική ΙI Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ. Τμήμα Ηλεκτρονικής. Πτυχιακή Εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Ηλεκτρονικής Πτυχιακή Εργασία Υλοποίηση σύγχρονων ακολουθιακών κυκλωμάτων σε VHDL για FPGAs/CPLDs και ανάλυση χρονισμών για εύρεση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH.

ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ.3 ΑΣΥΓΧΡΟΝΟΣ ΔYΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.5 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ.7 ΑΣΥΓΧΡΟΝΟΣ ΔΕΚΑΔΙΚΟΣ ΑΠΑΡΙΘΜΗΤΗΣ ΜΕ LATCH. ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΚΥΚΛΩΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΣΗΜΕΙΩΣΕΙΣ ΑΠΑΡΙΘΜΗΤΕΣ Κ. ΕΥΣΤΑΘΙΟΥ, Γ. ΠΑΠΑΔΟΠΟΥΛΟΣ

Διαβάστε περισσότερα

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6

Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop. Διάλεξη 6 Ακολουθιακά κυκλώματα: Μανδαλωτές και Flip-Flop Διάλεξη 6 Δομή της διάλεξης Εισαγωγή στην ακολουθιακή λογική Ομανδαλωτής SR Latch JK Flip-Flop D Flip-Flop Timing Definitions Latch vs Flip-Flop Ασκήσεις

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

Κυκλώματα αποθήκευσης με ρολόι

Κυκλώματα αποθήκευσης με ρολόι Κυκλώματα αποθήκευσης με ρολόι Latches και Flip-Flops Γιώργος Δημητρακόπουλος Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης 1 Γιατί χρειαζόμαστε τα ρολόγια Συνδιαστική λογική Η έξοδος εξαρτάται μόνο

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 Συµπληρωµατική ΔΙΑΛΕΞΗ 14: Περιγραφή Ακολουθιακών Κυκλωµάτων στη VHDL ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής

Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Σχεδίαση κυκλωμάτων ακολουθιακής λογικής Βασικές αρχές Σχεδίαση Latches και flip-flops Γιώργος Δημητρακόπουλος Δημοκρίτειο Πανεπιστήμιο Θράκης Φθινόπωρο 2013 Ψηφιακά ολοκληρωμένα κυκλώματα 1 Ακολουθιακή

Διαβάστε περισσότερα

Εισαγωγή στα ακολουθιακά στοιχεία CMOS

Εισαγωγή στα ακολουθιακά στοιχεία CMOS Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στη Σχεδίαση VLSI Εισαγωγή στα ακολουθιακά στοιχεία

Διαβάστε περισσότερα

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1

14. ΑΠΑΡΙΘΜΗΤΕΣ. e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 14. ΑΠΑΡΙΘΜΗΤΕΣ e-book ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ- ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ 1 ΑΠΑΡΙΘΜΗΤΕΣ ΤΡΟΠΟΣ ΥΛΟΠΟΙΗΣΗΣ KAI ΡΟΗ ΑΠΑΡΙΘΜΗΣΗΣ ΣΧΕ ΙΑΣΗ ΣΥΓΧΡΟΝΟΥ ΥΑ ΙΚΟΥ ΑΠΑΡΙΘΜΗΤΗ ΑΣΗΜΑΚΗΣ-ΒΟΥΡΒΟΥΛΑΚΗΣ-ΚΑΚΑΡΟΥΝΤΑΣ-ΛΕΛΙΓΚΟΥ

Διαβάστε περισσότερα

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032

Μετρητής Ριπής ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ. Αναφορά 9 ης. εργαστηριακής άσκησης: ΑΦΡΟΔΙΤΗ ΤΟΥΦΑ Α.Μ.:2024201100032 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ, ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Αναφορά 9 ης εργαστηριακής άσκησης: Μετρητής Ριπής ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ

e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ e-book ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΣ 1. Να μετατρέψετε τον δεκαδικό 16.25 σε δυαδικό. 2. Να μετατρέψετε τον δεκαδικό 18.75 σε δυαδικό και τον δεκαδικό 268 σε δεκαεξαδικό. 3. Να βρεθεί η βάση εκείνου του αριθμητικού

Διαβάστε περισσότερα

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter)

Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Στοιχεία Μνήμης, JKκαιD (Flip-Flops) Μετρητής Ριπής (Ripple Counter) ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε

ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ. Καλώς ήλθατε ΛΟΓΙΚH ΣΧΕΔΙΑΣH ΙΙ Καλώς ήλθατε Ωρολόγιο Πρόγραμμα Τα τυπικά (1/2) (2 ώρες παραδόσεις 1 ώρα φροντιστήριο) x 13 Πέμπτη 16:00 19:00, ΒΑ Στην αρχή μόνο παραδόσεις Τελική εξέταση : Γραπτώς, με ανοικτές σημειώσεις

Διαβάστε περισσότερα

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Ακολουθιακός Κώδικας

«Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο Ακολουθιακός Κώδικας «Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων» Χειμερινό εξάμηνο 2016-2017 Ακολουθιακός Κώδικας Παρασκευάς Κίτσος http://diceslab.cied.teiwest.gr Επίκουρος Καθηγητής Tμήμα Μηχανικών Πληροφορικής ΤΕ E-mail: pkitsos@teimes.gr

Διαβάστε περισσότερα

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Τμήμα Ηλεκτρολόγων Μηχανικών Εργαστήριο Ενσύρματης Τηλεπικοινωνίας ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ Μάθημα 9: Σύγχρονα ακολουθιακά κυκλώµατα (µέρος Β ) Διδάσκων: Καθηγητής Ν. Φακωτάκης Σχεδιασµός ακολουθίας παλµών

Διαβάστε περισσότερα

Ασύγχρονοι Απαριθμητές. Διάλεξη 7

Ασύγχρονοι Απαριθμητές. Διάλεξη 7 Ασύγχρονοι Απαριθμητές Διάλεξη 7 Δομή της διάλεξης Εισαγωγή στους Απαριθμητές Ασύγχρονος Δυαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής Ασύγχρονος Δεκαδικός Απαριθμητής με Latch Ασκήσεις 2 Ασύγχρονοι

Διαβάστε περισσότερα

Μοντέλα Αρχιτεκτονικής στην Σύνθεση

Μοντέλα Αρχιτεκτονικής στην Σύνθεση Μοντέλα Αρχιτεκτονικής στην Σύνθεση Σχεδιαστικά Στυλ & Αρχιτεκτονική Ο σχεδιαστής επιλέγει Σχεδιαστικό στυλ prioritized interrupt instruction buffer bus-oriented datapath serial I/O direct memory access

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 5 Ο. Η Λειτουργία της Οργάνωσης. Ι. Η Έννοια και η Φύση της Οργάνωσης 05/04/2016

ΜΑΘΗΜΑ 5 Ο. Η Λειτουργία της Οργάνωσης. Ι. Η Έννοια και η Φύση της Οργάνωσης 05/04/2016 ΜΑΘΗΜΑ 5 Ο Η Λειτουργία της Οργάνωσης Ι. Η Έννοια και η Φύση της Οργάνωσης Με τον όρο οργάνωση εννοούµε την εξεύρεση τρόπων και µεθόδων που θα συνενώσουν τα διαφορετικά ενδιαφέροντα των µελών ενός οργανισµού

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6. ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 13: Διαδικασία Σχεδιασµού Ακολουθιακών Κυκλωµάτων (Κεφάλαιο 6.3) ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy)

Διαβάστε περισσότερα

Σύγχρονοι Απαριθμητές. Διάλεξη 8

Σύγχρονοι Απαριθμητές. Διάλεξη 8 Σύγχρονοι Απαριθμητές Διάλεξη 8 Δομή της διάλεξης Εισαγωγή Σύγχρονος Δυαδικός Απαριθμητής Σύγχρονος Δεκαδικός Απαριθμητής Προγραμματιζόμενοι Απαριθμητές Ασκήσεις 2 Σύγχρονοι Απαριθμητές Εισαγωγή 3 Εισαγωγή

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Συστημάτων

Σχεδίαση Ψηφιακών Συστημάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 2: Βασικές Μονάδες Κυριάκης - Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM).

Υπάρχουν δύο τύποι μνήμης, η μνήμη τυχαίας προσπέλασης (Random Access Memory RAM) και η μνήμη ανάγνωσης-μόνο (Read-Only Memory ROM). Μνήμες Ένα από τα βασικά πλεονεκτήματα των ψηφιακών συστημάτων σε σχέση με τα αναλογικά, είναι η ευκολία αποθήκευσης μεγάλων ποσοτήτων πληροφοριών, είτε προσωρινά είτε μόνιμα Οι πληροφορίες αποθηκεύονται

Διαβάστε περισσότερα

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων

VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων VHDL για Σχεδιασµό Ακολουθιακών Κυκλωµάτων Διδάσκουσα: Μαρία Κ. Μιχαήλ Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών n VHDL Processes Περίληψη n Εντολές If-Then-Else και CASE

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων

Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Ανάλυση Σύγχρονων Ακολουθιακών Κυκλωμάτων Με τον όρο ανάλυση ενός κυκλώματος εννοούμε τον προσδιορισμό της συμπεριφοράς του κάτω από συγκεκριμένες συνθήκες λειτουργίας. Έτσι, για ένα συνδυαστικό κύκλωμα,

Διαβάστε περισσότερα

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΗΜΥ 210 ΣΧΕΔΙΑΣΜΟΣ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Χειµερινό Εξάµηνο 2016 ΔΙΑΛΕΞΗ 5: Το CMOS transistor και κυκλώµατα CMOS ΧΑΡΗΣ ΘΕΟΧΑΡΙΔΗΣ Επίκουρος Καθηγητής, ΗΜΜΥ (ttheocharides@ucy.ac.cy) Περίληψη q Κυκλώµατα

Διαβάστε περισσότερα

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός 2 η Θεµατική Ενότητα : Σύνθετα Συνδυαστικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Σύνθετα Συνδυαστικά Κυκλώµατα Πύλες AND Πύλες OR Πύλες NAND Τυχαία Λογική Πύλες NOR Πύλες XNOR Η ολοκληρωµένη

Διαβάστε περισσότερα

Ύλη Λογικού Σχεδιασµού Ι

Ύλη Λογικού Σχεδιασµού Ι 4 η Θεµατική Ενότητα : Συνδυαστική Λογική Ύλη Λογικού Σχεδιασµού Ι Κεφ 2 Κεφ 3 Κεφ 4 Κεφ 6 Συνδυαστική Λογική 2 Εισαγωγή Λογικά Κυκλώµατα Συνδυαστικά: Οι έξοδοι είναι συνάρτηση των εισόδων Ακολουθιακά:

Διαβάστε περισσότερα

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

1 η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα. Επιµέλεια διαφανειών: Χρ. Καβουσιανός η Θεµατική Ενότητα : Αριθµητικά Κυκλώµατα Επιµέλεια διαφανειών: Χρ. Καβουσιανός Άθροιση + + + + a +b 2c+s + Κρατούµενο προηγούµενης βαθµίδας κρατούµενο άθροισµα Μεταφέρεται στην επόµενη βαθµίδα σηµαντικότητας

Διαβάστε περισσότερα

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες

Περιεχόμενα. Πρώτο Κεφάλαιο. Εισαγωγή στα Ψηφιακά Συστήματα. Δεύτερο Κεφάλαιο. Αριθμητικά Συστήματα Κώδικες Πρώτο Κεφάλαιο Εισαγωγή στα Ψηφιακά Συστήματα 1.1 Αναλογικά και Ψηφιακά Σήματα και Συστήματα... 1 1.2 Βασικά Ψηφιακά Κυκλώματα... 3 1.3 Ολοκληρωμένα κυκλώματα... 4 1.4 Τυπωμένα κυκλώματα... 7 1.5 Εργαλεία

Διαβάστε περισσότερα

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI

Θέματα χρονισμού σε φλιπ-φλοπ και κυκλώματα VLSI Εθνικό Μετσόβιο Πολυτεχνείο Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής Εισαγωγή στην Σχεδίαση Συστημάτων VLSI Θέματα χρονισμού

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΑΠΛΟΠΟΙΗΣΗ και ΥΛΟΠΟΙΗΣΗ ΛΟΓΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Σκοπός: Η κατανόηση της σχέσης µιας λογικής συνάρτησης µε το αντίστοιχο κύκλωµα. Η απλοποίηση λογικών συναρτήσεων

Διαβάστε περισσότερα

Δυναμική Τιμολόγηση στο Λιανεμπόριο Τροφίμων

Δυναμική Τιμολόγηση στο Λιανεμπόριο Τροφίμων Δυναμική Τιμολόγηση στο Λιανεμπόριο Τροφίμων Πωλήσεις ή Μάρκετινγκ ; Αριστείδης Θεοτόκης Ερευνητής, ELTRUN Οικονομικό Πανεπιστήμιο Αθηνών Κατερίνα Πραμτάρη Επικ. Καθηγήτρια, Οικονομικό Πανεπιστήμιο Αθηνών

Διαβάστε περισσότερα

Σχεδίαση Ψηφιακών Συστημάτων

Σχεδίαση Ψηφιακών Συστημάτων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ψηφιακών Συστημάτων Ενότητα 6: Σύγχρονα Ακολουθιακά Κυκλώματα Κυριάκης Μπιτζάρος Ευστάθιος Τμήμα Ηλεκτρονικών Μηχανικών

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι

ΗΜΥ 210: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο Ένα συνδυαστικό κύκλωµα µπορεί να περιγραφεί από: Φεβ-05. n-είσοδοι ΗΜΥ 2: Λογικός Σχεδιασµός, Εαρινό Εξάµηνο 25 Φεβ-5 ΗΜΥ-2: Λογικός Σχεδιασµός Εαρινό Εξάµηνο 25 Κεφάλαιο 3 -i: Σχεδιασµός Συνδυαστικών Κυκλωµάτων Περίληψη Αρχές σχεδιασµού Ιεραρχία σχεδιασµού Σχεδιασµός

Διαβάστε περισσότερα

Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα

Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ΗΜΥ211 Εργαστήριο Ψηφιακών Συστηµάτων Καταχωρητές,Σύγχρονοι Μετρητές και ΑκολουθιακάΚυκλώματα ιδάσκων: ρ. Γιώργος Ζάγγουλος Πανεπιστήµιο Κύπρου Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ατζέντα

Διαβάστε περισσότερα

Ακίνητα Μηχανήματα - Στήριξη

Ακίνητα Μηχανήματα - Στήριξη Ακίνητα Μηχανήματα - Στήριξη Στόχοι Μαθήματος Ο φοιτητής θα πρέπει: Να περιγράφει και αναγνωρίζει τα μέρη των ακινήτων ορθοδοντικών μηχανημάτων. Να επεξηγεί τις βασικές αρχές λειτουργίας τους. Να επεξηγεί

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2007 Μάθημα : Ψηφιακά Ηλεκτρονικά Τεχνολογία ΙΙ Τεχνικών Σχολών, Θεωρητικής Κατεύθυνσης

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 1 Κεφάλαιο 8 Σχεδίαση στο Επίπεδο Μεταφοράς Περιεχομένων Καταχωρητών Ψηφιακή Λογική Σχεδίαση Γ. Θεοδωρίδης 2 Περίγραμμα Κεφαλαίου

Διαβάστε περισσότερα

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ

ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Εργαστήριο Λογικής Σχεδίασης Ψηφιακών Συστημάτων ΜΙΧΑΛΗΣ ΨΑΡΑΚΗΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2014-2015 ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΕΙΡΑΙΩΣ Τμήμα Πληροφορικής - Πανεπιστήμιο Πειραιώς i ΠΕΡΙΕΧΟΜΕΝΑ ΕΡΓΑΣΤΗΡΙΟ

Διαβάστε περισσότερα