Metode izmjera detalja. - ortogonalna - polarna (tahymetrijska)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Metode izmjera detalja. - ortogonalna - polarna (tahymetrijska)"

Transcript

1 Metode izmjera detalja - ortogonalna - polarna (tahymetrijska)

2 Geodetska izmjera Sve definicije geodezije kao nauke, ističu da je njezin primarni zadatak: mjerenje i prikazivanje većeg ili manjeg dijela površine Zemlje na planovima i kartama različitih mjerila. Geodetska izmjera je prikupljanje, obrada i prikazivanje podataka prikupljenim geodetskim metodama o reljefu i izgrađenim ili prirodnim objektima na površini Zemlje

3 Geodetska izmjera Vrste : Izmjera geodetske osnove control survey definiranje geodetske osnove Topografski izmjera topographic survey prikaz konfiguracije terena (reljefa), te položaja prirodnih i izgrađenih objekata; Građevinski izmjera - construction survey za izgradnju građevinskih objekata Izmjera zemljišta land survey za potrebe katastara Fotogrametrijska izmjera photogrammetric survey; Hidrografska izmjera hydrographic survey određivanja obalne crte, mjerenja morskih mijena, geoloških, geofizičkih, geomagnetskih i gravimetrijskih mjerenja mora i morskog dna

4 Geodetska izmjera Podaci o izmjerenom području osim u geodeziji koriste i u mnogim drugim područjima kao što su: kartografija, GIS, graditeljstvo, arhitektura, urbanizam i prostorno planiranje, agronomija, šumarstvo, promet, telekomunikacije, radiokomunikacije,

5 Geodetska izmjera Tok mjernog postupka Odabir instrumenta i metode: instrument biramo ovisno o predviđenoj metode metodu definiramo prema točnosti koju trebamo postići Postupak mjerenja: organizacija mjerenja: - priprema instrumentarija - odabir i priprema pomoćnog pribora - definiranje terenske ekipe i vremena početka mjerenja izvođenje terenskih mjerenja i registriranje mjerenih veličina terenska kontrola kvaliteta mjerenja izvedba "pomoćnih" mjerenja (npr. mjerenje meteoroloških parametara...)

6 Geodetska izmjera Metoda izmjere uključuje: instrument kojim mjerimo i odgovarajući pribor propisani postupak izvođenja mjerenja, koji omogućava ostvarivanje tražene kvalitete mjerenja (smanjivanje i eliminiranje pogrešaka...) postupak obrade mjerenih veličina način računanja traženih veličina

7 Geodetska izmjera Geodetske metode izmjere dijele se na dvije osnovne skupine: neposredne, kod kojih se i instrument i opažač nalaze se na površini Zemlje posredne kod kojih se izmjera terena izvodi iz zraka ili iz svemira

8 Geodetska izmjera Neposredne metode: ortogonalna rijetko se koristi polarna satelitska GNSS_RTK Koje se uglavnom koriste pri izmjeri terena danas Posredne metode: fotogrametrijska daljinska istraživanja (remote sensing)

9 Metode izmjere (snimanja)

10 Grafička izmjera mjerenje geodetskim stolom Većina katastarskih planova izrađena je u mjerilu 1:2880, a rjeđe u mjerilu 1:1440 na osnovu grafičke izmjere 10

11 Fotogrametrijska metoda Fotogrametrija na osnovi fotografskih mjernih snimaka u analognom ili digitalnom obliku i s određenim instrumentima mogu se dobiti trodimenzionalni prikazi terena i objekata. Dijeli se na: Terestričku fotogrametriju kamera se nalazi na vanjskoj površini Zemlje Aerofotogrametriju kamera je smještena u avionu ili helikopteru. Mjerna kamera Računalna obrada foto-snimaka 11

12 Daljinska istraživanja - Remote sensing Instrumenti za daljinska istraživanja su senzori smješteni najčešće u shuttle-ovima, satelitima, i u zrakoplovima Daljinska istraživanja primjenjuju se osim pri snimanju reljefa i u meteorologiji, agronomiji, praćenju potresa itd. Satelit LiDAR-Light Detection and Ranging snimke

13 Satelitska GPS metoda ili GNSS mjerenja Položaj točke na površini Zemlje definiran prostornim koordinatama (X,Y,Z) ili (j, l, h) Z.Šimić 13

14 Tahimetrijska metoda Tahimetrija mjerenjem kose duljine, horizontalnog i vertikalnog kuta s poznate točke prema nepoznatim točkama određuju se relativne polarne koordinate (x, y i H) točaka terena (detalja) S poznate točke se prije mjerenja na nepoznate točke izvodi orijentacija prema poznatoj točki mjere se relativne polarne koordinate: horizontalni kut α, zenitna udaljenost z kosa udaljenost d 14

15 Ortogonalna metoda Položaj točke određen relativnim pravokutnim koordinatama: A(x, y) apscisa (x) ordinata (y) A točka detalja pravi kut

16 Ortogonalna metoda Pribor za ortogonalnu metodu Čelični vrpca ( 50m ) _ položena u smjeru apscise Čelična vrpca ( 20-30m) _ za mjerenja uspostavljenih ordinata Dvostruka pentagonalna prizma s krutim viskom Tri trasirke Dva tronošca za trasirke Rad na terenu Grupa za snimanje: 2 geodetska stručnjaka i 3 figuranta Jedan geodetski stručnjak vodi skicu izmjere Drugi prizmom uspostavlja okomice na svaku točku detalja

17 Ortogonalna metoda Dvostruka pentagonalna prizma - dvije prizme ugrađene jedna iznad druge U prizmama se vide slike trasirki koje su postavljene na poligonskim točkama Koristi se za postavljanje u pravac na liniju snimanja: opservator se pomiče okomito na liniju snimanja dok se slike trasirki u prizmi ne koincidiraju i uspostavljanje okomica s točke detalja na liniju snimanja: opservator se pomiče po liniji snimanja do koincidencije trasirke na detalju s slikama trasirki u prizmi

18 Ortogonalna metoda Ortogonalna metoda danas se koristi za održavanje katastra. Skica izmjere vodi se u mjerilu budućeg plana i formira se u skladu s podjelom na listove. Ako je detalj snimanja suviše gust skica se radi u duplo krupnijem mjerilu od mjerila budućeg plana

19 detalj

20 Skica izmjere 9,00 7,50 5,50 o 1 o Apscisno snimanje 10 a 1 a 2 a 3 a 4 Okruglo očitanje lanac Apscisa se upisuje okomito na liniju snimanja u smjeru mjerenja Ordinate se upisuju na okomicu Apscisno snimanje ordinate kad na ordinati imamo više detaljnih točaka Kontrolna mjerenja: Kosa odmjeranja duljina između okruglog čitanja na apscisnoj osi i snimljene točke Frontovi duljina između snimljene dvije točke detalja

21 x y

22 0 lanac Apscisno mjerene ordinate

23 za izmjeru Geodetske mreže za iskolčenje za praćenje pomaka i deformacija priključena samostalna - lokalne Metode izmjere točaka geodetske osnove Terestričke Satelitske triangulacija trilateracija kombinirana poligonometrija lučni presjek nivelman GNSS (GPS, GLONASS, GALILLEO) Metode izmjere točaka detalja ortogonalna polarna fotogrametrijska GPS

24 POLARNA METODA IZMJERE DETALJA (Tahimetrija) 24

25 SNIMANJE DETALJA polarnom metodom Ortogonalna metoda (apscisa, ordinata) Polarna metoda (kut i duljina) horizontalni kut vertikalni kut kosa duljina (za redukciju duljine na horizont) Računamo elemente kartiranja: - horizontalnu udaljenost od stajališta do detaljne točke - visinsku razliku, odnosno apsolutnu ili relativnu visinu detaljne točke

26 Polarna metoda Određujemo relativne prostorne polarne koordinate detaljnih tačaka ( X,Y,H) ili ( X,Y,Z) Horizontalni kut - kut između orijentacijskog smjera (npr. poligonske stranice) i detaljne točke Kosu duljinu između poznate (npr. poligonske) i detaljne točke Zenitni kut od poznate prema detaljnoj točki Brz i učinkovit način prikupljanja prostornih podataka korištenjem suvremenog instrumentarija. 26

27 Detalj i detaljne točke Detalj čine objekti, komunikacije, vodotoci, međe kultura, granice parcela (međe)... i opisujemo ga s nizom detaljnih točaka. Skupina detaljnih točka na idealizirani način definira objekt i oblik zemljine površine. Jako je bitno pravilan odabir detaljnih točaka koje će vjerno predstavljati stanje na terenu (odabir ovisi o svrsi izmjere) 27

28 Prostorni koordinatni sustav H Z D z d Δh 101 φ β 102 X d' Y D' d, se rastavlja Mjeri se : kosa duljina d, - udaljenost od stajališta do točke detalja horizontalnu projekciju horizontalnu dužinu d vertikalnu projekciju visinsku razliku Δh horizontalni kut - β vertikalni kut z zenitni 28

29 Računanje nadmorske visine detaljnih točaka v Δh = visinska razlika između horizontalne osi i točke viziranja na letvi d Δh' i z d φ horizontalna os Δh s Δh'=d *cosz Ukupna visinska razlika Δh=Δh' + i - s St(y,x,H) A d i = visina instrumenta s = visina signala na detaljnoj točki v d= d *sinz horizontalna duljina H 1 = H A + d *cosz + i s = H A + Δh 29

30 RAČUNANJE KOORDINATA DETALJNIH TOČAKA (y,x) A B i A A B i A 180 i A y y i x x i i 1 d A sin y A i i d A x A i A y cos i i A x i (y,x,h) d i A d sin z horizontalna duljina 30

31 Tahimetrija Detaljna izmjera terena Tahimetrijskom metodom izmjere dobije se horizontalna i visinska predodžba terena Instrumenti za tahimetriju TAHIMETRI Hz limb, V-limb i daljinomjer TC totalna stanica - elektrooptički tahimetar i računalo Prema točnosti : obična tahimetrija dm točnost precizna tahimetrija cm točnost 31

32 TAHIMETRIJA Od starogrčke riječi tachy`s - brz i metron mjeriti Tahimetrijom određujemo istovremeno visinu i položaj točke Položaj točke određen je u prostornom koordinatnom sustavu (Y,X,H) Položaj točke u ravnini projekcije određen relativnim polarnim koordinatama : horizontalnim kutom i horizontalnom dužinom Zovemo je i polarnom metodom izmjere. 32

33 OPTIČKI DALJINOMJERI Za geodetska mjerenja daljinomjere niti prvi je upotrijebio REICHENBACH. A A α α d d β b d : b = sinα : sinβ d = b * sinβ / sinα γ B β β = 90º d = b* ρ / α b B Princip mjerenja duljine zasniva se na rješavanju trokuta tkz. paralaktičkog ili daljinomjernog trokuta. U trokutu je poznata ili mjerena jedna stranica ( baza ), te poznata ili mjerena dva kuta. 33

34 OPTIČKI DALJINOMJERI Optičko mjerenje duljina svodi se na mjerenje : paralaktičkog kuta uz poznatu ( konstantnu ) bazu mjerenje baze uz konstantan ( poznat ) kut 34

35 Optički daljinomjeri dijele se : 1. s konstantnom bazom i 2. s konstantnim paralaktičkim promjenjivim paralaktičkim kutom kutom i promjenjivom bazom konstantna baza konst. baza promjenjiva baza promjenjiva baza na stajalištu na cilju na stajalištu na cilju I daljinomjeri kod kojih mjerenu duljinu reduciramo na horizont II - daljinomjeri kod kojih mjerimo reduciranu duljinu autoredukcijski 35

36 Daljinomjeri s konstantnom bazom na cilju Baza horizontalna letva ( 2 m ) ( bazisna letva ) - postavljena na cilju Teodolit - sekundni b = 2 m α D α/2 1m D D tg 2 = 1 D 1 => D = tg α = ctg α 2 2 tg α/2 = 1 / D D = 1/ tg(α/2) = ctgα/2 Mjerimo horizontalni kut prema bazi (b = 2 m) duljinu izračunamo. 36

37 Reichenbachov daljinomjer v D' n ok c n ob f F α l D v f : n = D' : l D = K*l D = K*l + c f / n = K = multiplikacijska konstanta c - adicijska konstanta ( od 0 do 0,2 m ) - mjerena duljina l = odsječak na letvi f = žarišna daljina n = razmak niti nitnog križa 37

38 Daljinomjer s tri niti g s l D' d s h' z φ D h i D= Kl cos 2 φ h = ½ Kl sin2φ + i - s 38

39 DAHLTA 010 A optički tahymetar sa dijagramom

40 AUTOREDUKCIJSKI DALJINOMJER DAHLTA vidno polje i tahimetrijska letva

41 Autoredukcijski daljinomjeri dijagram - Dahlta pomoću krivulja se očitava odsječak na mjernoj letvi (koja stoji vertikalno u prostoru) radi mjerenja reducirane duljine (kose u horizontalnu duljinu) i visinske razlike v - visinske krivulje d - daljinomjerna krivulja +50 KK d d daljinomjerna nit za daleke udaljenosti t - temeljna krivulja K multiplikacijska konstanta (= najčešće 100) c konstanta visinske krivulje i visina instrumenta r visina repera letve (visina temeljne krivulje) 41

42 Vidno polje 2 1 Vidno polje dahlte V = 0, 072 c = +10 d = 0,160 Horizontalna duljina D = (d - t) * K Δh = (v - t)* c + i - s I položaj durbina (KL) R= reper letve s = R+t Nula letve r= 1,400 m II položaj durbina (KD) r t = 0,000 d daljinomjerna nit za kraće udaljenosti K v visinska krivulja K t temeljna nit c konstanta visinske krivulje d d daljinomjerna nit za daleke udaljenosti (K=200) 42

43 Tahimetrijska letva za Dahltu Vidno polje dahlte 2 Reper letve 1.40 m 1 V = 0, 072 c = +10 d = 0,160 Nula letve r= 1,400 m t = 0,000 r D= (d-t)*100 = (0,160-0,000)*100 = 16,0 m Δh = (v-t)*100 = (0,072-0,000)*100 = +7,2 m 43

44 Mjerenje duljina OPTIČKI NAĆIN - indirektno Reichenbachov daljinomjer (tri horizontalne niti nitnog križa, konstanta daljinomjera!) Autoredukcioni daljinomjer (dijagram, konstanta daljinomjera!) Elektrooptički daljinomjer ( distomat, tahymetar, total station) - Konstantu daljinomjera određuje proizvođač

45 DAHLTA optički tahymetar Tahymetar: instrument kojim se mjere horizontalni i vertikalni kutevi te duljina grčki- brzomjer Tahymetrija brzo mjerenje je naziv za polarnu metodu snimanja kada se koristi neka vrsta instrumenta tahymetra Autoredukcioni daljinomjer sa nitima je teodolit sa posebnom građom durbina, a također i samog teodolita

46 DAHLTA optički tahymetar Daljinomjer baziran na osnovi Reichenbachova daljinomjera Da se izbjegne računanje reducirane duljine pri mjerenju nagnutim durbinom, kod samog mjerenja nagnutim durbinom smanjuje se razmak daljinomjernih niti To se postiže na dva načina primjenom posebnih krivulja u vidnom polju durbina promjenom razmaka daljinomjernih niti pomoću optičkog ili mehaničkog prijenosa

47 optički tahymetar sa dijagramom tahymetri s dijagramom posjeduju posebne krivulje ili dijagram koji se optički preslikava u vidno polje durbina pomoću njih se očitava odsječak na mjernoj letvi (koja stoji vertikalno u prostoru) radi mjerenja reducirane duljine i visinske razlike prijedlog tahymetra sa dijagramom pojavio se krajem 19. st. (Prof. E. Hammer) izrađen prvi model ali je imao dosta konstrukcijskih nedostataka

48 DAHLTA - optički tahymetar sa dijagramom nova poboljšanja tahymetara u prvoj polovici 20. og stoljeća DAHL norveški geodetski inženjer u tvornici Zeiss-Jena konstruirao poboljšani tahymetar (DAHL-TAhymetar 1919.) usavršio nedostatke Fennelovog tahym. u optičkom preslikavanju krivulje nanesene na staklenu pločicu i vidljive u vidnom polju durbina kao i cijela slika predmeta pri nagnutom durbinu vidimo određene krivulje u ravnini realne slike jer se sa durbinom okreće i okular zajedno sa pločicom nitnog križa uz nepomični vertikalni limb započet razvoj tahymetra, a serijska proizvodnja Dahlta 020A, uvedeno preslikavanje slike letve i dijagrama u ravninu nitnog križa konstanta za daljine K=100

49 DAHLTA - optički tahymetar sa dijagramom pogledom u vidno polje durbina vidimo krivulje dijagrama preko čitavog vidnog polja uz daljinomjernu krivulju K=100 nanesene su i dvije visinske krivulje s konstantama K=10 i K=20 kod okretanja durbina okreće se i vertikalni krug, što je slučaj u današnjim teodolitima, dok dijagram sa krivuljama miruje poboljšana je i sama optika na durbinu instrumenta primijenjeni i antirefleksni slojevi ( tzv. plava optika) što je dovelo do poboljšanja oštrine i kontrasta slike

50 _ automatska stabilizacija indeksa vertikalnog kruga, _ nanijete četiri visinske krivulje sa konstantama: c= 10,20,50,100 _ crta ispod nulte krivulje je redukcijska krivulja za velike duljine i ima konstantu K=200 _ instrument je težine oko 5 kg Dahlta 010A Vidno polje instrumenta Dahlta 010A 2 Daljinomjerna krivulja K=100 1 Visinska krivulja V = 0, 072 c = +10 d = 0,160 Nula letve r= 1,400 m t = 0,000 Temeljna krivulja Daljinomjerna krivulja K=200

51 Postupak viziranja i očitanja grubim nišanom uvizirati mjernu letvu te nakon toga zakočiti alhidadu instrumenta vijkom za fini pomak alhidade vertikalnu nit dovesti na sredinu tahimetrijske ili nivelmanske letve vijkom za fini pomak durbina namjestiti temeljnu krivulju na reper letve ili neku okruglu vrijednost očitati položaj daljinomjerne i visinske krivulje na mjestu gdje presjecaju vertikalnu nit i mjernu letvu očitati vrijednost horizontalnog kuta upisati vrijednosti u pripadajući zapisnik

52 Primjer očitanja Dahltom 010A Reper letve: R= m temeljna nit: t 0 = daljinomjerna: d= visinska: v = c = -10 Dužina: =(d-t)*k = ( )*100=29.0 m Vis. razlika : h` =(v-t)*c =( )* -10= -2.17m Ukupna visinska razlika: s= R+t 0 h= h` + i - s

53 Primjer očitanja Dahltom 010A Reper letve: R= m i=1,26 m H ST = 112,15 daljinomjerna: d= visinska: v = c = +10 temeljna nit: t 0 = Dužina: d=(d-t)*k d= ( )*100= 5.0 m Vis. razlika : h` =(v-t)*c =( )* +10= 0,16m Ukupna visinska razlika: s= R+t 0 = = 1.40 h= h` + i s = = 0,02 m H DT = H ST + h = 112,15 + 0,02 = 112,17 m

54 Primjer očitanja Dahltom 010A Reper letve: R= m i=1,26 m H ST = 112,15 daljinomjerna: d= visinska: v = c = -10 temeljna nit: t 0 = Dužina: =(d-t)*k d= ( ( )*100 = 5.0 m Vis. razlika : h` =(v-t)*c =( (-0.450)* -10 = m Ukupna visinska razlika: s= R+t 0 = (-0.450) = 0.95 m h= h` + i s = = 0,02 m H DT = H ST + h = 112,15 + 0,02 = 112,17 m Ako se koristi obična nivelmanska letva sa kontinuiranim podjeljenjem odozdo prema gore (od 0 visine letve) tada je R=0, što znači da je s=temeljnoj niti (s= R+t 0 = 0+t 0 ) d v t Reper letve 1.40 m

55 Tahymetrijsko snimanje geodetski stol

56 Wild RDS -položenije niti krivulja nego kod Dahlte -lakša procjena položaja niti d = ( d t) * 100 Δh, = ( v t) *100 * c H = Δh, + i - s 56

Metode i instrumenti za određivanje visinskih razlika. Zdravka Šimić

Metode i instrumenti za određivanje visinskih razlika. Zdravka Šimić Metode i instrumenti za određivanje visinskih razlika Zdravka Šimić Visinski prikaz terena - konfiguracija dio plana dio karte 2 Visinski prikaz terena Izohipse ili slojnice povezuju točke iste visine.

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Visinska predstava na topografskim podlogama. Pojedine tačke sa kotama Izohipse Hipsometrijska skala Šrafura Senčenje. Kombinacija

Visinska predstava na topografskim podlogama. Pojedine tačke sa kotama Izohipse Hipsometrijska skala Šrafura Senčenje. Kombinacija Visinska predstava na topografskim podlogama Pojedine tačke sa kotama Izohipse Hipsometrijska skala Šrafura Senčenje Kombinacija 15 Tačke sa visinama 16 Izohipse E ekvidistancija Vrednosti: 0.5, 1, 2.5,...

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

GEODEZIJA GEODETSKA MJERENJA I INSTRUMENTI TEHNIČKO VELEUČILIŠTE U ZAGREBU GRADITELJSKI ODJEL GEODETSKA MJERENJA I INSTRUMENTI LINEARNA MJERENJA

GEODEZIJA GEODETSKA MJERENJA I INSTRUMENTI TEHNIČKO VELEUČILIŠTE U ZAGREBU GRADITELJSKI ODJEL GEODETSKA MJERENJA I INSTRUMENTI LINEARNA MJERENJA TEHNIČKO VELEUČILIŠTE U ZAGREBU GRAITELJSKI OJEL GEOEZIJA GEOETSKA MJERENJA I INSTRUMENTI GEOETSKA MJERENJA I INSTRUMENTI Sastavni dio svih geodetskih radova čine mjerenja određenih veličina. Geodetska

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

F2_ zadaća_ L 2 (-) b 2

F2_ zadaća_ L 2 (-) b 2 F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Neophodno da bude razvijena poligonska ili linijska mreža Na jednu poligonsku tačku se centriše instrument a druga se signališe Mere se dužine,

Neophodno da bude razvijena poligonska ili linijska mreža Na jednu poligonsku tačku se centriše instrument a druga se signališe Mere se dužine, Polarna metoda α 1 Neophodno da bude razvijena poligonska ili linijska mreža Na jednu poligonsku tačku se centriše instrument a druga se signališe Mere se dužine, horizontalni i vertikalni uglovi Za merenje

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

- Geodetske točke in geodetske mreže

- Geodetske točke in geodetske mreže - Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Gauss, Stokes, Maxwell. Vektorski identiteti ( ),

Gauss, Stokes, Maxwell. Vektorski identiteti ( ), Vektorski identiteti ( ), Gauss, Stokes, Maxwell Saša Ilijić 21. listopada 2009. Saša Ilijić, predavanja FER/F2: Vektorski identiteti, nabla, Gauss, Stokes, Maxwell... (21. listopada 2009.) Skalarni i

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50

INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50 INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun

Διαβάστε περισσότερα

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II

1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II 1 UPUTSTVO ZA IZRADU GRAFIČKOG RADA IZ MEHANIKE II Zadatak: Klipni mehanizam se sastoji iz krivaje (ekscentarske poluge) OA dužine R, klipne poluge AB dužine =3R i klipa kompresora B (ukrsne glave). Krivaja

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Zdravka Šimić

Zdravka Šimić GEODETSKA TEHNIČKA ŠKOLA ZAGREB Geodezija 1 Prvi razred Zdravka Šimić 18.8.2012. 1. Uvod u geodeziju Geodezija je dobila naziv od grčke riječi - γη=zemlja i δαιω=djelim Geodezija je znanost o izmjeri Zemljine

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Utjecaj sile teže u geometrijskom nivelmanu

Utjecaj sile teže u geometrijskom nivelmanu Markovinović D., Špodnjak T., Bjelotomić O. (011): Utjecaj sile teže u geometrijskom nivelmanu dr. sc. Danko Markovinović, dipl. ing. geod. Tanja Špodnjak, mag. ing. geod. et geoinf. Olga Bjelotomić, dipl.

Διαβάστε περισσότερα

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa

Gravitacija. Gravitacija. Newtonov zakon gravitacije. Odredivanje gravitacijske konstante. Keplerovi zakoni. Gravitacijsko polje. Troma i teška masa Claudius Ptolemeus (100-170) - geocentrični sustav Nikola Kopernik (1473-1543) - heliocentrični sustav Tycho Brahe (1546-1601) precizno bilježio putanje nebeskih tijela 1600. Johannes Kepler (1571-1630)

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

FAKULTET PROMETNIH ZNANOSTI

FAKULTET PROMETNIH ZNANOSTI SVUČILIŠT U ZAGU FAKULTT POMTNIH ZNANOSTI predmet: Nastavnik: Prof. dr. sc. Zvonko Kavran zvonko.kavran@fpz.hr * Autorizirana predavanja 2016. 1 Pojačala - Pojačavaju ulazni signal - Zahtjev linearnost

Διαβάστε περισσότερα

Značenje indeksa. Konvencija o predznaku napona

Značenje indeksa. Konvencija o predznaku napona * Opšte stanje napona Tenzor napona Značenje indeksa Normalni napon: indeksi pokazuju površinu na koju djeluje. Tangencijalni napon: prvi indeks pokazuje površinu na koju napon djeluje, a drugi pravac

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 16. UVOD U STATISTIKU Statistika je nauka o sakupljanju i analizi sakupljenih podatka u cilju donosenja zakljucaka o mogucem toku ili obliku neizvjesnosti koja se obradjuje. Frekventna distribucija - je

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika

Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika 1. Kinematika Mehanika je temeljna i najstarija grana fizike koja proučava zakone gibanja i meñudjelovanja tijela. kinematika, dinamika i statika Kinematika (grč. kinein = gibati) je dio mehanike koji

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

(r, φ) φ x. Polarni sustav

(r, φ) φ x. Polarni sustav olarnom u oložaj točke u ravnini možemo definirati omoću udaljenosti r od ishodišta i kuta φ koji sojnica ishodišta i točke zatvara s osi φ r (r, φ) kut φ je o konvenciji ozitivan ako ga mijenjamo u smjeru

Διαβάστε περισσότερα

Sveučilište u Zagrebu Geodetski fakultet. Zavod za primijenjenu geodeziju Katedra za zemljomjerstvo. Skripta iz kolegija.

Sveučilište u Zagrebu Geodetski fakultet. Zavod za primijenjenu geodeziju Katedra za zemljomjerstvo. Skripta iz kolegija. Sveučilište u Zagrebu Geodetski fakultet Zavod za primijenjenu geodeziju Katedra za zemljomjerstvo Skripta iz kolegija Izmjera zemljišta Prof. dr. sc. Marko Džapo Zagreb, svibanj 2008. Sadržaj 1 Geodetski

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

4. MONGEOVO PROJICIRANJE

4. MONGEOVO PROJICIRANJE 4. MONGEOVO PROJICIRANJE 4.1. Projiciranje točke Niti centralno ni paralelno projiciranje točaka prostora na ravninu nije bijekcija. Stoga se pri takvim preslikavanjima suočavamo s problemom nejednoznačnog

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA

II. ODREĐIVANJE POLOŽAJA TEŽIŠTA II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA

5. FUNKCIJE ZADANE U PARAMETARSKOM OBLIKU I POLARNIM KORDINATAMA 5. FUNKCIJE ZADANE U PARAMEARSKOM OBLIKU I POLARNIM KORDINAAMA 5. Funkcije zadane u paametaskom obliku Ako se koodinate neke tocke,, zadaju u obliku funkcije neke tece pomjenjive, koja se tada naziva paameta,

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα