On Ricci identities for submanifolds in the 2-osculator bundle

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Ricci identities for submanifolds in the 2-osculator bundle"

Transcript

1 Irnn Journl of Mthemtcl Scences n Informtcs Vol. 8 No pp -2 On Rcc enttes for submnfols n the 2-oscultor bunle On Alexnru Unversty Trnslvn of Brşov eprtment of Mthemtcs n Informtcs Blv. Iulu Mnu no. 50 Brşov Romn. E-ml: lexnru.on@untbv.ro Abstrct. It s the purpose of the present pper to outlne n ntroucton n theory of embengs n the 2-oscultor bunle. Frst we recll the noton of 2-oscultor bunle [9] [2] [4] n the noton of submnfols n the 2-oscultor bunle [9]. A movng frme s constructe. The nuce connectons n the reltve covrnt ervton re scusse n the fourth n ffth secton [5] [6]. The Rcc enttes for the eflecton tensors re presente n the seventh secton. Keywors: nonlner connecton lner connecton nuce lner connecton -torsons n -curvtures Mthemtcs subject clssfcton: 53B05 53B5 53B25 53B40.. Introucton Generlly the geometres of hgher orer efne s the stuy of the ctegory of bunles of jets J k 0 Mπk M s bse on rect pproch of the propertes of objects n morphsms n ths ctegory wthout locl coorntes. But mny mthemtcl moels from Lgrngn Mechncs Theoretcl hyscs n Vrtonl lculus use multvrte Lgrngns of hgher orer ccelertons. From here one cn see the resonof constructon ofthe geometry ofthe totl spce of the bunle of hgher ccelertons or the oscultor bunle of hgher orer n locl coorntes. Receve 2 July 202; Accepte 4 August 203 c 203 Acemc enter for Eucton ulture n Reserch TMU

2 2 On Alexnru As fr we know the generl theory of submnfols n prtculr the Fnsler submnfols [5] s fr from beng settle [] [5] [6] [7]. In [0] n [] R.Mron n M. Anstse gve the theory of subspces n generlze Lgrnge spces. Also n [8] n [9] R. Mronpresente the theoryofsubspces n hgher orer Fnsler n Lgrnge spces respectvely. Ths rtcle s nspre by the orgnl constructon of the hgher orer geometry gven by R. Mron n Gh. Atnsu [9] [2] [3] [4] n the new spects gve by Gh. Atnsu n [] n [2]. If ˇM s n mmerse mnfol n mnfol M nonlner connecton on Osc 2 M nuce nonlner connecton Ň on Osc2 ˇM. We tke the cnoncl N-lner metrc connecton on the mnfol Osc 2 M. Ths llows obtn of the nuce tngent n norml connectons n the ntroucton of the reltve covrnt ervton n the lgebr of -tensor fels [5]. If n [9] R. Mron use the cnoncl metrcl N-lner connecton of the spce L 2n hvng three coefcents Fjk jk 2 jk n ths rtcle we tke the cnoncl metrcl N-lner connecton of the mnfol Osc 2 M hvng nne coefcents L bc bc = 02[5] [6]. 0 bc 2 In ths pper we present the Rcc enttes for the Louvlle -vector fels z n z 2 on the submnfol Osc 2 ˇM. For the Louvlle -vector fels z n z 2 on the mnfol Osc 2 M the problem ws solve by professor Atnsu Gh. n [] n [2]. 2. The 2-oscultor bunle Osc 2 Mπ 2 M Let M be rel fferentble mnfol of menson n. A pont of M wll be enote by x n ts locl coornte system by Uϕϕx = x. The nces b...run over the set {2...n} n Ensten conventon of summrzng s opte ll over ths work. Let us conser two curves ρ : I M hvng mges n omn of locl chrt U M. We sy tht ρ n hve contct of orer 2 n pont x 0 U f: ρ0 = 0 = x 0 0 I n for ny functon f F U : t f ρt t=0= t f t t=0 = 2 2. The relton contct of orer 2 s n equvlence relton on the set of smooth curves n M whch pss through the pont x 0. Let [ρ] x0 be clss of equvlence relton. It wll be clle 2-oscultor spce t the pont x 0 M. The set of 2-oscultor spces t the pont x 0 M wll be enote by Osc 2 x 0 M n we put Osc 2 M = x Osc2 x 0 M 0 M One consers the mppng π 2 : Osc 2 M M efne by π 2 [ρ] x0 = x0. Obvously π 2 s surjecton.

3 On Rcc enttes for submnfols n the 2-oscultor bunle 3 The set Osc 2 M s enowe wth nturl fferentble structure nuce by tht of the mnfol M so tht π 2 s fferentble mpng. It wll be escreb bellow. The curve ρ : I M φimρ U s nlytclly represente n the locl chrtuϕ by x 0 = x 0 = x 0. Tkngthe functon ffrom 2. succesvely equl to the coornte functons x then representtve of the clss [ρ] x0 s gven by x t = x 0+t x t 0+ x 2 t22 0 t I. t2 The prevous polynomls re etermne by the coeffcents x 0 = x 0y = x t 0y2 = 2 x t2 π 2 Hence the pr UΦ wth Φ[ρ] x0 = x 0y y 2 R 3n [ρ] x0 π 2 U s locl chrt on Osc 2 M. Thus fferentble tls A M of the ferentble structure on the mnfol M etermnes fferentble tls A Osc2 M on Osc 2 M n therefore the trple Osc 2 Mπ 2 M s fferentble bunle. We wll entfe the 2-oscultor bunle Osc 2 Mπ 2 M wth 2- tngent bunle T 2 Mπ 2 M. By 2.2 trnsformton of locl coorntes x y y 2 x ỹ ỹ 2 on the mnfol Osc 2 M s gven by x = x x...x n x et x b 0 ỹ = x x byb 2.3 2ỹ 2 = ỹ x b yb +2 ỹ y by2b One cn see tht Osc 2 M s of menson 3n. Let us conser the 2-tngent structure J on Osc 2 M J x = y J = y y 2 J = 0 y 2 where x u y u y 2 u s the nturl bss of the tngent spce T u Osc 2 M u Osc 2 M.If N s nonlner connecton on Osc 2 M then N 0 = NJN 0 = N re two strbutons geometrclly efne on Osc 2 M ll ofmensonn. Let{ usconserthe } strbutonv 2 onosc 2 M locllygenerte by the vector fels. onsequently the tngent bunle of Osc 2 M t y 2 the pont u Osc 2 M s gven by rect sum of the vector spce:

4 4 On Alexnru T u Osc 2 M = N 0 u N u V 2 u u Osc 2 M. 2.4 { } δ δ δ We conser δx δy n pte bss to the ecomposton δy n ts ul bss enote by x δy δy 2 where x = x δy = y +M b x b 2.5 δy 2 = y 2 +M b δy b +M 2 b δy 2b. efnton 2.. A lner connecton on Osc 2 M s clle N-lner connecton f t preserves by prllelsm the horzontl n vertcl strbuton N 0 N n V 2 on Osc 2 M. Any N-lner connecton cn be represente by unque system of functons ΓN = L b b = 02. These functons re clle 0 b 2 the coeffcents of the N-lner connecton. If on the mnfol Osc 2 M N-lner connecton s gven then there exsts n h -v - n v 2 -covrnt ervtves n locl pte bss = 02. Any -tensor T of type rs cn be represente n the pte bss n ts ul bss n the form n we hve T = T...r b...b s δ... 2r x b... δy 2bs T...r b...b s = δ T...r b...b s + L c Tc2...r b 0...b s L r c T...r c c c b 0...b s L b T...r cb b s... L bs T...r cb b s c T...r b...b s = δ T...r b...b s + c Tc2...r b...b s r c T...r c c c b...b s b T...r cb 2...b s... bs T...r cb 2...b s c 2 T...r b...b s = δ 2 T...r b...b s + c Tc2...r b 2...b s r c T...r c c c b 2...b s b T...r cb b s... bs T...r cb b s c δ = δ δy δ 2 = δ δy 2; = 02.

5 On Rcc enttes for submnfols n the 2-oscultor bunle 5 2 Theopertors n reclletheh -v -nv 2 -covrnt ervtves wth respect to ΓN. efnton 2.2. A metrc structure on the mnfol Osc 2 M s symmetrc covrnt tensor fel G of the type 02 whch s non egenerte t ech pont u Osc 2 M n of constnt sgnture on Osc 2 M. Loclly metrc structure looks s follows: where G = g bx x b + g bδy δy b + g bδy 2 δy 2b 0 2 rnk g b = n = 02. efnton 2.3. An N-lner connecton on Osc 2 M enowe wth structure metrc G s s to be N-lner metrc connecton f X G = 0 for every X X Osc 2 M. 3. Submnfols n the 2-oscultor bunle Let M be rel n-mensonl mnfol n let ˇM be rel m-mensonl mnfol mmerse n M v the mmerson : ˇM M. Locly cn be gven n the form x = x u...u m rnk x u = m 3. The nces bc...run over the set {...n} n... run on the set {...m}. We ssume < m < n. If s n embeng then we entfy ˇM wth ˇM n sy tht ˇM s submnfol of the mnfol M. Therefore 3. wll be clle the prmetrc equtons of the submnfol M n the mnfol M. The embeng : ˇM M etermnes n mmerson Osc 2 : Osc 2 ˇM Osc 2 M efne by the covrnt functor Osc 2 : Mn Mn.[9] The mppng Osc 2 : Osc 2 ˇM Osc 2 M hs the prmetrc equtons: x = x u...u m rnk x u = m y = x u v 3.2 2y 2 = y u v +2 y v v2

6 6 On Alexnru where x u = y v y2 = v 2 y u = y2 v. 3.3 The Jcobn mtrx of 3.2 s J Osc 2 n ts rnk s 3m. So Osc 2 s n mmerson. The fferentl of the mppng Osc 2 : Osc 2 ˇM Osc 2 M mps the cotngentspcet Osc 2 M t pont ofosc 2 M ntothe cotngentspce T Osc 2 ˇM t pont of Osc 2 ˇM by the rule: x = x u u y = y u u + y v v 3.4 y 2 = y2 u u + y2 v v + y2 v 2v2. We use the prevous theory to stuy the nuce geometrcl objects from Osc 2 M to Osc 2 ˇM. LetusconserFnslerspce[]F n = MF xy hvngg b xy = 2 F 2 2 y y s the funmentl tensor fel. The restrcton ˇF of the funmentl functon F to the submnfol Osc ˇM s gven b by ˇF uv = F xuy uv n the pr ˇF m = ˇM ˇF s Fnsler spce n t s clle the nuce Fnsler subspces of the Fnsler spce F n. Thereexsts nonlnerconnectonon the mnfol Osc 2 M etermne only by g b xy. The ul coeffcents of ths nonlner connecton re [9] M b = G y b M 2 b = 2 ΓM b M M b where G = 2 γ bc xy y b y c Γ = y x +2y 2 y n γ bc xy re the hrstoffel symbols of the funmentl tensor g b.

7 On Rcc enttes for submnfols n the 2-oscultor bunle 7 Next we conser Bu = x u n G =g b x x b + g b δy δy + g b δy 2 δy 2 the Ssk prolongton { of the metrc } g long Osc 2 M. Thus BB 2...B m re m-lner nepenent -vector fels on Osc 2 ˇM. { } Also B B2...Bn re -covector fels wth respect to the next trnsformtons of coorntes ū = ū u...u m rnk ū u = m v = ū u v v 2 = v u v +2 v. v { } v2 Of course -vector fels B...B m re tngent to the submnfol ˇM. We sy tht -vector fel ξ xy y 2 s norml to Osc 2 ˇM f on ˇπ Ǔ Osc 2 ˇM we hve g b xuy uv v 2 y 2 uv v 2 B u ξ b xuy uv v 2 y 2 uv v 2 = 0. onsequently on ˇπ Ǔ Osc 2 ˇM there exst n m unt vector fels B ā ᾱ =...n m norml long Osc 2 ˇM n to ech other: g b B Bb = 0 g b B ā Bb = δᾱ ᾱ =...n m. 3.6 The system of -vectors B ā ᾱ =...n m s etermne up to orthogonl trnsformtons of the form B ā = A ᾱ Bā Aᾱᾱ On m 3.7 where ᾱ... run over the set 2..n m. We sy tht the system of -vectors {BB } ā etermnes frme n Osc 2 M long to Osc 2 ˇM. Itsulfrmewllbeenoteby { B uv...v 2 Bᾱ uv...v 2}. Ths s lso efne on n open set ˇπ Ǔ Osc 2 ˇM Ǔ beng omn of locl chrt on the submnfol ˇM. The contons of ulty re gven by: Usng 3.6 we euce: B B = δ B Bᾱ = 0 B Bā = 0 Bᾱ Bā = δᾱ 3.8 B B b +Bā Bᾱb = δ b. 3.9 g B = g bb δ ᾱ B b = g bb ā. 3.0

8 8 On Alexnru So we cn look t the set { R = uv v 2 ;BuB uv ā v 2} uv v 2 ˇπ Ǔ s movng frme. Now we shll represent n R the -tensor fels from the spce Osc 2 M restrcte to the open set ˇπ Ǔ. 4. Inuce nonlner connectons Now let us conser the cnoncl nonlner connecton N on the Osc 2 M. Then ts ul coeffcents M b M 2 b epens only by the metrc g. We wll prove tht the restrcton of the nonlner connecton N to Osc 2 ˇM unquely etermnes n nuce nonlner connecton Ň on Osc2 ˇM. Of course Ň s well etermne by mens of ts ul coeffcents ˇM ˇM or by mens of ts 2 pte cobss u δv δv 2. efnton 4.. A non-lner connecton Ň on Osc2 ˇM s clle nuce by the nonlner connecton N f we hve δv = B δy δv 2 = B δy roposton 4.2. [6] The ul coeffcents of the non-lner connecton Ň re ˇM = B ˇM = 2 B B0 +M b Bb Bδγ 2 u vδ v γ +B δ v2δ +M b B b 0 +M 2 b Bb where M b M 2 b re the ul coeffcents of the non-lner connecton N. 4.2 Theorem 4.3. [6] The cobss x δy δy 2 restrcte to Osc 2 ˇM s unquely represente n the movng frme R n the followng form: x = B u δy = B δv +B ā K ᾱ u 4.3 δy 2 = B δv2 +B ā K δv +B ā K 2 u

9 On Rcc enttes for submnfols n the 2-oscultor bunle 9 where ᾱ K = Bᾱ B0 +M b Bb ᾱ K = 2 Bᾱ Bᾱf Bγ Bδγ 2 u vδ v γ +B b δ v2δ +M b B b 0 +M 2 Bγ f f +M b Bb γ B0 +M gb g b Bb 4.4 re mxe -tensor fels. roof. The frst relton s obvous. From 3.2 n 4.2 we obtn 4.3. Generlly set of functons T...ᾱ j... uv v 2 whch re -tensors n the nex j... n -tensors n the nex...n tensors wth respect to the trnsformtons 3.7 n the nex ᾱ... s cll mxe -tensor fel on Osc 2 ˇM. 5. The reltve covrnt ervtves We shll construct the opertors of reltve or mxe covrnt ervton n the lgebr of mxe -tensor fels. It s cler tht wll be known f ts cton on functons n on the vector fels of the form X xuy uv y 2 uv v 2 X uv v 2 Xᾱ uv v 2 5. re known. LetbethecnonclN-lnermetrcconnectononthemnfolOsc 2 M [2] L bc = 2 g δ b g c +δ c g b δ g bc 00 L bc 0 = B bc + jj 2 g f δ c g b B cb g f f B c g bf j = 2 jj jj bc = 2 g δ b g b k = 02 k 5.2 bc = 2 g 2c g b l = 0 l2 bc = 2 g δ b g c +δ c g b δ g bc = 2.

10 0 On Alexnru efnton 5.. The couplng of the cnoncl N-lner metrc connecton wth the nuce nonlner connecton Ň long Osc2 ˇM s loclly gven by the set of ts nne coeffcents ĎΓ Ň = Ľ bδ Č bδ Č bδ = 02 where 2 0 Ľ bδ = L b B δ + b B δk + δδ bδ B δk 2 δδ Č bδ = b B δ + b B δk 2 δδ = Č bδ = 2 b 2 B δ. We hve the opertors Ď n = 02 wth the property Ď X = X moulo where n X = X +X b ω b 5.5 Ď X = X +X b ˇω b. 5.6 Here ω b n ˇω b re the -forms of the cnoncl N-lner metrc connecton n of the couplng Ď respectvely. Of course we cn wrte Ď X n the form Ď X = X δ u δ +X δ δv δ +X 2 δ δv 2δ. efnton 5.2. We cll the nuce tngent connecton on Osc 2 ˇM by the cnoncl N-lner metrc connecton the set of ts nne coeffcents Γ Ň = L δ δ = 02 where 0 δ 2 L δ = 0 B B δ +Bf Ľ fδ 0 δ = B Bf Č fδ = δ = B Bf Č 2 fδ. 2

11 On Rcc enttes for submnfols n the 2-oscultor bunle We hve the opertors wth the propertes X = Bb Ď Xb for X = BγX γ 5.8 X = X +X ω 5.9 where ω re the connecton -forms of = 02. As n the cse of Ď we my wrte X = X δ uδ +X δ δv δ +X 2 δ δv 2δ. efnton 5.3. We cll the nuce norml connecton on Osc 2 ˇM by the cnoncl N-lner metrc connecton the set of ts nne coeffcents Γ Ň = ᾱ δ ᾱ δ where L 0 2 ᾱ δ δb L 0 ᾱ δ = Bᾱ δu δ +Bf Ľ fδ 0 δb ᾱ δ = Bᾱ δv δ +Bf Č fδ B 2 ᾱ δ = Bᾱ v 2δ +Bf Č fδ 2 As before we hve the opertors wth the propertes. = Xᾱ = Bᾱb Ď Xb for X = B γx γ ā 5. Xᾱ = Xᾱ +X ω ᾱ 5.2 where ω ᾱ re the connecton -forms of = 02. We my set Xᾱ = Xᾱ δ uδ +Xᾱ δ δv δ 2 +Xᾱ δ δv 2δ. Now we cn efne the reltve or mxe covrnt ervtves enounce t the begnng of ths secton.

12 2 On Alexnru Theorem 5.4. A reltve mxe covrnt ervton n the lgebr of mxe -tensor fels s n opertor for whch the followng propertes hol: f = f f F Osc 2 ˇM X = Ď X X = X Xᾱ = Xᾱ = 02. The connecton -forms ˇω b ω ω ᾱ wll be clle the connecton -forms of. The Louvlle vector fels for submnfols ntrouce by professor Mron n [9] re γ = v v 2 2 γ = v +2v2 v v 2. If we represent ths vector fels n the pte bss we get γ = z 2 2 γ = z δ +2z 2 2 where z = v z 2 = v M v. -vector fels z n z 2 re clle the Louvlle -vector fels of submnfol Osc 2 ˇM. The z - n z 2 -eflecton tensor fels re: z = z = 2 z = 2 z 2 = 2 2 z = z =. 5.3 roposton 5.5. The z -eflecton fels hve the expresson: = N +z γ L 0 γ = δ +zγ γ = z γ 2 γ.

13 On Rcc enttes for submnfols n the 2-oscultor bunle 3 roof. Inee f we tke z = δ z +z γ L 0 γ j z = δ j z +z γ γ = 02;j = 2;δ 2 = 2 j we fn the Formule 5.4. roposton 5.6. The z 2 -eflecton fels re gven by 2 = N +M zγ δ N γ +z 2γ L γ 0 2 = 2N N zγ B γ +z 2γ γ 5.5 = δ + 2 zγ B 2 γ +z 2γ 2 γ. roof. Inee f we tke z 2 = δ z 2 +z 2γ L 0 γ j 2 z = δ j z 2 +z 2γ γ = 02;j = 2;δ 2 = 2 j we fn the Formule Apte components of torson n curvture tensors The stuy of the pte components of the torson n curvture tensors of n rbtrry N-lner connecton ΓN on Osc 2 M ws one n [2] n []. In wht follows we stuy the pte components of the torson n curvture tensors for the reltve or mxe covrnt ervtves = 02. Theorem 6.. In locl coorntes the torson -tensors of the reltve or mxe covrnt ervtves hve the next expresons: T 00 = L L 00 γ 00 T 0 = R = δ γn δ N γ 0 T 02 = R = δ γn δ N γ N δ γ N δ N γ

14 4 On Alexnru = = 0 20 = 2γ N 2 = δ γn L 0 γ = δ γn δ N γ +N δ γ N 2 = 2γ N +N 2γ N L 2 γ S = Q = 2 S = γ S = R = δ γn δ N γ 2 2 Q = 2γ N S = 2 γ γ. roof. Usng the generl locl expressons from [2] n [] whch gve the - components of the torson tensor of n N-lner connecton ΓN we euce tht the pte components of the mxe covrnt ervtves = 02 re gven by the formuls from theorem. The followng -tensor fels wll be neee n our clcultons. T 0 = L L 0 γ 0 jj = B jj L 0 γ Q = B 2 γ S j = j j γ 6.2 = 02;j = 2. We remrk tht we hve 0 T 0 = T 00 j jj = jj 2 Q = 2 Q j S j = S j j = 2.

15 On Rcc enttes for submnfols n the 2-oscultor bunle 5 Theorem 6.2. In locl coorntes the curvture -tensors of the reltve or mxe covrnt ervtves hve the next expresons: R 0 b γδ = δ δ L 0 bγ δ L 0 bδ + L 0 e bγ L 0 eδ L 0 e bδ L 0 eγ + + b R 0 γδ + 2 b R 02 γδ b γδ 2 b γδ = δ δ L 0 bγ bδ γ + = 2δ L 0 bγ 2 bδ γ + b b 2 γδ + γδ + b γδ 2 2 b γδ 2 Q b γδ 2 = 2δ bγ δ γ 2 bδ + e bγ 2 eδ e bδ eγ b 2 γδ S b γδ = δ δ bγ δ γ bδ + e bγ eδ e bδ eγ b R γδ 2 2 S 2 b γδ = 2δ 2 bγ 2γ bδ + 2 e bγ 2 eδ 2 e bδ 2 eγ n R 0 γδ = δ δ L 0 δ L 0 δ + L 0 L 0 δ L 0 δ L 0 γ + + R 0 γδ + 2 R 02 γδ γδ = δ γ L 0 δ γ + γδ + γδ γδ = 2δ L 0 2 δ γ + 2 γδ + γδ 2

16 6 On Alexnru Q γδ 2 = 2δ δ γ 2 δ + 2 δ δ γ γδ S γδ = δ δ δ γ δ + δ δ γ R γδ 2 2 S 2 γδ = 2δ 2 2γ δ δ 2 δ 2 γ n R 0 γδ = δ δ L 0 δ L 0 δ + L L 0 0 δ L L 0 δ γ R γδ + 0 R 2 γδ 02 γδ = δ γ L 0 δ γ + γδ + 2 γδ 2 2 γδ = 2δ L 0 2 δ γ + 2 γδ + 2 γδ Q 2 γδ = 2δ δ γ + 2 δ 2 δ δ γ γδ 2 S γδ = δ δ δ γ + δ δ δ γ R 2 γδ 2 S 2 γδ = 02; 2 = 2δ 2 2γ + δ 2 = 2 2 δ 2 δ γ 2 ; = ; R = 0;δ 0 = δ δ 2 =

17 On Rcc enttes for submnfols n the 2-oscultor bunle 7 roof. The generl formuls tht express the locl curvture -tensors of n rbtrry N-lner connecton for more etls see [2] n [] pple to the reltve covrnt ervtves = 02 mply the bove formuls. 7. The Rcc enttes Let ĎΓ Ň = Ľ bδ Č bδ Č bδ be the couplng of the cnoncl N- 0 2 lner metrc connecton 5.2 wth the nuce nonlner connecton N long the mnfol Osc 2 M Γ Ň = L δ δ δ n Γ Ň = 0 2 ᾱ δ ᾱ δ = 02 the nuce tngent connecton on Osc 2 ˇM L 0 2 ᾱ δ n the nuce norml connecton on Osc 2 ˇM respectvely. Theorem 7.. [3] For ny -vector fels X the followng Rcc enttes hol: X γ X γ = X δ R δ T 0 0 X R 0 X R X 2 02 X γ X γ = X δ δ X X 2 2 X X 2 γ X 2 γ = X δ δ X X X 2 7.

18 8 On Alexnru X 2 γ X 2 γ = X δ Q δ X 2 2 Q X j j γ X j γ j = X δ S where R = 0 = 02j = 2 n X 2 δ S j j R X 2 j2 X = X 0 δ +X δ +X 2 2 s n rbtrry -vector fel on the submnfol Ě = Osc2 ˇM. X roof. Let Y A n ω A where A { = 02} be on Ě = Osc2 ˇM the bses n the ul bses pte to the nonlner connecton N n let X = X F Y F be -vector fel on E. In ths context usng the followng true equltes pple for the nuce tngent connecton Γ Ň : Y Y B = Γ F B Y F 2 [Y B Y ] = R F B Y F 3 TY Y B = T F B Y F = {Γ F B ΓF B RF B }Y F 4 RY Y B Y A = R F AB Y F 5 Y ω B = Γ B F ωf 6 [RY Y B X] ω B ω = { Y YB X YB Y X [YY B]X} ω B ω by rect clculton we fn tht X A :B: XA ::B = XF R A FB XA :F TF B 7.2 where :G represents one from the locl covrnt ervtves δ δ or 2 δ prouce by the nuce tngent connecton Γ Ň. Tkng nto ccount n 7.2 tht the nces AB... belong to the set { = 02} by complcte computtons we fn wht we were lookng for. The Rcc enttes 7. pple to the Louvlle -vector fels z n z 2 le to the next theorem.

19 On Rcc enttes for submnfols n the 2-oscultor bunle 9 Theorem 7.2. The eflecton tensor fels stsfy the followng enttes: j γ j γ = z jδ R 0 δ j δ δ T 0 j δ δ R j2 δ 0 δ R 02 j γ j γ j 2 γ j2 γ = z jδ δ j δ δ j δ j2 δ δ 2 = z jδ δ j 2 δ 2 j δ 2 δ j2 δ 7.3 j 2 γ j2 γ = z jδ Q δ X 2 j δ 2 δ j2 j l γ j γ l = z jδ S l δ δ δ Q = 02;jl = 2; R = 0. jl l δ δ S j2 δ δ R l2 Also f the z -n z 2 -eflecton tensors hve the followng prtculr form = 0 = δ 2 = 0 2 = 0 2 = 0 = δ 7.4 then the funmentl enttes from 7.3 re very mportnt especlly for pplctons.

20 20 On Alexnru roposton 7.3. Wth the eflecton tensor whch re gven by 7.4 the followng enttes hol: z jδ R 0 δ = R 0j z δ 2 δ = 2 z 2δ δ = 2 z jδ j δ = jj z δ Q δ = 2 2 z 2δ Q δ = Q 2 z jδ S j δ = j S = 02;j = 2. z δ S 2 δ = 0 z 2δ S δ = R roof. Usng the Rcc enttes of the Louvlle -vector fels z n z 2 fromthe lsttheoremnthe prtculrformofthe z -n z 2 -eflecton tensors from 7.4 we get the Formule 7.5. Remrk 7.4. The eflecton -tensor enttes 7.3 wll be use n the ner future for the constructon of the geometrcl Mxwell equtons tht wll govern the bstrct electromgnetsm n the Lgrnge subspces of secon orer ths s our work n progress. 8. Acknowlegments Ths work ws supporte by ontrct wth Snoptx No. 844/2009. The uthor woul lke to express hs grttue to the referees for creful reng n helpful comments. References [] Gh. Atnsu New Aspects n erentl Geometry of Secon Orer Trtu Unv. ress [2] Gh. Atnsu New spects n fferentl geometry of the secon orer Semnrul e Mecncă Ssteme nmce ferenţle Unv. e Vest n Tmşor Fcultte e Mtemtcă vol pp. -8. [3] Gh. Atnsu A. On The Rcc enttes on submnfols n the 2-oscultor bunle roc. of the 4th Ntonl Semnr on Fnsler Lgrnge n Hmlton Spces Brşov [4] Gh. Atnsu Structure equtons of secon orer BSG roccengs 3 Geometry Blkn ress Buchrest Romn [5] A Bejncu H.R. Frn The Geometry of seuo-fnsler Submnfols Kluwer Ac. ubl [6] N. Broojern E. eyghnb n A. Heyrc fferentton long Multvector Fels Irnn Journl of Mthemtcl Scences n Informtcs [7] S. Hong M.M. Trpth Rcc curvture of submnfols of Sskn spce form Irnn Journl of Mthemtcl Scences n Informtcs [8] R. Mron The Geometry of Hgher Orer Fnsler Spces Hronc ress USA 998.

21 On Rcc enttes for submnfols n the 2-oscultor bunle 2 [9] R. Mron The Geometry of hgher orer Lgrnge spces. Applctons to mechncs n physcs Kluwer Ac. ubl. FTH no [0] R. Mron M. Anstse Vector bunles. Lgrnge Spces. Applctons to Reltvty E. Aceme Române 987. [] Mron R. Anstse M. The Geometry of Lgrnge Spces: Theory n Applctons Kluwer Ac. ubl. FTH no [2] R. Mron Gh. Atnsu Hgher orer Lgrnge spces Rev. Roum. e Mth. ures et Appl. T [3] R. Mron Gh. Atnsu fferentl Geometry of the k-oscultor Bunle Rev. Roumne Mth ures et Appl. T [4] R. Mron Gh. Atnsu Lgrnge Geometry of Secon Orer Mth. omput. Moellng [5] A. On The Guss-Wengrten formule of secon orer BSG roceengs pp [6] A. On The reltve covrnt ervte n nuce connectons n the theory of embengs n the 2-oscultor bunle Bull. Trnslvn Unv

arxiv: v1 [math.dg] 8 Feb 2013

arxiv: v1 [math.dg] 8 Feb 2013 rxiv:302.265v [mth.g] 8 Feb 203 About intrinsic Finsler connections for the homogeneous lift to the Oscultor Bunle of Finsler metric Alexnru On Abstrct In this rticle we present stuy of the subspces of

Διαβάστε περισσότερα

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Mathematical Analysis and Simulation of an Age-Structured Model of Two-Patch for Tuberculosis (TB)

Mathematical Analysis and Simulation of an Age-Structured Model of Two-Patch for Tuberculosis (TB) Apple Mthemtcs, 6, 7, 88-9 http://www.scrp.org/journl/m ISSN Onlne: 5-7393 ISSN Prnt: 5-7385 Mthemtcl Anlyss n Smulton of n Age-Structure Moel of Two-Ptch for Tuberculoss (TB Bjo Kmb Aboul Wh, Sley Bsso

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Solutions for Mathematical Physics 1 (Dated: April 19, 2015) Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2 Theoretcl Competton: July Queston ge of. Ηλεκτρισμένη Σαπουνόφουσκα Θεωρήστε μια σφαιρική σαπουνόφουσκα ακτίνας. Ο αέρας στο εσωτερικό της σαπουνόφουσκας έχει πυκνότητα ρ και θερμοκρασία T. Η σαπουνόφουσκα

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space Flomat 9:0 (05), 4 47 DOI 0.98/FI504Z ublshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba valable at: htt://www.mf.n.ac.rs/flomat On Integrablty Condtons of Dervaton Equatons n a Subsace

Διαβάστε περισσότερα

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Some generalization of Cauchy s and Wilson s functional equations on abelian groups Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ. VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

From the finite to the transfinite: Λµ-terms and streams

From the finite to the transfinite: Λµ-terms and streams From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα