Integral Transforms UNIT I 1.1 INTEGRAL TRANSFORMS 1.2 DEFINITION

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Integral Transforms UNIT I 1.1 INTEGRAL TRANSFORMS 1.2 DEFINITION"

Transcript

1 UNIT I Integr Trnform. INTEGRAL TRANSFORMS Integr trnform re ued in the oution of prti differenti eqution. The choice of prticur trnform to be ued for the oution of differenti eqution depend upon the nture of the boundry condition of the eqution nd the fciity with which the trnform F() cn be converted to give the origin function f(x).. DEFINITION The integr trnform F() of function f(x) i defined I [ ] f( x) F () fxxdx ()(,) Where (, x) i nown function of nd x, ced the erne of the trnform : i ced the prmeter of the trnform nd f (x) i ced the invere trnform of F(). Some of the we nown trnform re given beow : (i) Lpce trnform. (, x) x e L{ f( x)} F () fxe () dx (ii) Fourier compex trnform. (, x) e ix b x F{ f( x)} F () fxe ( ) ix dx (iii) Hne trnform. (, x) x J n ( x) H n { f( x)} F () fxx () J n (x) dx where J n (x) i the Bee function of the firt ind of order n.

2 A TEXTBOOK OF ENGINEERING MATHEMATICS III (iv) Meine trnform. (, x) x (v) Hibert trnform. K(, x) M{ f( x)} Fx ( ) fxx ( ) dx F() x. FOURIER INTEGRAL THEOREM Thi tte tht f( x) x dx f( x ) ()co ( ) f t utxdtdu The integr on the right hnd ide i ced Fourier integr of f( x). Proof: We now tht Fourier erie of function f(x) in ( c, c) i given by ( ) f x + nx nx nco + bnin...() c c n where, n nd b n re given by n c c nt ftdt (), n ft ()co dt c c cc c c nt b n f()in t dt c c c Subtituting the vue of, n nd b n in (), we get c c c c c c n n nt nx nt nx f( x) ftdt () f()co t co dt f()in t in dt c + c + c c c c c c c nt nx nt nx () + ()co co + in in ftdt c f t c dt c c c c c c n c n ftdt () f()co t ( t xdt ) c + c c c n c c c n f() t + co ( tx) dt n c Since coine function re even function i.e., co( θ) co θ, the expreion...() + n n co ( t x) co ( t x) c c n n

3 INTEGRAL TRANSFORMS Therefore, () become ( ) () co ( ) c n f x f t c t x dt c c () co ( ) c n f t t x dt c c c...() Now ume tht c incree indefinitey, o tht we my write n u nd du. c c Thi umption give n im co ( t x) co ut ( xdu ) c } c c Subtituting in () from (), we obtin co ut ( xdu )...() { } f( x) f() t co ut ( xdu ) dt...(5) Thu, f( x) f()co t ut ( xdudt ). Proved. Note: The foowing condition on f( x). (i) f (x) i defined inge-vued except t finite point in ( c, c). (ii) f (x) i periodic outide ( c, c) with period c. (iii) f (x) nd f'(x) re ectiony continuou in ( c, c). (iv) f() x dxconverge, i.e. f (x) i boutey integrbe in (, ).. FOURIER S COMPLEX INTEGRAL Proof: iux iut f( x) e du fte () dt We now tht fxdx ( ) f( x ) i odd function. in ut ( xdu ) [Since, in u (t x) i odd]

4 A TEXTBOOK OF ENGINEERING MATHEMATICS III Obviouy we hve ftdt () in ut ( xdu ) or i ftdt () in ut ( xdu ) (Mutipying by i) On dding () in R.H.S. of Fourier Integr Theorem, we hve...() i f( x) f()co t ut ( xdudt ) + ftdt () in ut ( xdu ) ftdt () [co ut ( x) + iin ut ( x)] du iut ( x) () ftdt e du or iux iut f( x) e du fte () dt Retion () i ced Fourier Compex Integr....().5 FOURIER TRANSFORM We hve iux iut f( x) e du fte () dt ix e d f() t e dt (u )...() it Putting f() t e dt F () in (), we get...() In () F() i ced Fourier trnform of f( x). it ix f( x) e df.()...() In () f( x ) i ced Invere Fourier trnform of F()..6 FOURIER SINE AND COSINE INTEGRALS f( x) in uxdu ft ()inutdt (Fourier ine integr) f( x) co uxdu f()co t utdt (Fourier coine integr)

5 INTEGRAL TRANSFORMS 5 or Proof: We now tht co u (t x) co (ut ux) co u (t x) co ut co ux + in ut in ux Then eqution (5) of rtice., cn be written f( x) f()(co t utcoux + inutin ux) dudt Ce. When f() t i odd. f( x) + ft ()coutco uxdudt f()in t utinuxdudt...() f()co t ut i odd hence f()co t utcouxdudt Q For odd function fxdx ( ) nd for even function From (), we hve f( x) in uxdu ft ()inutdt The retion () i ced Fourier ine integr. Ce. When f() t i even. f()in t ut i odd. f()co t ut i even. From (), we hve fxdx ( ) fxdx ()...() f()in t utinuxdudt f( x) co uxdu f()co t utdt...() The retion () i nown Fourier coine integr..7 FOURIER SINE AND COSINE TRANSFORMS We now tht Fourer ine integr f( x) in xd ft ()intdt (u ) f( x) in xdf.()...() where F () ft ()intdt...()

6 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III where In () F() i ced Fourier ine trnform of f( x). In () f( x) i ced Invere Fourier ine trnform of F(). We now tht Fourier coine integr f( x) co xd f()co t tdt (u ) f( x) co xdf.()...() F () f()co t tdt...() In eqution () F() i ced Fourier coine trnform of f( x ). In eqution () f( x) i ced Invere Fourier coine trnform of F(). Exmpe : Expre the function Fourier integr. Hence, evute So. The Fourier Integr for f( x) i when x f( x) when x > f( x ) inλcoλx dλ. (U.P.T.U. ) λ f()co t λ( t xdtd ) λ co λ( t xdtd ) λ, < t< Q f() t,otherwie in λ( t x) λ dλ in λ( x) + in λ ( + x) d λ λ λ (By in C + in D formu) Thu inλcoλx f( x) λ d. An. λ or inλcoλx d λ f ( x ) λ

7 INTEGRAL TRANSFORMS 7 or inλcoλx λ, for x d λ, for x > < For x i.e., x ± which i point of dicontinuity of f( x), vue of integr +. An. Exmpe : Uing Fourier ine integr, how tht λ < x< λ, when x > co, when in( xλ ) dλ, < x < So. Let f( x), x > Uing Fourier ine integr, we hve f( x) in λx ft ()inλtdtdλ inλx inλtdtdλ coλt inλx dλ λ coλ in( xλ) dλ λ coλ, < x< in( x ) d f( x) λ λ λ, x> Proved. Exmpe : Find the Fourier ine integr for Hence, how tht f( x) e βx ( β> ) βx λinλx e d λ. (U.P.T.U. ) β +λ So. The Fourier ine trnform of f( x ) i f( x) in λxdλ ft ()inλtdt...()

8 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III Putting the vue of f( x) in (), we get βx βt e inλxdλ e inλtdt t e β inλxdλ βinλtλcoλt β +λ ( ) ( ) in xd λ λ λ + β +λ x e dλ or β +λ βx λinλ βx λinλx e dλ. An. β +λ Exmpe : Uing Fourier coine integr repreenttion of n pproprite function, how tht x cowx e dw. (x >, > ) + w So. We now tht Fourier integr i f( x) co uxdu f()co t utdt Putting the vue of f() t nd repcing u by w, we get t t e cowxdw e cowtdt t e + w cowxdw { cowt+ winwt} cowxdw cowxdw + + w + w or x cowx e dw. Proved. + w x Exmpe 5: Find the Fourier ine trnform of e. Hence, evute xinmx. dx + x (U.P.T.U. ) So. In the interv (, ), x i wy poitive, therefore, e x x e.

9 INTEGRAL TRANSFORMS 9 The Fourier ine integr of f( x) i { x } in F e e xdx F + () x (y) Now the invere ine trnform of F() i e x. Uing inverion formu for the ine trnform, we get x e F ()inxd Repcing x by m, we get e + m + inxd inmd xinmx dx + x xinmx m Hence, we get dx e + x. An. Exmpe 6: Find the Fourier trnform of x, if x f( x), if x > So. x < x<, f( x), x > The Fourier trnform of function f( x) i given by Subtituting the vue of f( x) in (), we get ix F () f( x). e. dx...() F () ( x ) e. dx Integrting by prt, we get ( uv uv uv + uv ) ix... F () x x + i i i ix ix ix e e e ( ) ( ) ( ) ( ) ( )

10 A TEXTBOOK OF ENGINEERING MATHEMATICS III e e e e + i i i i i i i i i i ( e + e ) + ( e e ) i ( co) + ( in i ) i [ co in] +. An. Exmpe 7: Find the Fourier trnform of f( x) nd hve evute () in( )co( x) dx;, x < ie.. < x < f( x), x > iex.. > or x< in (b) d. So. We hve the Fourier trnform of f( x) { } ix F f ( x) e fxdx ( )...() nd if, then ix ix ix fxe ( ) dx + fxe ( ) dx + e fxdx () ix ix ix e fxe ( ) dx e dx i in i i i i e e i ( ) in( ), [From ()] F{ f( x)} e.dx i.e. { } [ ] [ ] F f ( x) x ( )

11 INTEGRAL TRANSFORMS then () Now { } ix F f ( x) e fxdx ( ) F () ix f( x) Fe () d in( ), x e ix < d, x > But L.H.S. in( )co( x) i ininx d d in( )co( ) x d Since the integrnd in the other integr i n odd function of. in( )co( x), x < dx, x > (b) If x nd in (), then in d in in d or d. An. Exmpe 8: Find the Fourier compex trnform of f( x) if iwx e, < x< b f( x), x< x, > b So. We hve ix F{ f( x)} e fxdx ( ) ix b ix iwx ix e dx e e dx e. dx + + b b iwx ( ) iwx + ( ) e + e dx i( + w) b iw ( + ) ( + e e ) i + w iwb. An.

12 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe 9: Show tht the Fourier trnform of So. We now x e f( x) i e. x ix ix F{ f( x)} fxe ( ) dx e e dx e ( ) x + ix x ix e dx e dx ( xi) ( ) xi e dx e. e dx. y, e dy x i putting y, o tht dx dy e e. y e,ince dy Proved. Exmpe : Find Fourier coine trnform of the function So. We hve co x, < x < f()if x f( x), x > { } F f( x) f( x)coxdx c { ( )} F f x c f( x)co xdx+ f( x)coxdx co x.coxdx+.coxdx x xdx x xdx co.co [ co( + ) + co( ) ] in( + x ) in( x ) + ( + ) ( )

13 INTEGRAL TRANSFORMS in( + ) in( ) +. ( + ) ( ) An. Exmpe : Find the Fourier ine nd coine trnform of f( x) e x. So. The Fourier ine trnform of f( x) i F() f( x)in( x) dx x x e in( x) dx { in( x) co( x) } e + nd Fourier coine trnform i x e + + in( ) co( ) +. { x x } F () e.co( x) dx c x An. e x { co( x) + in( x) } An. Exmpe : Find Fourier ine trnform of. x So. inx F dx x x inθ dθ [Putting x θ o tht dx dθ] θ inθ dθ. An. θ Exmpe : Find the Fourier coine trnform of x x f( x) e + e

14 A TEXTBOOK OF ENGINEERING MATHEMATICS III So. The Fourier coine trnform of f( x) i given by F () f( x)coxdx Putting the vue of f( x ),we get x x ( ) F () e + e coxdx x x + e coxdx e coxdx Q An. e Exmpe : Find the Fourier ine trnform of. x x x e e.cobxdx [ binbx cobx] + b x So. The ine trnform of the function f( x) i given by { } F f( x) f( x)in( x) dx F()...() x e F().in( x) dx. x Differentiting both ide w.r. to, we get d d x e x [ ] ( ) F() xcox dx e co( x) dx x e x { co( x) + in( x) } + d [ () F ] d + Integrting w.r. to, we get F() d tn + c +...() But for, we hve F() [from ()] Putting thee vue in the eqution (), we get C F() tn. An.

15 INTEGRAL TRANSFORMS 5 Exmpe 5: Find the Fourier trnform of f( x) x, if < x < x f( x) +, if < x<, otherwie So. The Fourier trnform of f( x) i ix x ix x ix F{ f ( x) } F () fxe ( ) dx e dx e dx + + Chnging x by x in the firt integr, we get x x ix e dx+ e dx ix ix ix ( e + e ) x x dx co( x) dx x inx cox co( ) co( ). + [ ] An. x Exmpe 6: Find Fourier coine integr of the function e. Hence how tht coλx x ; d e λ x λ + So. We now tht Fourier coine integr f( x) λ λ λ co xd f()co t tdt x λ λ λ t e co xd e co tdt t e +λ coλxdλ ( coλ x+λinλx) co λxdλ. +λ

16 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III coλx d λ +λ If coλx x. d e λ +λ Proved.. An. Exmpe 7: Find the Fourier ine nd coine trnform of, < x < f( x), x > So. Fourier ine trnform Fourier coine trnform F () f()in x xdx inxdx cox co F () + inx F () f()co x xdx coxdx in. An. Exmpe 8: Find the Fourier coine trnform of So. Fourier coine trnform x, for < x< f( x) x, for < x<, for x > F () f()co x xdx / xco xdx + ( x)coxdx /

17 INTEGRAL TRANSFORMS 7 / x ( x) ( cox) inx cox inx + ( ) / in / co / co in / co / co co / +. An. Exmpe 9: Obtin Fourier coine trnform of x, for < x< f( x) x, for< x <, forx < So. Fourier coine trnform { } F f( x) f()co x xdx c (U.P.T.U. ) xco xdx ( x)coxdx +.coxdx in x co x in co ( ) x x x ( ) x + in co co in co + + co co co (co ) co co + co ( co ). An.

18 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe : Find the compex Fourier trnform of dirc-det function δ( t). So. F{( δt )} e δ( t dt ) it Lt + h h h it e dt h it e Lt h i Lt e h i + h ih e ih Note: Dirc-det function δ( t ) i defined e i ( t ) Lt I( ht ) δ, where h θ e ince Lt. An. θ θ Iht (, ) h for < t < + h for t< nd t> + h Exmpe : Find Fourier ine nd coine trnform of () n So. () ( ) c n F x in xx. dx n ( ) n Fc x co x. x dx ( ) + ( ) ( co + in ) n n n F x F x x i x x dx x n. ( b) x [U.P.T.U. (Comp.) ] ix n e x dx n t t dt e i i ( ) n t t n e t ( ) i dt

19 INTEGRAL TRANSFORMS 9 ( i) n ( i) n ( i) Γ n n n n Γn Equting re nd imginry prt, we get F F c n ( x ) n ( x ) n n n co + iin Γ n co + iin Γn n n Γn n co n Γn n in. An. n (b) n F c F co x in. x An. Exmpe : Find the ine trnform of e e x x + e e x x So. We hve x x e + e F() in( x) dx x x e + e x x ix ix e + e e e dx e e i x x ( + ix ) ( + ) e e i x x e e ix dx ( i) x ( + ) e e i x x e e i x dx.tn + i tn i i i Q x x e e dx x x tn e e

20 A TEXTBOOK OF ENGINEERING MATHEMATICS III + i i in in i + i i co co + i i i + i in co in co + i i co i co in+ in( i) [inin i] [co( i i) + co ] in( i) inh. An. [co( i i) + co ] [coh+ co ] Exmpe : Find the ine nd coine trnform of n x xe. So. Let n f( x) xe n x ().in( ) x F xe x dx...() x We hve e.in( x) dx ( inxcox) e x + + i i + i Differentiting both ide w.r. to, n time, we hve n n d d n n x ( ) xe inxdx n ( i) n( + i) id d Putting rcoθ, rinθ! + i n ( ) ( ) ( n ) ( ) ( n n + + i i ) i n ( n+ ) ( ) n! ir in( n+ ) θ ( n ) n! r n+ in( n+ ) θ

21 INTEGRAL TRANSFORMS n x xe inxdx n! ( ) ( ) in ( n tn ) n+ / + + Hence, from () r ( ) + nd θ tn Ao ( ) We hve n! F( ) in ( n+ tn ). An. n+ ( + ) F f( x)co( x) dx n x xe co( x) dx...() x x e e co( x) dx ( cox + xinx i + i Differentiting both ide w.r. to, n time, we hve ( ) n n x n ( n+ co( ) ) ( )!( ) ( ) ( n xe x dx n i + + i + ) n x ( ) n+ n xe co( x) dx n! co( n ) + θ r Putting rcoθ, rinθ Exmpe : Show tht n! co ( n+ tn ) F () c ( ) ( n+ + ) /. An. () F [ xf( x) ] F ( ) (b) F [ xf( x) ] F ( ) d d c nd hence find Fourier coine nd ine trnform of xe. c x d d

22 A TEXTBOOK OF ENGINEERING MATHEMATICS III So. () c ( ) (b) ( ) F f( x)coxdx d F ( c ) xfx ( )in xdx d F { xf( x) } F f( x)inxdx d F ( c ) xf ( x )co xdx d F { xf( x) } x d x (c) Fc( xe ) F( e ) d c d d + (Uing exmpe ) ( + ) ( ) ( + ) ( + ) x x (d) F( e ) d Fc( e ) d dx d + (Uing exmpe ) ( + ). An. Exmpe 5: Find the invere Fourier trnform of y f( x) e, where y [ ],. (U.P.T.U. ) So. We hve, if, if { } nd ( ) F F f( x) Fe () d ix ix ix Fe () dx + Fe () d y ix y ix e e d + e e d

23 INTEGRAL TRANSFORMS e d e d ( yix) ( y+ ix) + ( yix) ( y ix) e + e + ( y ix) ( y+ ix) ( + ) ( ) { } { } y ix y ix y+ ix+ yix + y ix y + ix ( y ix)( y+ ix) y y + x y. An. y + x of Exmpe 6: Find the Fourier coine trnform of nd hence, find Fourier ine trnform + x x. (U.P.T.U. ) + x So. Fourier coine trnform F () f()co x xdx I c coxdx I...() + x di d xinx dx + x (+ x )inx dx x( + x ) inx dx + x inx dx x( + x ) di + d inx dx...() x( + x ) di d I cox dx ( + x )

24 A TEXTBOOK OF ENGINEERING MATHEMATICS III Soution of () i When di I d...() I ce + ce...() I + x di d From eqution () nd (5) c + c c c c, c Therefore, from eqution (), we hve di d ce ce...(5) dx [from ()] I e [from ()] cox dx ( + x ) e. An. Differentiting bove w.r.t., we get x xinx dx e ( + x ) inxdx e. An. ( + x ) Exmpe 7: Find the Fourier ine trnform of f( x). x ( + x ) So. We hve F ( ).in( ) x dx...() I (y) x ( + x )

25 INTEGRAL TRANSFORMS 5 Then di d d d.in ( ) x ( + x ) x dx di d co( x) dx...() ( + x ) di d xin( x) x in( x) dx dx ( + x ) x ( + x ) ( x + )in( x) dx x ( + x ) in( x) in( x) dx+ dx x x ( + x ) + I di ( ) I D I d d where D. d Then the oution of the bove differenti eqution i I Ae + Be +...() di Ae + Be...() d Now from () when, we hve I nd from () when So putting in () nd (), we get di dx x tn d + x I, A + B nd A + B di dx...(5)...(6)

26 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III Soving eqn. (5) nd (6), we get B, A Putting the vue of A nd B in eqn. (), we get x I ( e + e ). An. PROBLEM SET.. Expre, for x f( x), for x > Fourier ine integr nd hence evute. Uing Fourier integr, how tht coλ in λxdλ. λ winwx dw e ( + w ) x, x >. Show tht the Fourier trnform of, for x<α f( x) x, for α< x<β, forx >β i β x α i e e i. i. Show tht the Fourier trnform of x, for x < f( x), for x > > An. i ( co ). Hence how tht 5. Find Fourier trnform of f(x) if in t t dt. x, x f( x), x > An. i ( co in ) 6. Show tht the Fourier trnform of x e i ef reciproc.

27 INTEGRAL TRANSFORMS 7 7. Find Fourier ine nd coine trnform of x., An. x 8. Find Fourier trnform of e, >. An Find Fourier ine nd coine trnform of co hx in hx. An., + +. Find the Fourier ine nd coine trnform of e αx βx + be. b α bβ An. +, + + +β +α +β.8 PROPERTIES OF FOURIER TRANSFORMS (i) Liner Property If F () nd F () re Fourier trnform of f (x) nd f (x) repectivey, then Ff [ ( x) + bf()] x F() + bf() where nd b re contnt. Proof: We now tht ix F() e. f( x) dx nd F() e. f() xdx (ii) Chnge of Sce Property Ff [ ( x) + bf( x)] e [ f( x) + bfdx( x)] dx ix ix ix ix e. f ( xdx ) + b e. f() xdx () + bf (). Proved. F If F() i the compex Fourier trnform of f( x), then { ( )} F f x F Proof: We now tht F () e. fxdx ( ) ix ix dt F{f(x)} e. fxdx ( ), put x t dx

28 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III (iii) Shifting Property e t i dt f() t i t e ftdt () F. Proved. If F() i the compex Fourier trnform of f( x ), then i F{ f( x )} e F () Proof: F () e. fxdx ( ) { } ix (iv) { } ix ix F f ( x e. f( x dx ), [put x t, o tht dx dt] it ( + ) e F e f( x) F ( + ) ix Proof: { ( )} i it ftdt () e e ftdt () i e F (). Proved. ix ix F e f x e fxe ( ) dx F ( + ). Proved. ix ( + ) e fxdx ( ) (v) Modution Theorem (U.P.T.U. 5) If F() i the compex Fourier trnform of f (x), then F{ f( x)co x} F ( + ) + F ( ) [ ] Proof: We now tht F () e. fxdx ( ) F{ f( x)co x } e. f( x)coxdx ix ix ix ix ix e + e e. f( x) dx. ( ). e ix fxe ix + e ix e ix dx

29 INTEGRAL TRANSFORMS 9 n (vi) If { } { } ( ) ix ( + ) ix ( ) e. fxdx ( ) e fxdx ( ) + F ( ) F ( ) + + n d F f ( x) F (),then F x f( x) i F (). n d Proof: We now tht [ F ( ) F ( ) ] + +. Proved. n ix F () e. fxdx ( )...() Differentiting () w.r.t. both ide, n time, we get n df () n ix ( ix) e. fxdx ( ) n d n n n ix () i ( x) e. fxdx ( ) n Fx ( f ()) x ( i) (vii) { } Proof: { } n () i F( x f()) x n d n { F ()} d F f ( x) if(), if f() x x ± ix F f ( x) e. f () xdx n ix ix ix { } { } e. d f () x dx e f( x) e.( i) fxdx ( ) i i e. fxdx ( ) if(). x F () (viii) F{ fxdx ( ) } ( i ) Proved. Proof: Let f( x) fxdx ( ) f ( x) f( x) x { ( )} ( ) () ( ) { ( )} F f x i F i F f x x if{ fxdx ( ) }

30 A TEXTBOOK OF ENGINEERING MATHEMATICS III x { ( ) } ( i) { ( )} F fxdx F f x F (). Proved. ( i) ( i) F{ f ( x) } Note: F () nd F c () re Fourier ine nd coine trnform of f(x) repectivey..9 CONVOLUTION The convoution of two function f( x ) nd g(x) i defined f( x) gx ( ) fugx ()( udu ) Convoution Theorem on Fourier Trnform The Fourier trnform of the convoution of f()nd x gx ( ) i the product of their Fourier trnform i.e., Proof: We now tht [ ( ) ( )] [ (). ] [ ()] F f x gx F f x Fgx f( x) gx ( ) fugx ()( udu )...() Ting Fourier trnform of both ide of (), we hve F[ f( x) gx ( )] F fugx (). ( udu ) ix fugx (). ( udu ) e dx fudu () { gx ( ue ) } ix du By inverion {(). f u dufg. ( x u)} iu fudue (). G () G (). fue () iu du G(). F() F(). G(). Proved. { (). ()} { ()} { ()} F FG f g F F F G (uing hifting property)

31 INTEGRAL TRANSFORMS of xe x Exmpe : Find Fourier coine trnform of. e x So. Firt of we find Fourier coine trnform of x { } Differentiting w.r.t., we hve nd hence evute Fourier ine trnform e x x Fc e e coxdx I...() di d xe x inxdx x ( xe ) inxdx x { in } x e xdx coecxe dx xe x coxdx Integrting, we hve di I d + di d I ogi + oga But when, from (), we hve When from (), we hve I A Hence, I Ae...() x I e dx A By chnge of ce property x { } x I e coxdx e. Fc e e An.

32 A TEXTBOOK OF ENGINEERING MATHEMATICS III We hve x e coxdx e Differentiting w.r.t., we get / xe x inxdx e x / xe in xdx e. { } x / F xe e An. Exmpe : Find the Fourier trnform of x e. Hence, find the Fourier trnform of (i) (iii) f( x) e x (U.P.T.U. ) (ii) ( x ) f( x) e (iv) f( x) e x / f( x) e cox x So. F () e. fxdx ( ) { } ix x ix x ( x ix). F e e e dx e dx i x + e i x dx e e dx, Put e e d e e d i x, dx d x { } F e (i) By chnge of ce property { } e...() x F e e e

33 INTEGRAL TRANSFORMS (ii) Putting in (i) prt, we get (iii) From eqution () x e F e x { } F e x F{ e } x { } e e. (By chnge of ce property) e 6 ( ) i 6 F e. e e (By hifting property) e i 6 x (iv) F{ e } e (By modution Theorem). PARSEVAL S IDENTITY FOR FOURIER TRANSFORMS (U.P.T.U. 5) If the Fourier trnform of f( x ) nd gx ( ) be F () nd G () repectivey, then (i) FGd () () fcgxdx ( ) ( ) where G () i the compex conjugte of G () nd gx ( ) i the compex conjugte of g(x). (ii) [ F ( )] d f() x dx Proof. (i) fxgxd ( ) ( ) f() x Ge () ix d d Since gx ( ) Ge () ix dx fxgx ( ) ( ) Gd (). fxe ( ) ix dx

34 A TEXTBOOK OF ENGINEERING MATHEMATICS III ix ince fxe ( ) dx F () Fourier Trnform Putting gx ( ) f( x) in (), we get GFd ()()...() FF (). () fxfxdx ( ) ( ) [ F ()] d [ ] f( x) dx. Proved.. PARSEVAL S IDENTITY FOR COSINE TRANSFORM (i) (ii) F c Gc d (). () fxgxdx ( ). () Fc () d f ( x ) dx. PARSEVAL S IDENTITY FOR SINE TRANSFORM (i) (ii) F G d (). () fxgxdx ( ). () F () d f ( x ) dx Exmpe : Uing Prev identity, how tht So. Let dx ( x + ) x f( x) e otht Fc() + By Prev identity for coine trnformtion Fc () d f ( x ) dx x x x e d e dx e dx ( + )

35 INTEGRAL TRANSFORMS 5 d. An. ( + ) Exmpe : Uing Prev identity, how tht xdx ( x + ) x So. Let f( x) x + o tht ( ) F() e By Prev identity for ine trnformtion F () d f ( x ) dx x x + dx e d e e d +. Proved. Exmpe 5: Uing Prev identity, prove tht dt b ( b) ( + t ) ( b + t ) x So. Let f( x) e, gx ( ) e Then bx + b Fc(), G () + b + c By Prev identity for Fourier coine trnformtion F (). () ( ). () c Gc d fxgxdx...() On ubtitution in (), we get b + b + d x bx. e e dx

36 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III b d ( ) ( b ) b x ( ) e dx ( + b) x e + ( + b) + b d ( + ) ( b + ) b+ b dt. Proved. ( + t ) ( b + t ) b( + b) Exmpe 6: Uing Prev identity, prove tht int e dt t ( + t ) Proof: Let, < x < f( x), gx ( ) e x, x > F c in ( ), Gc( ) By Prev identity for coine trnform F c Gc d (). () fxgxdx ( ). () in x d f( x). e dx + ( + ) in + x x fxe ( ) dx+ fxe ( ) dx x. e dx + x e e e d ( e )

37 INTEGRAL TRANSFORMS 7 or int ( + t ) ( e ) dt. Proved. t Exmpe 7: Uing Prev identity, prove So. By exmpe, we now tht int dt. t If, for x < f( x), for x > > in Then F () Uing Prev identity f() t dt F () d ( ) in dt d in d Putting t, we get int dt t int A dt t dt Q d dt d int dt t. Proved. Exmpe 8: Sove for f(x) from the integr eqution. f( x)coxdx e So. f( x)coxdx e c { ( )} F f x e...()

38 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III f( x) F c e e e e + x coxd coxd { cox + inx}. x. An. +. FOURIER TRANSFORM OF DERIVATIVES We hve redy een tht n n { ( )} ( ) ( ) F f x i F u F i Fux ( ) u,where u x i Fourier trnform of u w.r.t. x. (i) ( ) { } (ii) F { f ( x) } f() + F ( ) c L.H.S. f ( x ).co xdx co xd { f ( x )} f( x)co x + f( x)inxdx { } (iii) { ( )} in [ ( )] F( ) f()uming f( x) x F f x xd f x f( x)in x f( x)coxdx { } fc( ) F f x xd f x (iv) c{ ( )} co [ ( )]

39 INTEGRAL TRANSFORMS 9 { } + f ( x)co x f ( x)inxdx f () + F { f ( x) } ( ) (v) { ( )} in [ ( )] F f () uming f( x), f ( x) x F f x xd f x c { } f ( x)in x f ( x)coxdx F { f ( x) } F [ () f() ] c F () + f () uming f( x), f ( x) x.. RELATIONSHIP BETWEEN FOURIER AND LAPLACE TRANSFORMS Conider t e gt (), for t > f() t, for t < Then the Fourier trnform of f() t i given by...() { } it F f () t e ftdt () e ftdt () it ( ixt ) pt e gtdt () e gtdt () where p x i L{g(t)} Fourier trnform of f(t)lpce trnform of g(t) defined by ()..5 FOURIER TRANSFORMS OF PARTIAL DERIVATIVE OF A FUNCTION u F Fu () where F(u) i Fourier trnform of u w.r.t. x. x u F u () x Fu () x F u u c F c () u x x x (ine trnform) (coine trnform)

40 A TEXTBOOK OF ENGINEERING MATHEMATICS III Proof: Let F[u(x, t)] be the Fourier trnform of the function u(x, t), i.e. ( ) The Fourier trnform of ix Fuxt, e uxtdx (,) u i given by x u ix u F e dx x x Integrting by prt, we hve u ix u ix u F e ie dx x x x ix u ix ix e ie u+ ( i) e udx x ix e. udx Agin integrtion u u, x when x Thu F Fuxt [ (,)] x u Simiry the Fourier ine trnform of u x i given by u F x u inxdx x or F uxt [ (,)] Fut [ (,)] x u x nd F F [ ut (,)] c u u x x x c (ine trnform) (coine trnform).6 APPLICATIONS OF FOURIER TRANSFORM OF HEAT CONDUCTION (TRANSFER EQUATIONS) In one dimenion het trnfer eqution, the prti differenti eqution cn eiy be trnformed into n ordinry differenti eqution by ppying fourier trnform. The required oution i then obtined by oving thi eqution nd inverting by men of the compex inverion formu. Thi i iutrted through the foowing exmpe.

41 INTEGRAL TRANSFORMS Exmpe 9: Sove the eqution u u t x ubject to the condition (i) u when x, t >, x >, t >, < x < (ii) u when t, x (iii) u(x, t) i bounded (U.P.T.U. ) (Note. If u t x i given, te Fourier ine trnform nd if u x t x i given, ue Fourier coine trnform.) So. In view of the initi condition, we ppy Fourier ine trnform u t inxdx d dt u inxdx x uin xdx u () + u() u when x du du uor + u dt dt u Ae t...() u ut (,) uxt (,)inxdx u u (,) ux (,)inxdx cox co u (,).inxdx...() From () putting the vue of u (,) in (), we get co A co t u e or co t u e d u u Exmpe : Sove t x initi condition u(x, ), x. for x, t under the given condition u ut x, t > with

42 A TEXTBOOK OF ENGINEERING MATHEMATICS III So. Ting Fourier ine trnform u u F F t x (, ) d u u + u t dt u+ u, where u i the fourier ine trnform of u. Thi i iner in u. du u u dt + t t u t ue u e dt e + c...() Since, u(x, ), u (, ). Uing thi in () By inverion theorem, u u + c c u ( ) ( ) u e e u e t t t u e t uxt (,) in xd. An. u u Exmpe : Sove for x<, t> given the condition t x u (i) ux (,) for x (ii) (, t) (contnt) x (iii) u(x,t) i bounded. So. In thi probem, the given eqution. u t x i given. Hence, te Fourier coine trnform on both ide of x u u Fc Fc t x du u u (, t) dt x

43 INTEGRAL TRANSFORMS u+ [Uing condition (ii)] du u dt + Thi i iner in u. Therefore, oving t t e t ue e dt c + ut (,) + ce t Since u(x, ) for x u (,) Uing thi in (), we get...() u (,) c + c Subtituting thi in () By inverion theorem ut (,) ( ) t e e uxt (,). co xd. An. t Exmpe : Ue Fourier ine trnform to ove the eqution under the condition u u t x (i) u(, t) (ii) u(x,) e x So. The given eqution i (iii) u(x, t) i bounded. u u t x...()

44 A TEXTBOOK OF ENGINEERING MATHEMATICS III Ting Fourier ine trnform on bothide of eqn. (), we get u in u in xdx t x xdx u u, where du () x dt u uinxdx du u dt +...() t It oution i u ce, when ci contnt. At t, ( ) ( ) u u in xdx t t From (), ( ) u x e + From () & (), c + inxdx...() c t...() t From (), u e + Ting invere Fourier ine trnform, we get t uxt (,) e in xd. + Exmpe : Ue Fourier coine trnform to how tht the tedy temperture n in the emiinfinite oid y > when the temperture on the urfce y i ept t unity over the trip x t ero outide the trip i tn + x tn x + y y r my be umed. x The reut e x inrxdx tn ( r, > ) < nd So. Ting Fourier coine trnform of u u +, we hve x y

45 INTEGRAL TRANSFORMS 5 u.co u xdx+.co xdx x y u d ( ) where x x dy u+ u u ucoxdx u du u dy...() Q x x It oution i But u i finite o c Otherwie u y y y +...() u ce ce From (), u ce y...() u ucoxdx y y ( ) ( ) From (), ( ) u u co xdx u y c From (), in.coxdx...() c in in u e y Appying invere Fourier coine trnform, we get y in y e u e coxd ( incox) d in( + ) + in( ) y e x x d + x x tn + tn y y

46 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III PROBLEM SET.. Appy pproprite Fourier trnform to ove the prti differenti eqution v v ; x >, t > t x Subject to condition v t (ii) v( x,) (i) (, ) x (iii) v(x, t) i bounded. x, x, x > in co t And. vxt (, ) + e cotd. Sove the eqution for high votge emi-infinite ine with the foowing initi nd boundry condition. v(x, t) nd i(x, ), v(, t) v u(t), v(x, t) i finite x. And. v vut [ x LC ], for x t LC nd v for t x > LC.7 FINITE FOURIER TRANSFORMS The finite Fourier ine trnform of f(x), <x< i defined ( ) ( ).in px F p f x dx ; p I Simiry, the finite Fourier coine trnform of f(x), < x < i defined ( ) ( ).co px Fc p f x dx ; p I Genery, the choice of the upper imit of integrtion in thee trnform i found convenient nd cn eiy be rrnged by hving uitbe ubtitution to ctu probem, then F( p) f().in x pxdx nd Fc ( p ) f ( x ).co pxdx

47 INTEGRAL TRANSFORMS 7.8 INVERSE FINITE FOURIER TRANSFORMS Inverion formu re given foow : When upper imit i For ine trnform: For coine trnform: px f( x) F( p) in p where Fc() tnd for fxdx ( ). When upper imit i. For ine trnform: px f( x) Fc() + Fc( p) co p For coine trnform: f( x) F( p) in px p where Fc() tnd for fxdx ( ). f( x) Fc() + Fc( p) copx p Exmpe : Find the finite Fourier ine nd coine trnform of (i) f( x ) in (, ) (ii) f( x) (iii) f( x) x in (, ) x in (, ) (iv) f( x ) in < x < / in / < x < (v) f( x) x in (, ) x (vi) f( x) e in (, ) So. (i) px copx cop F( p) F().in dx ; if p p p inpx Fc ( p).co pxdx ( ). p p An.

48 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III (ii) F ( p) F ( p) (iii) F ( p) F ( x) c px xin dx px px co in ( x) () (co p) p p p p ( ) ; if p. An. p c px xco dx px px in co p () ; if p p p p ( x) ( ) F ( p) F ( x ) ( x ) x px in dx px px px co in co ( x) () + p p p p ( ) + ; if p p p p ( ) Fc ( p ) px ( x ) co dx ( x ) px px px in co in ( x) () + p p p p ( ) ; if p p An.

49 INTEGRAL TRANSFORMS 9 (iv) { } F f( x) in pxdx + ( )inpxdx copx copx + p p p p co + copco p p p co p co + p ; if p { } F f( x) copxdx copxdx c inpx inpx p in ; if p p p p An. (v) px F( x ) x in dx ( ) px px px px co in co in ( ) + 6 (6) p p p p ( x ) x ( x) p p 6 p ( ) ( ) ; if p p + p px Fc x x co dx px px px px in co in co ( ) 6 (6) + p p p p ( x ) x ( x)

50 5 A TEXTBOOK OF ENGINEERING MATHEMATICS III p 6 p ( ) ( ) ; if p. p p An. (vi) x x px F( e ) e in dx x e px p px in co p + x e p p p + ( ) x Fc ( e ) p p + + x e px p px co in + p + e ( ) p ( ). An. p p + + Exmpe : Find finite Fourier ine trnform of f( x ) in (, ) So. The finite Fourier ine trnform of f(x) i given by x F( p) inpxdx x copx copx. dx p p inpx. An. p p p p

51 INTEGRAL TRANSFORMS 5 Exmpe : Find finite Fourier coine trnform of co ( x) f( x) in co ( x) F p co pxdx in So. c ( ) in co { ( ) + } + co { ( ) } x px x px dx in( x + px) in( x px) in p p+ p p+ p,,,,... An. Exmpe : Find finite Fourier ine nd coine trnform of f( x), x < x<. So. (i) px F p x dx ( ).in px px co co x. dx p p (ii) ( ) ( co p ), p p, p.co px Fc p x dx px px in in x. dx p p

52 5 A TEXTBOOK OF ENGINEERING MATHEMATICS III px co 8 inp p p p ( p ) p co, p When p, F ( p) F (). xdx 6. c c An. Exmpe 5: Find f(x) if it finite Fourier ine trnform i given by (i) cop F( p) p for p,,,. nd < x < (ii) p 6( ) F( p) for p,,,.nd < x < 8 p (iii) p co F ( ) p (p+ ) So. By inverion formu, for p,,, nd < x <. (i) cop f( x) inpx p p co p.inpx p p (ii) px f( x) F( p)in p p p 6( ) px in 8 p 8 p p ( ) px in p 8 (iii) px f( x) F( p)in p

53 INTEGRAL TRANSFORMS 5 p co in( px ); in. p ( p+ ) An. Exmpe 6: Find f( x) if it finite Fourier coine trnform i (i) p Fc( p) ; for p,, p ; for p given < x < (ii) p 6in cop F ( ) c p ; for p,,,. (p+ ) ; for p given < x < (iii) p co Fc( p) ; for p,,,.. (p+ ) ; for p given < x < So. By inverion formu, px f( x) Fc() + Fc( p).co p (i) Here F () /nd c p px f( x) + in co p p p p px + in co 8 p (ii) Here F c () nd p 6in cop px f( x) + co (p+ ) p

54 5 A TEXTBOOK OF ENGINEERING MATHEMATICS III (iii) Here F (), c p f( x) + co co (p+ ) p + co( px ) p ( px) p co. An. (p+ ) PROBLEM SET.. Find the finite Fourier ine trnform of (i) f( x) x in (, ) (ii) ƒ(x) co x in (, ) (iii) f( x) e x in (, ) p+ ( ), p An. () i p, p p p ( ii) [ ( ) co ] p. Find finite Fourier coine trnform of x e p p p ( iii) ( ) + p p + + x, < x <.. Find f(x) if it finite Fourier ine trnform i p for,,,, < x <. ( ) /, p An. Fc( p) / p, p p ( ) An. f( x) inpx p p

55 INTEGRAL TRANSFORMS 55.9 FINITE FOURIER SINE AND COSINE TRANSFORMS OF DERIVATIVES p F{ f ( x) } Fc( p) p p Fc{ f ( x) } ( ) f() f() F( p) p p p F{ f ( x) } F( ) () ( ) () p + f f p p Fc{ f ( x) } F ( ) ()( ) () c p + f f Proof: (i) F { f ( x) } f ()in x dx in. d{ f ( x) } px px px pxp f( x)in f( x).co dx (ii) c{ } p F c( p ) px px p px F f ( x) f ()co x dx f( x)co f( x). in dx (iii) { } p ( ) ( ) p f f() + F( p) px F f ( x) in df [ ( x)] ( ) in ( ) px p px f x f x co d p p ( ) n f ( ) f ( ) + f ( p) p ( ) + ( ) p p F p [ f() f()]

56 56 A TEXTBOOK OF ENGINEERING MATHEMATICS III (iv) c ( ) px F { f x } co d f ( x ) px p px f x f x in dx ( ) co + ( ) p p p ( ) f () f () + f ( p) c Note: If u u(x, t), then p p Fc( p) + f f () ( )( ) u p F F u x c( ) u p Fc F u u t + ut x Exmpe : Uing finite Fourier trnform, ove ( ) (, ) ( ) p (, ) u p p ( ) p F + ( ) ( ) ( ) F u u, t ut, x u p u u Fc F ( ) + (, ) co (, ) c u t p t x x x u u t x. Given u (, t) nd u (, t) nd u(x, ) x where < x <, t >. So. Since u (, t) given, te finite Fourier ine trnform. u in px dx u in px dx t x d u dt u F x p p n u + [(, u t) ( ) u(, t)] 6 A p uuing u(, t), u(, t) 6

57 INTEGRAL TRANSFORMS 57 du u p 6 dt Intergrting Since u(x, ) x p ogu t+ c 6 u p t 6 Ae...() px u( p,) ( x)in dx Uing () in (), Subtituting in (), By inverion formu, cop p u( p,) A co p p u p ( ) p p t 6 e p p+ 6 px e. An. p p uxt (, ) ( ) in...() Exmpe : Sove <, t >. v v ubject to the condition v(, t), v(, t), v(x, ) for < x t x So. Since v (, t) i given, ting F.F.S.T. of the given diff. eqution v inpxdx t v inpxdx x inpx dt x t dv v v copxdx p vcopx + p vin pxdx { }

58 58 A TEXTBOOK OF ENGINEERING MATHEMATICS III dv dt Integrting fctor ( ) p co p + pv p co p pv ( ) ( co ) + pv p p e pdt e ( co ) pt pt ve c+ p p e dt v c+ p( cop) e pt pt p ( p ) pt co ce +...() p Ting F.F.S.T. of the condition v(x, ) co px v( p,).inpxdx p Putting t in eqn. (), we get co p v( p,) c+ p cop cop c+ p p ( co ) cop p + p p p or cop cop c p p cop p Therefore, from eqution (), we hve cop pt cop v(,) pt e + p p Ting invere F.F.S.T., we get co p pt co p vxt (,) e + inpx p p p

59 INTEGRAL TRANSFORMS 59 pt p e inpx + inpx p cop co p p p cop pt cop + e inpx in px. p p p p An. Exmpe : Sove u u t x, < x < 6, t > u u Given (, t), (6, t) nd ux (,). x x x u So. Since (, t) i given, ue finite Fourier coine trnform t 6 6 u co px dx u co px dx t 6 x 6 d p u u u (6, t)co p u (, t) p + u dt 6 x x 6 c c c du u c c p 6 dt p oguc t+ c 6 uc u(x, ) x. At t Uing thi in (), we get Subtituting in (), we get p t 6 Ae...() 6 px 7...() 6 p u ( p,) ( x)co dx (cop) c 7 uc ( p,) A (cop) p 7 uc (,) pt (co p) p

60 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III By inverion formu, px uxt (,) fc ( ) + fc( p)co p 6 p t ( ) (co ) 6 xdx p e.co p p 7 px p p p t 6 (co p) px 6 + e.co. 6 An. PROBLEM SET. u u. Sove, < x <, t > given (, t) ; t x U(, t) ; u(x, ) in x in 5x. Ue the finite coine trnform to ove [An. t 5 t uxt (,) e inxe in5 x ] u u t x (one dimenion het eqution) u With the boundry condition when x nd x, t > nd the initi condition x U f (x), when t, < x <. p t An. uxt (,) fydy () + e co( px). f()co y pydy p u u for < x <. Sove, < x < 6. Given tht u(, t) u(6, t) nd u(x, ) t x for< x < 6 An. uxt p co px e p 6 p p t (,) 6 in

61 INTEGRAL TRANSFORMS 6. Z-TRANSFORMS Z-trnform i very uefu in the dicrete nyi. Difference eqution re formed in dicrete ytem nd their oution nd nyi re crried out by -trnform. Sequence Sequence {f()} i n ordered it of re or compex number. Repreenttion of Sequence Firt Method: The eementry wy i to it the member of the equence uch {f()} {5,, 7,,,,,, 6} The ymbo i ued to denote the term in ero poition i.e., i n index of poition of term in the equence. {g()}{5,, 7,,,,,, 6} Two equence {f()} nd {g()} hve me the term but thee equence re not identicy the me the eroth term of thoe equence re different. In ce the ymbo i not given, then eft hnd end term i conidered the term correponding to. Exmpe : {8, 6,,,,,, 5}, here The eroth term i 8, the eft hnd end term. Second Method: The econd wy of pecifying the equence i to define the gener term of the equence {f()} function of. f Exmpe : ( ) Thi equence repreent Exmpe :...,,,,,,... f( ), then {()} g {,,,,,,, } Bic Opertion on Sequence Let {f ()} nd {g()} be two equence hving me number of term. Addition: {f ()} + {g()} {f() + g()} Mutipiction: Let be cer, then {f ()}{ f ()} Linerity: {f ()}+b{g()}{ f () + b g()}

62 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III. DEFINITION OF Z-TRANSFORM { }. The Z-trnfrom of equence {f()} i denoted Z f( ) It i defined ( ) { } () ( ) Z f F f Where. i compex number.. Z i n opertor of Z-trnform.. F() i the Z trnform of {f ()}. Exmpe : If f () {5,, 7,,,,,, 6}, then f( ) 6 Z { f( ) } F () Exmpe 5: Find the -trnform of { }, So. { } Z which i in G.P. whoe um r { }. An.. PROPERTIES OF Z-TRANSFORMS Linerity Theorem : If f () nd {g ()} re uch tht they cn be dded nd b re contnt, Then Proof: { } { ( ) + ( )} { ( )} + { ( } Z f bg Z f bz g Z f( ) + bg( ) f( ) + bg( ) [By definition]

63 INTEGRAL TRANSFORMS 6 f( ) + bg() f ( ) + b g () Z[{f()}+bZ[{g()}]. Proved.. CHANGE OF SCALE Z f F Theorem: If Z[{f ()}]F(), then { ( )} Proof: { } Subtituting for, we get But { } From () nd () F () Z f( ) f ( ) F f( )...() Z f( ) f( ) f( ) { ( )}...() Z f F. Proved.. SHIFTING PROPERTY Theorem: If Z [{f ()] F (), Then { } ± n Z f( ± n F () ( ) Proof: Z{ f( n} ( ) ± f n n f( n ) ± n.5 MULTIPLICATION BY K ± ± ± r ( n) ± n r fr () ± n F (). Proved. Theorem: If Z { f( ) } F (), then { } d Z f( ) F () d ±

64 6 A TEXTBOOK OF ENGINEERING MATHEMATICS III Proof: Z{ f( ) } f( ) f( ) f( ) ( ) In gener n { }.6 DIVISION BY K d ( ) d f( ) f ( ) d d d F (). Proved. d d Z f( ) F () d n Theorem: If { } Z f( ) F (), then f( ) Z Fd () Proof: f( ) f( ) Z ( ) ( ) f f d f ( ) d f () d Fd () f( ) Z Fd ().7 INITIAL VALUE Theorem: If Z [{f ()}] F (), Then f() im F (). Proof: { } Z f( ) f ( ) F () f() + f() + f() +... F () Ting the imit,, we get f() im F (). Proved.

65 INTEGRAL TRANSFORMS 65.8 FINAL VALUE Theorem: im f( ) im( ) F ( ). Proof: { } Z f( + ) f( ) f( + ) f( ) n n F() f() F () im f( + ) f( ) im( ) F ( ) f() + im im f( + ) f( ) n By chnging the order of imit, we get.9 PARTIAL SUM Theorem: If { } n im( ) F ( ) f() + im im[ f( + ) f( )] n Z f( ) F (), F () Then Z f( n) n Proof: Let {g()} be equene uch tht n im f() + { f( + ) f( )} n im[ f () f ()+ f ()+ f () f ()+. + f (n+) f (m)] im f( n+ ) im f( n) im f( ) n n g ( ) f( n) n We re required to find Z[{f()}, We now tht g ( ) g ( ) f( n) f( n) f( ) n { ( )} { ( ) } { ( )} Z g g Z f { } { } Z g ( ) Z g ( ) F () n

66 66 A TEXTBOOK OF ENGINEERING MATHEMATICS III G () G () F () F () f( ) G (). Proved. n. CONVOLUTION Let two equence be {f()} nd {g()} nd the convoution of {f()} nd {g()} be {h()} nd denoted where { } Proof: Z-trnform of () i { h ( )} { f( ) }*{ g ( )} h ( ) fng ( ) ( n)...() n gnf ( ) ( n) { g ( )}*{ f( ) } n Zh { ( )} ( fng ( ) ( n) ( fng ( ) ( n ) n n f n g n f n G () FG ( ) ( ) n n n ( ) ( ) ( ) ( ) n n Exmpe 6: Find the Z-trnform of { }. So. { } Z [ ] Thee re two G.P. nd um of G.P. r +, < nd < + ( ) + ( ) + ( )( ) ( )( ). An. ( )( )

67 INTEGRAL TRANSFORMS 67 Exmpe 7: Find the Z-trnform of So. Z Putting, we hve Z, < < ( )() 5 An. Exmpe 8: Find the Z-trnform of unit impue So. { }, δ ( ), Z f( ) δ( ) [ ]. An. Exmpe 9: Find the Z-trnform of dicrete unit tep, < U ( ), ( ) ( ) So. Z { U } U Thi i G.P. it um i r. An.

68 68 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe : Find the Z-trnform of {ƒ()} where 5, < f( ), So. { } Z f( ) 5 + Thee re G.P An. (5 )( ) + 5 Exmpe : Find the Z-trnform of in α,. So. { in } iα α i e e Z α inα i Thee re G.P. iα α i iα iα e e ( e ) ( e ) i i i i iα iα α i iα ( e ) ( e ) ( e ) ( e ) i i ie ie i e i e iα iα iα α i α i iα ( ) ( ) ( ) ( ) e e iα α i i e e i iα α i e e ( iα α i ) ( ) e e inα. An. i iα α i e + e + coα+

69 INTEGRAL TRANSFORMS 69 Exmpe : Find Z-trnform of in ( + 5). So. i(+ 5) i(+ 5) e e F () in( + 5) i i ( 5) + i ( + 5) e e i i 5 ( i i ) 5 i ( i e e e e ) i i 5i i i 5i i i e ( e ) ( e ) e ( e ) ( e ) i i i5 e 5i e S i i i e i e r ( ) ( ) i i ( e )( e ) ( ) i 5 i 5 i i i 5 5 i i i e e e e e e e + e i i i i e e + i5 5i i i e e e e i i + + i i ( e e ) ( co) in5 in + in5 in co+, >. An. Exmpe : Find the Z-trnform of co +α 8 So. Z co +α co +α 8 8 co coαin inα 8 8 co coα in inα 8 8 coα co inα in 8 8

70 7 A TEXTBOOK OF ENGINEERING MATHEMATICS III co in coα 8 inα 8 co + co co co in in co co co in in 8 α α α α+ α co + co coαco α 8. An. co + 8 Exmpe : Find the Z-trnform of coh +α So. F() +α +α e e + coh +α +α α α α e + e e e + e e α e α e e... e e e (Geometric erie um r ) α e α e + e e α α e + e e e e e

71 INTEGRAL TRANSFORMS 7 α α α α+ e + e e + e. cohαcoh α. coh + e e + cohαcoh α. An. coh + Exmpe 5: Find the Z-trnform of,. So. We now tht Z { } for the given equence, by the ce chnge formu the Z-trnform Z{. }. An. Exmpe 6: Find the Z-trnform of c in α,. So. We now tht Z { inα } inα coα+ By ppying the formu of chnge of ce we get (ee exmpe ) { inα } Z c inα c coα+ c c cinα ccoα+ c. An. Exmpe 7. Find the Z-trnform of (i) c coh( α), (ii) e co( α), (U.P.T.U. )

72 7 A TEXTBOOK OF ENGINEERING MATHEMATICS III So. (i) coh( ) α α e + e Z{ α } By chnge of ce property, α α ( e ) + ( e ) ( α e ) ( α + e ) c { coh( α ) } Z c + α e e α ( ) α α e + e ( coh ) α α α ( e + e ) + cohα+ cohα c cohα+ c c ( cohα) ccohα+ c. An. (ii) co( ) α α i i e + e Z{ α } iα α i ( e ) + ( e ) ( iα ) ( α i e + e ) + iα i e e α coα coα coα+ coα+ ( )

73 INTEGRAL TRANSFORMS 7 By chnge of ce property, { co( α ) } Z e coα e e coα+ e e ( ) ecoα ecoα+ e. An. Exmpe 8: Find the Z-trnform of { n C } ( n). n n n n n n n n... n Z C C + C + C + C + + C So. { } Thi i the expnion of Binomi theorem. ( + ) n. An. Exmpe 9: Find Z-trnform of { +n C n }. So. { n} + n + n n Z C + n> n C > + n C n n ( Cr Cn r) n+ n + n+ C C C ( ) ( n+ )( n+ ) ( n+ )( n+ )( n+ ) + n+ + + ( ) +...!! ( )( ) ( n)( n ) ( ) ( ) ( ) ( n) n ( n) + n !! Thi i the expnion of Binomi theorem. n ( ) ( ) ( n + ). An. Exmpe : Find the Z-trnform of. ( )! So. Z!!

74 7 A TEXTBOOK OF ENGINEERING MATHEMATICS III Thi i exponenti erie. ( ) ( ) ( ) e !!!! e. An. Exmpe : Find the Z-trnform of (i) f( ), (ii) f( ), ( + ) So. (i) { } Z f( ) f ( ) Z og ; if < og ; if > (ii) Z Z ( + ) + Z Z + og + og og

75 INTEGRAL TRANSFORMS 75 og og og og ( )og Exmpe : Find the Z-trnform of f *g where (i) f( n) un ( ), gn ( ) un ( ) n n n (ii) f( n) un ( ), gn ( ) un ( ) uing convoution theorem. So. (i) { } By convoution theorem n F () Zun ( ). ; if > n { } n n G () Z un ( ) ; if > { } { } n Z f* g Zh ( ) FG (). () n (ii) { } By convoution theorem { } { }. ; if > ( )( ) F () Z un () ; if > n { } G () Z un ( ) ; if > Z f* g Zh ( ) FG (). (). ; if >. ( )( ) An. An. PROBLEM SET.5 Find the Z-trnform of the foowing for ( ):.. An., > in. in. An. co+

76 76 A TEXTBOOK OF ENGINEERING MATHEMATICS III.. inh. in +α. An. inh coh + inα+ coα An., > + cinhα 5. c inh( α). An. ccohα+ 6. co ( α). 7. ( α) coh. ( coα) An. coα+ ( cohα) An. cohα+ 8. co +. An. ( + ) 9. coα + bin α. ( co in ) αb α An. coα+. inh(7 ). An. inh7 coh7+. co (9).. coh(5 ). ( coh9) An. coh9+ ( coh5) An. coh5+ 9. co + 5. co5co 5 An. co +

77 INTEGRAL TRANSFORMS 77. INVERSE Z-TRANSFORM Invere Z-trnform i proce for determining the equence which generte given Z-trnform. If f () i the Z-trnform of the equence {f ()}, then {f ()} i ced the invere Z-trnform of F(). The opertor for invere Z-trnform i Z. If Z{ f } ( ) F (),then { } Z f() f( ). METHOD OF FINDING INVERSE Z-TRANSFORMS We hve the foowing method of finding invere Z-trnform. Convoution Method.. Long Diviion Method.. Binomi expnion Method.. Prti Frction Method. 5. Reidue Method... Convoution Method We now tht { } Z f* g FG ( ) ( ) { } Z FG ( ) ( ) f * g fmg ( ) ( m) m Exmpe : Uing convoution theorem evute So. We now tht { } Z FG (). ( ) f * g Z. ( )( ) Let F () f( ) () nd G () Now, Z { FG (). ( )} ( ) * ( ) g ( ) ( ) () m m m m (which i G.P.)

78 78 A TEXTBOOK OF ENGINEERING MATHEMATICS III.. Long Diviion Method + +. An. ( ) ( ) ( ) + + Exmpe : Find Z. So. Ce I: > Z { } { }. An.

79 INTEGRAL TRANSFORMS 79 Ce II: < Z { + } { }. An... Binomi Expnion nd Prti Frction Exmpe : Find the invere Z-trnform of (i) > (ii) <.

80 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III So. Ce I: Z { } { }. An. Ce II: < ( ) Z { f( ) }. An. where, { f( ) }...,,,.. Prti Frction Method Here we pit the given F() into prti frction whoe invere trnform cn be written directy. Exmpe : Find the Z-trnform of (), (b) + 7+ ( ) ( ) So. () F () A B ( + )( + 5 ) ( + ) ( + 5) ( + ) ( + 5) F() ( + ) ( + 5)

81 INTEGRAL TRANSFORMS 8 { ( )} Z ( ) f Z F Z Z Z+ + 5 ( ) ( 5) (b) F() ( ) ( ) or F () ( ) ( ) Now F () ( ) ( ) D /, A 6, B nd C / A+ B+ C D ( ) + Z 6 + F() + ( ) + ( ) F() ( ) ( ) + +. ( ) Now f( ) Z { F ()} { + } { } +. An. Q Z + ( ) Exmpe 5: Find the invere Z-trnform of. ( )( ) () <, (b) < < nd (c) > So. () < + + ( ) F() ( )

82 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III (b) < <, F() ( ) + ( ) f( ) { } f { } (c) >..., > ( ),. An. + ( ) F() ( ) { },, Exmpe 6: Find the invere of Z-trnform of ( 5), > 5. So. F() ( 5)

83 INTEGRAL TRANSFORMS 8 ( 5 ) 5 ( n ) + ( n+ ) n (5 ) + (5 ) (5 ) +... ( + )( + ) ( + )( + ) 5 5 Repcing by, we get F() ( + )( + ) ( )( ) 5 5 ( )( ) f( ) Z { F ()} 5,, < An. Exmpe 7: Obtin Z ( )( ), when () < < (b) <. So. () ( )( ) ( ) ( ) 6 6 () ( ) 6 [+ + ( ) + ( ) +...] ( ) 6 ( ) ( ) ( ) f( ) ; if > f( ). ; if < An.

84 8 A TEXTBOOK OF ENGINEERING MATHEMATICS III (b) < ( ) ( ) ( ) ( ) 6 6 ( ) ( ) ( ) , + + Exmpe 8: Obtin Z +, ( ) ( ) when < <. So. Let + A B C + + ( ) ( ) ( ) ( ) ( ) Converting into prti frction, we get Z ( ) ( ) ( ) ( ) ( ) + 9 ( ) ( ) ( ) ( ) { } , + F () if, nd, < or, + Z F () ( + ),. An.

85 INTEGRAL TRANSFORMS Reidue Method Te the contour c uch tht the poe of the function ie within the contour. Then by reidue method f() um of the reidue of F () t it poe. where reidue for impe poe i ( ) F () Reidue of order n t the poe n d n ( ) () n i F ( n) d i Exmpe 9: Evute So. Z F () ( + )( + 5) Poe re given by, ( + ) ( + 5) or, 5 There re two impe poe. Conider contour > 5 Reidue (t ) ( ) ( + ) ( + )( + 5) Reidue (t 5) ( 5) ( + 5) ( + )( + 5) 5 f () um of the reidue ( ) ( 5) + { } Exmpe : Evute [ ] ( ) ( 5). An. Z. ( )( ) So. The poe re given by, ( )( ) nd There re two impe poe. Let u conider the contour >. Reidue t ( ) Reidue t ( ) ( ) ( )( ) ( ) ( )( ) Hence, f () Sum of the reidue. An.

86 86 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe : Evute Z ( )( )( ) So. The poe re given by ( ) ( ) ( ),, There re three poe. Let u conider the contour >. ( ) ( 8+ 6) Reidue t ( ). ( )( )( ) ] ( )( ) ( )( ) ( ) ( 8+ 6) Reidue t ( ) ( )( )( ) ] ( )( ) ] ( ) Reidue t ( ) ( ) ( 8+ 6) ( )( )( ) ] ( )( ) ] Hence, f () Sum of the reidue + +, >. An. Exmpe : Evute Z 9. ( ) ( ) So. The poe re given by () ( ) /,. There re two poe i.e., one i impe poe t nd other i poe of order t /. Let u conider the contour >.

87 INTEGRAL TRANSFORMS 87 Reidue t ( ) ( ) ( ) ( ) ( ) ( )..9 d d ( + ) Reidue t ( /) d ().( ) d 9( ) ( ) + ( + ) ( + ) Hence, f () um of the reidue. + ( + ). An. 5 5 Exmpe : Uing reidue method, evute Z 8. ( ) So. Here 8 F (). ( ) Poe re given by (poe of order ). Conider contour 5. Reidue of F() t ( ) d 8 ()! d ( ) ( ). { } d d d + ( 8) ( 8 ) d {( ) } ( ) d ( ) 8( ) d ( )( )() 8( )() ( )( )() ( )() ( ) ( 7 )() Z 8 ( ) { } um of the reidue ( ) (). An.

88 88 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe : Uing reidue method, how tht + 5 Z (.) + (.). (5 )(5+ ) So. Here, + F () (5 )(5 + ) Poe re given by (5 )(5 + ) i.e., /5. /5 which re impe poe. Conider contour + Reidue t ( /5) Lt. 5 (5 )(5 + ) 5 Lt ( + ) 5 (5 + ) (.) (5) Reidue t ( /5) Lt...( ) + Lt (5 )(5 + ) 5 5(5 ) Z ( ) (5) 6 {()} F ( ). (.) (.) Hence, f () um of the reidue 5 (.) + (.). An Exmpe 5: Find Z. >. + So. The poe re determined by, + i.e., ± i There re two poe t i nd i. Let u conider contour >

89 INTEGRAL TRANSFORMS 89 Reidue t ( i) + + ( ) i. () i () i + + i i i i co + iin co iin + Reidue t ( i) + + ( + ) i. ( ) i ( i) + i i i i co iin co iin f () um of the reidue co + iin + co iin co co. An. PROBLEM SET.6. Find Z uing convoution theorem. ( )( b). Find the invere of the Z-trnform of the foowing: An. + + b b (), ` ( )( 5) < 5 An. 5 5 (b), ` ( )( ) < + + An. () ( )( ),( < ). Find the invere Z-trnform of (). >, (b) <. An. (){ }, () b { }. Evute Z 5, >. ( )( ) An. { } +,

90 9 A TEXTBOOK OF ENGINEERING MATHEMATICS III 5. Evute invere Z-trnform of the foowing: () e α (b) ( ), > An. An. { } α { e }, (c) + coα, > coα+ (d) og( ), > (e) e ( e ) > e An. { α} co, An., An. { e } 6. Find the invere Z-trnform of the foowing function by reidue method: () An., ( )( ) (b) (c) (d) + ( ) ( + ) ( 6+ ) ( ) ( ) An. { } An.co () i + ( i),,, + An. U (). DIFFERENCE EQUATION A difference eqution i retion between the difference of n unnown function t one or more gener vue of the rgument. nd Thu y( ) + y( )...() re difference eqution. n+ ( n+ ) y( n) n y +...() Eqution () my be written y y + y...() n+ n+ n yn+ yn+ yn+, yn yn yn y n From eqution () yn+ yn + yn...()

91 INTEGRAL TRANSFORMS 9. ORDER OF A DIFFERENCE EQUATION The order of difference eqution i the difference between the rget nd the met rgument occurring in the difference eqution divided by the unit of increment. from eqution () Order Lrget rgument Smet rgument Unit of increment ( n+ ) n And order of eqution () i ( n+ ) ( n ).5 THEOREM y Z( y ) y y... n n + n n y, where Z( y ) y Proof: L.H.S. Putting + n m n ( + n) + n + n + n Z( y ) y y n Z( y+ n) ym m n m Zy ( ) y y Note: () For n,,,..., we hve Zy ( + ) Zy ( y) n n m m + n m m m m n y y y y y y Zy+ Z y y ( ) ( )... n n y y Zy ( + ) Z ( y y ) nd o on. () If Zy ( ) y, then Zy ( ) n n y.

92 9 A TEXTBOOK OF ENGINEERING MATHEMATICS III Exmpe : Sove by Z-trnform: y+ y+ + y ; y, y. So. Te Z-trnform on both ide Z( y ) Zy ( ) + Zy ( ) Z() + + y ( y y ) ( y y) + y ( ) + y y + ( )( ) Now, ting invere Z-trnform, we get y y Z { }, where,,. An. Exmpe : Sove by Z-trnform: 6y+ y y ; y, y. So. 6y+ y+ y Ting Z-trnform on both ide, we get Z[6 y y y ] + Z(6 y ) Z( y ) Z( y ) Z() + + 6( y y y ) ( y y ) y On putting the vue of y nd y, we get 6 y6 y y (6 ) y y ( )( )

93 INTEGRAL TRANSFORMS y Z Z An. Exmpe : Sove the difference eqution y+ y+ + y+ y U ( ), y y y By Z-trnform. So. y+ y+ + y+ y U ( ) Ting Z-trnform on both ide, we get Zy [ y + y y ] ZU( ) Zy [ ] Z[ y ] + Zy [ ] Zy [ ] ZU( ) [ y y y y ] [ y y y ] + [ y y ] y ZU( ) Putting the vue of y y y in the bove eqution y y + y y ( + ) y ( ) y y ( ) ( ) ( )( ) ( ) y coeff.of in coeff. of - in ( ) ( ) Exmpe : Ue Z-trnform to ove the difference eqution. n+ n+ n ( )( ),. An. 6 y y + y n+ 5 (U.P.T.U. ) So. yn+ yn+ + yn n+ 5...() Ting Z-Trnform in (), on both ide, we get Z{ y } Z{ y } + Z{ y } {} Zn + 5 Z{} n+ n+ n

Tables of Transform Pairs

Tables of Transform Pairs Tble of Trnform Pir 005 by Mrc Stoecklin mrc toecklin.net http://www.toecklin.net/ December, 005 verion.5 Student nd engineer in communiction nd mthemtic re confronted with trnformtion uch the -Trnform,

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Suggested Solution to Assignment 4

Suggested Solution to Assignment 4 MATH 40 (015-16) partia diferentia equations Suggested Soution to Assignment 4 Exercise 41 The soution to this probem satisfies the foowing PDE u t = ku xx, (0 < x

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Computing the Macdonald function for complex orders

Computing the Macdonald function for complex orders Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko M a t h e m a t i c a B a l k a n i c a New Series Vol. 26, 212, Fasc. 1-2 On Some Generalizations of Classical Integral Transforms Nina Virchenko Presented at 6 th International Conference TMSF 211 Using

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x. Appendix B: Solutions to Problems Problem 1.1 For y a + bx, y 4 when x, hence a 4. When x increases by 4, y increases by 4b, hence b 5 and y 4 + 5x. Problem 1. The plus sign indicates that y increases

Διαβάστε περισσότερα

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e. Math 48 Homework Ewar Burkar Exercise. Prove the following Fourier Transforms where a > an c : a. f(x) f(ξ) b. f(x c) e πicξ f(ξ) c. eπixc f(x) f(ξ c). f(ax) f(ξ) a e. f (x) πiξ f(ξ) f. xf(x) f(ξ) πi ξ

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα