Αισθητοποίηση, γραφή και ονομασία αριθμών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αισθητοποίηση, γραφή και ονομασία αριθμών"

Transcript

1 Αριθμοί Θέματα: - Αισθητοποίηση, γραφή και ονομασία αριθμών - Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών - Σύγκριση αριθμών - Στρογγυλοποίηση - Πράξεις και ιδιότητες πράξεων - Κλάσματα - εκαδικοί - Αναλογίες 1

2 Αισθητοποίηση, γραφή και ονομασία αριθμών 1. Ποιο από τα παρακάτω περιγράφει λεκτικά τον αριθμό 9740; (α) Εννιά χιλιάδες εβδομήντα τέσσερα (β) Εννιά χιλιάδες εφτακόσια σαράντα (γ) Εννιά χιλιάδες εβδομήντα τέσσερις εκατοντάδες (δ) Εννιά χιλιάδες εβδομήντα τέσσερις χιλιάδες 2. Στην πιο πάνω αριθμητική γραμμή, ποιος αριθμός λείπει από το κουτάκι; Ο αριθμός στο είναι = 3. Στην πιο πάνω κλίμακα, ποιον αριθμό δείχνει ο δείκτης; (α) 302 (β) 310 (γ) 320 (δ) 340 2

3 4. Εδώ είναι ένα μέρος του πίνακα στον οποίο είναι γραμμένοι οι αριθμοί από το 1 μέχρι το Πιο κάτω είναι ένα άλλο μέρος του ίδιου πίνακα. Ποιος αριθμός βρίσκεται στο κουτί με το ερωτηματικό; ; (α) 34 (β) 44 (γ) 54 (δ) 64 3

4 Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών 5. Κάθε μικρό τετράγωνο ( ) ισοδυναμεί με 1. Υπάρχουν 10 μικρά τετράγωνα σε κάθε ράβδο. Υπάρχουν 100 μικρά τετράγωνα σε κάθε μεγάλο τετράγωνο. Ποιος αριθμός αναπαρίσταται; (α) 16 (β) 358 (γ) 538 (δ) Ποιο ψηφίο βρίσκεται στη θέση των εκατοντάδων στον αριθμό 2345; (α) 2 (β) 3 (γ) 4 (δ) 5 4

5 7. Σε ποιον από τους πιο κάτω αριθμούς το ψηφίο 8 έχει την αξία 800; (α) (β) (γ) (δ) Ποιο από τα πιο κάτω ισούται με το 342; (α) (β) (γ) (δ) Ποιος αριθμός ισούται με 3 μονάδες + 2 δεκάδες + 4 εκατοντάδες; (α) 432 (β) 423 (γ) 324 (δ) Ποιος αριθμός ισούται με 3 μονάδες + 5 δεκάδες + 4 εκατοντάδες + 60 χιλιάδες; (α) (β) (γ) (δ) (ε)

6 11. Ποιος αριθμός ισούται με οκτώ δεκάδες και εννιά δεκάδες; (α) 17 (β) 170 (γ) (δ) Τα εισιτήρια ενός αγώνα καλαθόσφαιρας είναι αριθμημένα από το 1 μέχρι τις Τα εισητήρια που τελειώνουν σε 112 κερδίζουν ένα δώρο. Να γράψεις όλους τους αριθμούς που κερδίζουν. Οι αριθμοί που κερδίζουν: 13. Η Ιωάννα ήθελε να χρησιμοποιήσει την υπολογιστική της μηχανή, για να προσθέσει το 1379 στο 243. Έγραψε κατά λάθος Τι πρέπει να κάνει, για να διορθώσει το λάθος; (α) να προσθέσει 100 (β) να προσθέσει 1 (γ) να αφαιρέσει 1 (δ) να αφαιρέσει 100 6

7 14. Ο Γιάννης θέλει να χρησιμοποιήσει την υπολογιστική μηχανή, για να προσθέσει το 1463 και το 319. Κατά λάθος έγραψε στην υπολογιστική μηχανή Τι μπορεί να κάνει για να διορθώσει το λάθος του; (α) Να προσθέσει 200. (β) Να προσθέσει 2. (γ) Να αφαιρέσει 2. (δ) Να αφαιρέσει

8 Σύγκριση αριθμών 15. Ποιος από τους παρακάτω αριθμούς είναι ο μεγαλύτερος; (α) 2735 (β) 2537 (γ) 2573 (δ) Σε ποιο από τα παρακάτω, οι αριθμοί είναι τοποθετημένοι από το ΜΕΓΑΛΥΤΕΡΟ στο ΜΙΚΡΟΤΕΡΟ; (α) 36, 43, 66, 87 (β) 66, 43, 36, 87 (γ) 87, 66, 36, 43 (δ) 87, 66, 43, Ποιος αριθμός είναι κατά 100 μεγαλύτερος από τον αριθμό 5 432; (α) (β) (γ) (δ) Ποιος αριθμός είναι κατά 5 μικρότερος από το 203; Απάντηση: 8

9 19. Γράψε τον αριθμό που είναι κατά 1000 μεγαλύτερος από το Απάντηση: 20. Σε ποιο ζευγάρι αριθμών ο δεύτερος αριθμός είναι κατά 100 μεγαλύτερος από τον πρώτο; (α) 199 και 209 (β) 4236 και 4246 (γ) 9635 και 9735 (δ) και Όταν αφαιρέσεις από το 900 έναν από τους παρακάτω αριθμούς, το αποτέλεσμα είναι μεγαλύτερο από το 300. Ποιος είναι ο αριθμός; (α) 823 (β) 712 (γ) 667 (δ) Ποια από τις μαθηματικές προτάσεις είναι ορθή; (α) 968 < 698 (β) 968 < 689 (γ) 968 > 689 (δ) 968 = 689 9

10 23. H Άννα έχει τις πιο κάτω κάρτες με αριθμούς Ποιος είναι ο μικρότερος τριψήφιος αριθμός που μπορεί να σχηματίσει; Μπορεί να χρησιμοποιήσει την κάθε κάρτα μόνο μια φορά. Απάντηση: 24. Ποιος είναι ο μικρότερος ακέραιος αριθμός που μπορείς να φτιάξεις χρησιμοποιώντας τα ψηφία 4, 3, 9 και 1; Να χρησιμοποιήσεις το κάθε ψηφίο μόνο μία φορά. Απάντηση: 10

11 Στρογγυλοποίηση 25. Ποιος αριθμός όταν στρογγυλοποιηθεί στην πλησιέστερη εκατοντάδα γίνεται 600; (α) 62 (β) 160 (γ) 546 (δ) 586 (ε)

12 Πράξεις και ιδιότητες πράξεων = Απάντηση: 27. Κάνε την πρόσθεση: (α) (β) (γ) (δ) Αφαίρεσε: (α) 4369 (β) 3742 (γ) 3631 (δ)

13 Ο Μάνος έκανε την αφαίρεση που είχε ως εργασία στο σπίτι, αλλά έχυσε λίγο από το ποτό του πάνω στο τετράδιο. Ένα ψηφίο δεν μπορεί να διαβαστεί. Η απάντηση, 415, ήταν ορθή. Ποιο είναι το ψηφίο που δεν φαίνεται; Απάντηση: 30. Πρόσθεση = 20 Γράψε την πιο πάνω πρόσθεση ως πολλαπλασιασμό. = 31. Πόσο κάνει 3 φορές το 23; (α) 323 (β) 233 (γ) 69 (δ) 26 13

14 x 9 = Απάντηση: x 19 = Απάντηση: 34. Πολλαπλασίασε: 53 x 26 Απάντηση: 35. Το είναι μεγαλύτερο από το Πόσο πιο μεγάλο είναι; (α) 1 (β) 18 (γ) 24 (δ) 25 14

15 36. Ποιο από τα παρακάτω δίνει απάντηση πιο κοντά στο 9 x 22; (α) 5 x 20 (β) 5 x 25 (γ) 10 x 20 (δ) 10 x = Απάντηση: 38. Κύκλωσε τους αριθμούς που είναι παράγοντες του

16 39. Σ ένα παιχνίδι, ο Γρηγόρης και η ήμητρα κατασκευάζουν προβλήματα πρόσθεσης. Ο καθένας έχει τέσσερις κάρτες όπως τις πιο κάτω: Ο νικητής του παιχνιδιού θα είναι εκείνος που θα κατασκευάσει πρόβλημα με τη μεγαλύτερη απάντηση. Ο Γρηγόρης τοποθέτησε τις κάρτες του μ αυτόν τον τρόπο Η Δήμητρα τοποθέτησε τις κάρτες της μ αυτόν τον τρόπο Ποιος κέρδισε το παιχνίδι; Πώς το βρήκες; Γράψε αριθμούς στα πιο κάτω τετράγωνα που να δείχνουν με ποιο τρόπο θα πρέπει να τοποθετήσεις τις κάρτες ώστε να κερδίσεις το Γρηγόρη και τη ήμητρα. + 16

17 40. Για αυτή την άσκηση σου δίνεται ένα χαρτόνι με 10 κάρτες με αριθμούς όπως φαίνονται πιο κάτω. Πάρε το χαρτόνι και κόψε τις κάρτες Παιχνίδι «Φτάσε στο 20» ύο παιδιά, η Γιάννα και ο Χρίστος, μαθαίνουν πώς να παίζουν το παιχνίδι «Φτάσε στο 20». Πιο κάτω παρουσιάζονται οι κανόνες του παιχνιδιού. ΦΤΑΣΕ ΣΤΟ 20 ΚΑΝΟΝΕΣ ιάλεξε κάρτες: Κάθε παίκτης διαλέγει τρεις κάρτες. Πρόσθεσε κάρτες: Κάθε παίκτης προσπαθεί με τις τρεις κάρτες που διάλεξε να δημιουργήσει προσθέσεις όπου το άθροισμα να είναι πιο κοντά στο 20. Για παράδειγμα, εδώ παρουσιάζονται τέσσερις τρόποι με τους οποίους μπορεί ένας παίκτης να τοποθετήσει τις κάρτες 1, 4 και 5 για να φτιάξει αθροίσματα: Αυτός ο παίκτης θα πρέπει να επιλέξει την πρόσθεση γιατί το 19 είναι το άθροισμα που είναι πιο κοντά στο

18 Η Γιάννα και ο Χρίστος έπαιξαν το παιχνίδι «Φτάσε στο 20». Η Γιάννα διάλεξε τις κάρτες 2, 7 και 9. Ο Χρίστος διάλεξε τις κάρτες 1, 3 και 6. Α. Ποια πράξη πρόσθεσης μπορεί να φτιάξει η Ιωάννα με τις κάρτες της, ώστε το άθροισμα να είναι πιο κοντά στο 20; Β. Ποια πράξη πρόσθεσης μπορεί να φτιάξει ο Χρίστος με τις κάρτες του, ώστε το άθροισμα να είναι πιο κοντά στο 20; Γ. ο Χρίστος είπε: «Αν διάλεγα τις κάρτες 1, 4 και 6, θα μπορούσα να φτάσω στο 20 με δύο τρόπους». Να δείξεις τους δύο τρόπους. Πρώτος τρόπος: εύτερος τρόπος: 18

19 Παιχνίδι «Βρίσκοντας το μεγαλύτερο αριθμό» Χρησιμοποιώντας τις κάρτες, η Γιάννα και ο Χρίστος έπαιξαν ένα καινούριο παιχνίδι. Τοποθετούσαν τις κάρτες με τέτοιο τρόπο ώστε να παίρνουν τη μεγαλύτερη απάντηση κάθε φορά. Α. Να χρησιμοποιήσεις τις κάρτες 1, 5 και 9. Να γράψεις τους αριθμούς στα πιο κάτω κουτιά για να φτιάξεις το μεγαλύτερο άθροισμα. Β. Να χρησιμοποιήσεις τις κάρτες 2, 3 και 7. Να γράψεις τους αριθμούς στα πιο κάτω κουτιά για να φτιάξεις τη μεγαλύτερη διαφορά. Γ. Να χρησιμοποιήσεις τις κάρτες 1, 4 και 5. Να γράψεις τους αριθμούς στα πιο κάτω κουτιά για να φτιάξεις το μεγαλύτερο γινόμενο. 19

20 41. Ποιο κάτω φαίνονται τα διαφημιστικά φυλλάδια δύο αθλητικών ομίλων που ενοικιάζουν ποδήλατα. Ενοικιάσεις Ποδηλάτων για Βουνά 8 ζετς για την 1 η ώρα 3 ζετς για κάθε επιπρόσθετη ώρα Ενοικιάσεις Ποδηλάτων για Δρόμους 10 ζετς για την 1 η ώρα 2 ζετς για κάθε επιπρόσθετη ώρα Α. Χρησιμοποίησε τις πληροφορίες για να συμπληρώσεις τους πίνακες. Ενοικιάσεις Ποδηλ. Βουνού Ενοικιάσεις Ποδηλ. ρόμου Ώρες Κόστος (ζετς) Ώρες Κόστος (ζετς) Β. Για πόσες ώρες ενοικίασης το κόστος είναι το ίδιο και στους δύο ομίλους; Απάντηση: Γ. Σε ποιο όμιλο στοιχίζει λιγότερο να ενοικιάσεις ένα ποδήλατο για 12 ώρες; (α) ενοικιάσεις ποδηλάτων βουνού (β) ενοικιάσεις ποδηλάτων δρόμου (γ) το κόστος είναι το ίδιο (δ) δεν μπορεί να υπολογιστεί 20

21 42. Σε ένα πλοίο υπάρχουν 218 επιβάτες και 191 μέλη του πληρώματος. Πόσα άτομα υπάρχουν συνολικά στο πλοίο; Απάντηση: 43. Η Λία εξασκείται στα προβλήματα πρόσθεσης και αφαίρεσης. Ποιον αριθμό πρέπει να προσθέσει στο 142, για να κάνει το 369; Απάντηση: 44. Ο Αλέκος ήθελε να μάθει πόσα κιλά ζυγίζει ο γάτος του. Ζύγισε τον εαυτό του και η ένδειξη της ζυγαριάς ήταν 57 kg. Μετά ανέβηκε στη ζυγαριά κρατώντας το γάτο στο χέρι του και η ζυγαριά έδειξε 62 kg. Πόσο ζυγίζει ο γάτος του Αλέκου; Απάντηση: κιλά 21

22 45. Σε ένα σχολείο υπήρχαν κατά την περσινή σχολική χρονιά 92 αγόρια και 83 κορίτσια. Στη φετινή σχολική χρονιά υπάρχουν 210 μαθητές, από τους οποίους οι 97 είναι αγόρια. Πόσα περισσότερα κορίτσια υπάρχουν φέτος από ότι πέρσι; είξε τον τρόπο που εργάστηκες. Απάντηση: 46. Η Γεωργία θέλει να στείλει επιστολές σε 12 φίλες της. Για τις μισές επιστολές θα χρειαστεί 1 κόλλα χαρτί και για τις άλλες μισές θα χρειαστεί 2 κόλλες χαρτί. Πόσες κόλλες χαρτί θα χρειαστεί συνολικά; Απάντηση: 47. Η Μαρία έχει 6 κόκκινα κουτιά. Κάθε κόκκινο κουτί περιέχει 4 μολύβια. Έχει επίσης 3 μπλε κουτιά. Κάθε μπλε κουτί περιέχει 2 μολύβια. Πόσα μολύβια έχει συνολικά η Μαρία; (α) 6 (β) 15 (γ) 24 (δ) 30 22

23 48. Σε ένα τουρνουά ποδοσφαίρου, κάθε ομάδα παίρνει: 3 βαθμούς για τη νίκη 1 βαθμό για την ισοπαλία 0 βαθμούς για την ήττα Μια ομάδα πήρε 11 βαθμούς. Ποιος είναι ο μικρότερος αριθμός αγώνων που μπορεί να έχει παίξει η ομάδα αυτή; Απάντηση: 49. Ο Κώστας μέτρησε το μήκος ενός πίνακα χρησιμοποιώντας μια ρίγα μήκους 30 cm. Το μήκος του πίνακα ήταν 6 cm λιγότερο από το εννιαπλάσιο του μήκους της ρίγας. Ποιο είναι το μήκος του πίνακα; (α) 264 cm (β) 270 cm (γ) 276 cm (δ) 279 cm 50. Ένας πατέρας πήρε τα τρία παιδιά του σε μια έκθεση. Η τιμή του εισιτηρίου για τους ενήλικες ήταν διπλάσια από την τιμή του εισιτηρίου για τα παιδιά. Ο πατέρας πλήρωσε συνολικά 50 ζετς για τα 4 εισιτήρια. Πόσα στοίχιζε κάθε παιδικό εισιτήριο; είξε τον τρόπο που εργάστηκες. Απάντηση: 23

24 51. Κόβουμε ένα κομμάτι σπάγκου μήκος 204 cm σε 4 ίσα κομμάτια. Πόσο είναι το μήκος κάθε κομματιού; Απάντηση: cm 52. Μια ομάδα 8 μαθητών έχει 74 καραμέλες. Πόσες ακόμα καραμέλες χρειάζονται για να μπορέσουν να μοιράσουν τις καραμέλες, ώστε όλοι να πάρουν τον ίδιο αριθμό; Απάντηση: 24

25 Κλάσματα 53. Τι μέρος του ορθογωνίου είναι σκιασμένο; 1 (α) 2 1 (β) 3 6 (γ) 12 2 (δ) 3 25

26 54. Μέρος του σχήματος είναι σκιασμένο. Τι μέρος του σχήματος είναι σκιασμένο; (α) (β) (γ) (δ) 55. Σε ποιο σχήμα είναι σκιασμένα τα της επιφάνειας; Α Β Γ Ε 26

27 56. Να χρωματίσεις το 1 2 του μεγάλου τριγώνου. 57. Σε ποια εικόνα το των κουκκίδων είναι μαύρες; 58. Υπάρχουν 12 μπισκότα. Κύκλωσε το 3 1 των μπισκότων. 27

28 59. Ένα γλύκισμα μοιράστηκε σε 8 ίσα κομμάτια. Ο Γιάννης έφαγε 3 κομμάτια του γλυκίσματος. Τι μέρος του γλυκίσματος έφαγε ο Γιάννης; (α) (β) (γ) (δ) 60. Σ ένα κιβώτιο υπάρχουν 600 μπάλες. Το από αυτές είναι κόκκινες. Πόσες κόκκινες μπάλες υπάρχουν μέσα στο κιβώτιο; Απάντηση: κόκκινες μπάλες 28

29 61. Κάθε σχήμα αναπαριστά ένα κλάσμα Ποια δύο σχήματα αναπαριστούν το ίδιο κλάσμα; (α) 1 και 2 (β) 1 και 4 (γ) 2 και 3 (δ) 3 και Ποιο κλάσμα είναι ίσο με το ; 3 3 (α) 4 4 (β) 9 4 (γ) 6 3 (δ) 2 29

30 63. Ποιο κλάσμα δεν ισούται με τα υπόλοιπα; (α) 2 1 (β) 8 4 (γ) 4 2 (δ) Ποια από τις πιο κάτω προτάσεις σημαίνει ότι ο Ιάκωβος έφαγε τα της πίτσας; (α) ο Ιάκωβος έφαγε το (β) ο Ιάκωβος έφαγε το (γ) ο Ιάκωβος έφαγε το (δ) ο Ιάκωβος έφαγε το της πίτσας της πίτσας της πίτσας της πίτσας 30

31 65. Ο Σταύρος είπε ότι το της τούρτας είναι μικρότερο από το της ίδιας τούρτας. Είναι ο Σταύρος σωστός; Χρησιμοποίησε τους πιο κάτω κύκλους, για να εξηγήσεις την απάντησή σου. Να σκιάσεις το Να του κύκλου σκιάσεις το του κύκλου 66. Γράψε ένα κλάσμα που είναι μεγαλύτερο από. Απάντηση: 31

32 67. Ποιο από τα πιο κάτω κλάσματα είναι μεγαλύτερο από το ; (α) (β) (γ) (δ) 68. O Μιχάλης ξόδεψε τα 10 3 των χρημάτων του για να αγοράσει μία πένα και τα 10 5 των χρημάτων του για να αγοράσει ένα βιβλίο. Τι μέρος των χρημάτων του ξόδεψε; Απάντηση: 32

33 69. Ο Θωμάς έφαγε το 1 2 από ένα γλύκισμα και η Ιωάννα το 1 4 από αυτό. Τι μέρος του γλυκίσματος έφαγαν και τα δύο παιδιά μαζί; Απάντηση: 70. (α) = (β) (γ) 25 (δ) 3 33

34 71. Ο Γιάννης, η Μάγια και η μητέρα τους έφαγαν τούρτα. Ο Γιάννης έφαγε το της τούρτας. Η Μάγια έφαγε το της τούρτας. Η μητέρα τους έφαγε το της τούρτας. Τι μέρος της τούρτας περίσσεψε; (α) (β) (γ) (δ) τίποτα 34

35 εκαδικοί 72. Ποιος αριθμός αναπαριστά το σκιασμένο μέρος του σχήματος; (α) 2,8 (β) 0,5 (γ) 0,2 (δ) 0, Να γράψεις έναν αριθμό που είναι μεγαλύτερος από το 5 και μικρότερος από το 6. Απάντηση: 74. Ποιος από τους πιο κάτω αριθμούς είναι πιο κοντά στο 10; (α) 0,10 (β) 9,99 (γ) 10,10 (δ) 10,90 35

36 75. Ποιο από τα παρακάτω σημαίνει ; (α) 70 (β) 7 (γ) 0,7 (δ) 0, Το 0,4 είναι το ίδιο με: (α) τέσσερα (β) τέσσερα δέκατα (γ) τέσσερα εκατοστά (δ) ένα τέταρτο 77. Ποιο είναι το άθροισμα του 2,5 και του 3,8; (α) 5,3 (β) 6,3 (γ) 6,4 (δ) 9,5 36

37 78. Ο ήμος ταξίδεψε πρώτα 4,8 km με το αυτοκίνητο και μετά ταξίδεψε 1,5 km με το λεωφορείο. Πόση απόσταση ταξίδεψε ο ήμος; (α) 6,3 km (β) 5,8 km (γ) 5,13 km (δ) 4,95 km 79. Αφαίρεσε: 5,3 3,8 Απάντηση: 80. Αφαίρεσε: 4,03-1,15 (α) 5,18 (β) 4,45 (γ) 3,12 (δ) 2,98 (ε) 2,88 37

38 81. 12,36 9,7 = Απάντηση: 82. Η Ιουλία τοποθέτησε ένα κουτί σε ένα ράφι μήκους 96,4 cm. Το κουτί έχει μήκος 33,2 cm. Ποιο είναι το πιο μακρύ κουτί που μπορεί να τοποθετήσει στο υπόλοιπο ράφι; Παρουσίασε την εργασία σου. Απάντηση: 83. Ο Χάρης έχει 10 ζετς. Αγόρασε ένα χυμό που στοίχιζε 2,50 ζετς και ένα σάντουιτς που στοίχιζε 3,85 ζετς. Πόσα χρήματα του έμειναν; (α) 3,65 ζετς (β) 4,75 ζετς (γ) 6,35 ζετς (δ) 16,35 ζετς 38

39 Αναλογίες 84. Στο πιο κάτω διάγραμμα, 2 στα 3 τετράγωνα είναι σκιασμένα. Ποιο διάγραμμα έχει 3 στα 4 τετράγωνα σκιασμένα; 85. Ο Χρίστος χρειάζεται 4 λεπτά για να καθαρίσει ένα παράθυρο. Θέλει να υπολογίσει πόσο χρόνο θα χρειαστεί για να καθαρίσει 8 παράθυρα με τον ίδιο ρυθμό. Πρέπει να: (α) πολλαπλασιάσει 4 8 (β) διαιρέσει το 8 με το 4 (γ) αφαιρέσει 4 από το 8 (δ) προσθέσει το 8 με το 4 39

40 86. Ο κήπος του Μάρκου έχει 84 σειρές με λάχανα. Υπάρχουν 57 λάχανα σε κάθε σειρά. Ποιο από τα πιο κάτω δίνει τον ΚΑΛΥΤΕΡΟ τρόπο για να υπολογίσουμε το συνολικό αριθμό των λάχανων που υπάρχουν στον κήπο; (α) 100 x 50 = 5000 (β) 90 x 60 = 5400 (γ) 80 x 60 = 4800 (δ) 80 x 50 = Υπάρχουν 9 κουτιά με μολύβια. Το κάθε κουτί έχει 125 μολύβια. Ποιος είναι ο συνολικός αριθμός των μολυβιών; (α) 1025 (β) 1100 (γ) 1125 (δ) 1220 (ε) Υπάρχουν 9 σειρές από καρέκλες. Σε κάθε σειρά υπάρχουν 15 καρέκλες. Ποιος είναι ο συνολικός αριθμός των καρεκλών; Απάντηση: 40

41 89. Κάθε μαθητής χρειάζεται 8 τετράδια για το σχολείο. Πόσα τετράδια θα χρειαστούν 115 μαθητές; Απάντηση: 90. Σύμφωνα με την κλίμακα ενός χάρτη, 1 εκατοστόμετρο στο χάρτη αναπαριστά 4 χιλιόμετρα στην πραγματικότητα. Η απόσταση μεταξύ δύο πόλεων στο χάρτη είναι 8 εκατοστόμετρα. Πόσα χιλιόμετρα είναι η απόσταση μεταξύ των δύο πόλεων στην πραγματικότητα; (α) 2 (β) 8 (γ) 16 (δ) 32 41

42 91. Στην πόλη διοργανώθηκε ένα παζαράκι για ανταλλαγή καρτών. 1 κάρτα ζώων αξίζει όσο 2 κάρτες με φατσούλες 2 κάρτες ζώων αξίζουν όσο 3 κάρτες αθλημάτων Μερικά παιδιά πήγαν στο παζαράκι για να ανταλλάξουν κάρτες. 42

43 Ανταλλαγή Καρτών με Ζώα Α. Η Βέρα είχε 5 κάρτες ζώων και ήθελε να τις ανταλλάξει με κάρτες με φατσούλες. Πόσες κάρτες με φατσούλες θα έπαιρνε; Απάντηση: κάρτες με φατσούλες Β. Ο ημήτρης είχε 8 κάρτες ζώων και ήθελε να τις ανταλλάξει με κάρτες αθλημάτων. Πόσες κάρτες αθλημάτων θα έπαιρνε; Απάντηση: κάρτες αθλημάτων Γ. Η Κατερίνα είχε 6 κάρτες με ζώα. Ήθελε να τις ανταλλάξει με όσο το δυνατό περισσότερες κάρτες. Πόσες κάρτες με φατσούλες θα έπαιρνε; Πόσες κάρτες αθλημάτων θα έπαιρνε; Θα αντάλλασσε τις κάρτες της με κάρτες με φατσούλες ή με κάρτες αθλημάτων; Απάντηση: 43

44 Ανταλλαγή Καρτών με Αθλήματα Ο Στέφανος είχε 15 κάρτες αθλημάτων και ήθελε να τις ανταλλάξει με κάρτες ζώων. Πόσες κάρτες ζώων θα έπαιρνε; Απάντηση: κάρτες ζώων Ανταλλαγή καρτών με Φατσούλες Ο Βασίλης είχε 8 κάρτες με φατσούλες και ήθελε να τις ανταλλάξει με κάρτες αθλημάτων. Πόσες κάρτες αθλημάτων θα έπαιρνε; Απάντηση: κάρτες αθλημάτων 92. Ο Μάριος χρησιμοποίησε 5 ντομάτες, για να φτιάξει μισό λίτρο χυμό ντομάτας. Πόσο χυμό μπορεί να φτιάξει με 15 ντομάτες; (α) Ενάμισι λίτρο (β) ύο λίτρα (γ) υόμισι λίτρα (δ) Τρία λίτρα 44

45 93. Οι μπογιές πωλούνται σε συσκευσίες των 5 λίτρων. O Σωτήρης χρειάζεται 37 λίτρα μπογιά. Πόσες συσκευασίες πρέπει να αγοράσει; (α) 5 (β) 6 (γ) 7 (δ) Για κάθε φιάλη αναψυκτικού που μαζεύει ο Φώτης, η Μαρία μαζεύει 3 φιάλες. Ο Φώτης μάζεψε συνολικά 9 φιάλες. Πόσες μάζεψε η Μαρία; (α) 3 (β) 12 (γ) 13 (δ) ύο αγόρια έτρεχαν. Για κάθε 2 km που έτρεχε ο Φώτης, ο Αλέξης έτρεχε 3 km. Ο Φώτης έτρεξε 6 km. Πόσα χιλιόμετρα έτρεξε ο Αλέξης; Απάντηση: km 45

46 96. Σε ένα χώρο στάθμευσης, 762 αυτοκίνητα είναι σταθμευμένα σε 6 ίσες σειρές. Πόσα αυτοκίνητα υπάρχουν σε κάθε σειρά, αν όλες οι σειρές έχουν τον ίδιο αριθμό αυτοκινήτων; Απάντηση: 97. Υλικά Αυγά 4 Αλεύρι 8 φλιτζάνια Γάλα 1 2 φλιτζάνι Τα πιο πάνω υλικά χρησιμοποιούνται για να ετοιμαστεί μια συνταγή για 6 άτομα. Η Στέλλα θέλει να κάνει τη συνταγή αυτή για 3 άτομα. Συμπλήρωσε τον πιο κάτω πίνακα για να δείξεις τι θα χρειαστεί η Στέλλα, για να ετοιμάσει τη συνταγή για 3 άτομα. ίνεται ο αριθμός των αυγών. Υλικά Αυγά 2 Αλεύρι φλιτζ. Γάλα φλιτζ. 46

47 98. Μια δασκάλα διορθώνει κάθε μισή ώρα 10 διαγωνίσματα των μαθητών της. Χρειάζεται μία και μισή ώρα, για να διορθώσει όλα τα διαγωνίσματα. Πόσοι είναι οι μαθητές στην τάξη της; Απάντηση: 99. Υπάρχουν 6 σακούλια που περιέχουν συνολικά 54 βόλους. Κάθε σακούλι περιέχει τον ίδιο αριθμό βόλων. Πόσους βόλους περιέχουν 2 σακούλια; (α) 108 βόλοι (β) 18 βόλοι (γ) 15 βόλοι (δ) 12 βόλοι (ε) 9 βόλοι 100. Στην τάξη του Κώστα, ο αριθμός των κοριτσιών είναι διπλάσιος από τον αριθμό των αγοριών. Τα αγόρια της τάξης είναι 8. Ποιος είναι ο συνολικός αριθμός των αγοριών και των κοριτσιών στην τάξη; (α) 12 (β) 16 (γ) 20 (δ) 24 47

48 101. Η Μαρία και η αδελφή της η Λίζα φεύγουν από το σπίτι την ίδια ώρα και πηγαίνουν με τα ποδήλατά τους στο σχολείο που είναι 9 χιλιόμετρα μακριά. Η Μαρία οδηγεί το ποδήλατό της με ρυθμό 3 χιλιόμετρα κάθε 10 λεπτά. Πόση ώρα θα χρειαστεί για να φθάσει στο σχολείο; Απάντηση: λεπτά Η Λίζα οδηγεί το ποδήλατό της με ρυθμό 1 χιλιόμετρο κάθε 3 λεπτά. Πόση ώρα θα χρειαστεί για να φθάσει στο σχολείο; Απάντηση: λεπτά Ποια θα φτάσει πρώτη στο σχολείο; Απάντηση: 48

49 102. Η Μαρία έφυγε από το Άπτον και ποδηλατούσε με την ίδια ταχύτητα για 2 ώρες. Έφτασε στην πιο κάτω πινακίδα. Μπράντον, 45 km Άπτον, 30 km Η Μαρία συνεχίζει να ποδηλατεί με την ίδια ταχύτητα προς το Μπράντον. Πόσες ώρες θα χρειαστεί για να ταξιδέψει με το ποδήλατό της από την πινακίδα μέχρι το Μπράντον; (α) ώρες (β) 2 ώρες (γ) 3 ώρες (δ) ώρες 49

50 103. Η τάξη της Γεωργίας έχει 10 κορίτσια και 20 αγόρια. Η Γεωργία λέει ότι υπάρχει ένα κορίτσι για κάθε δύο αγόρια. Η φίλη της η Άντρη λέει ότι αυτό σημαίνει πως το όλων των μαθητών της τάξης είναι κορίτσια. Πόσους μαθητές έχει η τάξη της Γεωργίας; Απάντηση: Είναι ορθή η δήλωση της Γεωργίας; Απάντηση: Εξήγησε με λόγια ή με σχέδιο την απάντησή σου. Είναι ορθή η δήλωση της Άντρης; Απάντηση: Εξήγησε με λόγια ή σχέδιο την απάντησή σου. 50

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες

ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ. Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Θέματα: - Ερμηνεία και κατασκευή γραφικών παραστάσεων - Ερμηνεία πινάκων - Πιθανότητες 1 Ερμηνεία και κατασκευή γραφικών παραστάσεων 1. Η αγαπημένη γεύση παγωτού των παιδιών Γεύση

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

3 + 5 = 23 :13 + 18 = 23

3 + 5 = 23 :13 + 18 = 23 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Γ - Δ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Ποια από τις πιο κάτω προτάσεις είναι ΛΑΝΘΑΣΜΕΝΗ; Α. 8 7 > 7 6 Β. 8 5 < 6 7 Γ. 7 0 < 8 8 Δ. 1 7 > 1 8 Ε. 60 7 > 60 8 2. Ο αδύναμος κρίκος μιας αλυσίδας είναι ο 7 ος από την αρχή της και ο 11 ος από

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Όλες οι απαντήσεις. Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Όλες οι απαντήσεις Μαθηματικά Δ Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ Περιεχόμενα Κεφάλαιο : Θυμάμαι ό,τι έμαθα από την Γ Τάξη... 5 Κεφάλαιο : Διαχειρίζομαι αριθμούς ως το 0.000... 8 Κεφάλαιο

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2013-2014. ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 013-014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 014 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α Γυμνασίου Χρόνος: ώρες Βαθμός: Ημερομηνία: Παρασκευή, 13 Ιουνίου 014 Υπογραφή καθηγητή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012

Ε - ΣΤ Δημοτικού 13 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2012 1. Πόσες ώρες έχουν περάσει από τις 6:45 πμ μέχρι τις 11:45 μμ της ίδιας μέρας; Α. 5 Β. 17 Γ. 24 Δ. 29 Ε. 41 1 1 2. Αν το χ είναι μεταξύ 1 και 1 +, τότε το χ μπορεί να είναι ίσο με τον κάθε 5 5 αριθμό

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου.

Περί Γνώσεως Φροντιστήριο Μ.Ε. Φυσική Α Γυμνασίου. ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. 10 ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΓΙΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΤΗΣ Α' ΓΥΜΝΑΣΙΟΥ > ΜΕΤΡΗΣΕΙΣ Μήκους - Μάζας Χρόνου. Επιμέλεια ύλης και απαντήσεων: Γ.Φ.Σ ι ώ ρ η ς Φυσικός.- Email: georgesioris@yahoo.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΗΡΕΣΙΑ ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου Ενότητα 1: Σύνολα Συγγραφή: Ομάδα Υποστήριξης Μαθηματικών

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015. ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... ΓΥΜΝΑΣΙΟ ΑΚΡΟΠΟΛΕΩΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014 2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΒΑΘΜΟΣ ΗΜΕΡΟΜΗΝΙΑ: 5/06/2015 ΤΑΞΗ: A Αριθμητικά... ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:... Ολογράφως:...

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ

4.2 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 1 4. 4.3 ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΘΕΩΡΙΑ 1. Πρόβληµα : Ονοµάζουµε την κατάσταση που δηµιουργείται όταν αντι- µετωπίζουµε εµπόδια και δυσκολίες στην προσπάθεια µας να φτάσουµε σε έναν συγκεκριµένο στόχο.. Επίλυση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη:Ε Ονοματεπώνυμο:.. Σχολείο: Το ημερολόγιο Ο Πέτρος ζήτησε από το φίλο του Χρήστο να διαλέξει 4 αριθμούς από το διπλανό ημερολόγιο που να σχηματίζουν τετράγωνο (για

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ»

ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΥΠΟΥΡΓΕΙΟ ΕΟΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΒΙΒΛΙΟ ΤΟΥ ΜΑΘΗΤΗ ΠΡΟΓΡΑΜΜΑ: «ΕΝΤΑΞΗ ΤΣΙΓΓΑΝΟΠΑΙΔΩΝ ΣΤΟ ΣΧΟΛΕΙΟ» ΒΟΛΟΣ 2007 ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ

Διαβάστε περισσότερα

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε!

Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Δάσκαλοι και μαθητές Παίζουμε και μαθαίνουμε! Συντελεστές: Γιάννης Π. Κρόκος - Μαθηματικός Βασίλης Τσιλιβής Μαθηματικός Φιλίππια Γαλιατσάτου - Δασκάλα Πολιτικός Μηχανικός «Η επίλυση των προβλημάτων & των

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟΔΟΙ 1. Δίνεται η αριθμητική πρόοδος με α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

Προετοιμασία κάρτες ξεκινήματος μένουν κλειστές. Κανόνες παιξίματος.

Προετοιμασία κάρτες ξεκινήματος μένουν κλειστές. Κανόνες παιξίματος. Κάπου στο Λονδίνο κρύβεται ο αυτόνομος Χ. Η Σέκλαντ Γιάρντ έχει στη διαθεσή της δύο, τρεις ως πέντε σεκίτες για να τον εντοπίσουν. Κινούνται με ταξί, μετρό ή λεωφορείο κι έχουν στη διάθεση τους ορισμένα

Διαβάστε περισσότερα

Περιεχόμενα. Σελίδα 3 από 21

Περιεχόμενα. Σελίδα 3 από 21 Σελίδα 1 από 21 Σελίδα 2 από 21 Περιεχόμενα Κεφάλαιο 1 Χρήσεις του υπολογιστή... 4 Κεφάλαιο 2 Βασικά τμήματα υπολογιστή... 6 Κεφάλαιο 3 - Ασφάλεια... 9 Κεφάλαιο 4 - Ποντίκι... 11 Κεφάλαιο 5 - Πληκτρολόγιο...

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 361653-3617784 - Fax: 364105 GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 106 79

Διαβάστε περισσότερα

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!...

Εισαγωγή. Περιεχόμενα. Μέσα στο Κουτί. Εισαγωγή... 2. Στόχος... 2. Μέσα στο Κουτί... 2. Οι Κάρτες... 3. Περιγραφή των Καρτών... 3. Επιβίβαση!... Αριθμός Παικτών: 2-4 Χρόνος Παιχνιδιού: 45 λεπτά Ηλικίες: 12 και άνω Περιεχόμενα Εισαγωγή................................... 2 Στόχος..................................... 2 Μέσα στο Κουτί...............................

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΑΡΙΘΜΗΤΙΚΟΥ ΛΟΓΙΚΟΥ ΣΥΛΛΟΓΙΣΜΟΥ

ΠΡΟΒΛΗΜΑΤΑ ΑΡΙΘΜΗΤΙΚΟΥ ΛΟΓΙΚΟΥ ΣΥΛΛΟΓΙΣΜΟΥ ΠΡΟΒΛΗΜΑΤΑ ΑΡΙΘΜΗΤΙΚΟΥ ΛΟΓΙΚΟΥ ΣΥΛΛΟΓΙΣΜΟΥ 1) Στο «Τουρνουά Τένις» του Ιουλίου πρόκειται να συμμετάσχουν 250 άτομα. Σύμφωνα με τις δηλώσεις των παικτών του τουρνουά τένις, ένας στους δέκα παίκτες είναι

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΠΡΟΟ ΟΙ 1. ίνεται η αριθµητική πρόοδος µε α 2 =0 και α 4 =4. α) Να δείξετε ότι ω=2 και α 1 = 2. β) Να δείξετε ότι α ν =2ν 4 και να βρείτε ποιος όρος της είναι το 98. (51 ος ) 2. α) Να

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 5 (για µαθητές της Β' και Γ' τάξης Λυκείου) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο: Όνοµα: Όνοµα πατέρα: e-mail: ιεύθυνση: Τηλέφωνο: Εξεταστικό Κέντρο: Σχολείο προέλευσης: Τάξη: Θέµατα Καγκουρό 007 Επίπεδο: (για µαθητές της ' και ' τάξης

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 2014-2015 ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΔΟΜΕΤΙΟΥ ΣΧΟΛ. ΧΡΟΝΙΑ: 201-2015 ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2015 ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΙΑ: 05 / 06 / 2015 ΧΡΟΝΟΣ: 2 Ώρες Βαθμός:. Ολογρ.:.. Υπογραφή: Ονοματεπώνυμο:

Διαβάστε περισσότερα

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς

6 η ενότητα. Εισαγωγή στους δεκαδικούς αριθμούς 0-0059MATHIMATIKAGDIMOTIKOU3_0 MAΘHTHΣ MAΘHM Γ 3/2/203 4:3 μμ Page 6 η ενότητα Εισαγωγή στους δεκαδικούς αριθμούς 33 34 35 36 37 38 Κεφάλαιο 33 : Πολλαπλασιασμός και διαίρεση με το 0, το 00 και το.000

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ

1.1. 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1o ΚΕΦΑΛΑΙΟ Β ΘΕΜΑΤΑ 1.1 16950 Β (ΑΝΑΡΤΗΘΗΚΕ 08-11-14) α) Να κατασκευάσετε ένα γραµµικό σύστηµα δυο εξισώσεων µε δυο αγνώστους µε συντελεστές διάφορους του µηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας;

2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; 2. ºÙÈ Óˆ ÚÈıÌÔ Ì ÚÈ ÙÔ 100 Î È ÙÔ Û ÁÎÚ Óˆ ΜΑΘΑΙΝΩ ΠΩΣ ΝΑ ΛΥΝΩ ΑΣΚΗΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ Ú Êˆ Ó Ó ÚÈıÌfi Ì ËÊ Î È ÌÂ Ï ÍÂÈ 2.1 Ποιον αριθμό δείχνει ο διπλανός άβακας; ΛΥΣΗ Στη ράβδο του άβακα που δείχνει

Διαβάστε περισσότερα

Οι σημειώσεις του Ντόμινο & οι σημειώσεις για τους γονείς

Οι σημειώσεις του Ντόμινο & οι σημειώσεις για τους γονείς Οι σημειώσεις του Ντόμινο & οι σημειώσεις για τους γονείς Καλώς ήρθατε στο littlebridge.com HomeBook 1. Εναρμονισμένο με τα 12 κεφάλαια του online υλικού, αυτό το βιβλίο συμπληρώνει με τον καλύτερο τρόπο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô

ÓfiÙËÙ 1 ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ã ÂÚ Ô Ô ÓfiÙËÙ ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô ã appleâú Ô Ô Ì Ì È: ÀappleÂÓı ÌÈÛË ã T ÍË È Ó ÂappleÈÏ ÛÔ ÌÂ Ó appleúfi ÏËÌ, ÙÔ È Ô ÌÂ appleúôûâîùèî ÒÛÙÂ Ó Î Ù ÓÔ ÛÔ - ÌÂ ÙÈ appleïëúôêôú

Διαβάστε περισσότερα

TAΞH B. 2ο Tετράδιο ασκήσεων

TAΞH B. 2ο Tετράδιο ασκήσεων 2B TET ASKISEON_XPress_Hamster_temp.qxp 27/04/2011 9:48 π.μ. Page 1 2ο Tετράδιο ασκήσεων TAΞH B Με απόφαση της ελληνικής κυβέρνησης τα διδακτικά βιβλία του Δημοτικού, του Γυμνασίου και του Λυκείου τυπώνονται

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

Θεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.

Διαβάστε περισσότερα

εληγιάννη Ελένη Παναούρα-Μάκη Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία

εληγιάννη Ελένη Παναούρα-Μάκη Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία Συγγραφική ομάδα: Αθανασίου-Αλαμπρίτη Χρύσω εληγιάννη Ελένη Παναούρα-Μάκη Γεωργία Παντζιαρά Μαριλένα Παπαριστοδήμου Έφη Σιακαλλή Μύρια Χειμωνή Μαρία Συντονιστές: Επιστημονικός συνεργάτης: Σύνδεσμος επιθεωρητής:

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Αθλήματα σπορ

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Αθλήματα σπορ Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Αθλήματα σπορ Ενότητα: Αθλητισμός (3 Φύλλα εργασίας) Επίπεδο: Α1, Α2 Κοινό: αλλόγλωσσοι ενήλικες ιάρκεια: 6 ώρες (3 δίωρα) Υλικοτεχνική υποδομή: 1. Για τον διδάσκοντα: 1 υπολογιστής με

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

για παιδιά (8-12 ετών) Κατανόηση γραπτού λόγου

για παιδιά (8-12 ετών) Κατανόηση γραπτού λόγου Α1 για παιδιά (8-12 ετών) Διάρκεια: 30 λεπτά Επίπεδο Α1 για παιδιά (8-12 ετών) Ερώτημα 1 (7 μονάδες) Η Χαρά γράφει ένα γράμμα στη Νικολέτα. Θέλεις να δεις αν καταλαβαίνεις αυτά που διαβάζεις, γι αυτό σημειώνεις

Διαβάστε περισσότερα

για τους µαθητές της 2ας ηµοτικού

για τους µαθητές της 2ας ηµοτικού για τους µαθητές της 2ας ηµοτικού ΗΡΑΚΛΕΙΟ 2006 2 Αυτό το βιβλίο εργασίας ανήκει στ... µαθητ Αντώνης Καφάτος Καθηγητής Προληπτικής Ιατρικής και ιατροφής Τοµέας Κοινωνικής Ιατρικής Τµήµα Ιατρικής Πανεπιστήµιο

Διαβάστε περισσότερα

2012-2013 ΡΟ ΟΣ 20 ΜΑΪΟΥ. έχεις. κενών ΚΑΛΗ ΕΠΙΤΥΧΙΑ! τονίσεις όπου. χρειάζεται. ρόλους. 1994 βραβεύτηκε. 2. Προσπάθησε ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

2012-2013 ΡΟ ΟΣ 20 ΜΑΪΟΥ. έχεις. κενών ΚΑΛΗ ΕΠΙΤΥΧΙΑ! τονίσεις όπου. χρειάζεται. ρόλους. 1994 βραβεύτηκε. 2. Προσπάθησε ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΥΠΟΤΡΟΦΙΩΝ 01-013 Ι ΙΩΤΙΚΑ ΕΚΠΑΙ ΕΥΤΗΡΙΑ «ΡΟ ΙΩΝ ΠΑΙ ΕΙΑ» ΓΡΑΠΤΟΙ ΙΑΓΩΝΙΣΜΟΙ ΓΙΑ ΤΟ ΠΡΟΓΡΑΜΜΑ ΥΠΟΤΡΟΦΙΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 01-013 ΒΑΘΜΙ Α: ΗΜΟΤΙΚΟΟ ΤΑΞΗ: Ε ΡΟ ΟΣ 0 ΜΑΪΟΥ 01 ιάβασε προσεκτικά τις ερωτήσεις

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ

Σειρά: ΕΚΠΑΙ ΕΥΤΙΚΑ ΒΙΒΛΙΑ Tίτλος: ΙΑΓΩΝΙΣΜΑΤΑ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Συγγραφέας: ΦΩΤΗΣ ΚΟΥΝΑ ΗΣ Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Φώτης Κουνάδης Ι Α Γ Ω Ν Ι Σ Μ Α Τ Α Γ Ι Α Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ ΕΚ ΟΤΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΛΙΒΑΝΗ ΑΘΗΝΑ 2007 Σειρά:

Διαβάστε περισσότερα

Ας µιλήσουµε Ελληνικά

Ας µιλήσουµε Ελληνικά Ας µιλήσουµε Ελληνικά I Το όνοµά µου: Πόσων χρονών είµαι: Σε ποια τάξη πηγαίνω: Σε ποιο σχολείο πηγαίνω: Η πόλη µου / Το χωριό µου: ΘΕΣΣΑΛΟΝΙΚΗ 2011 Μέρος Α Κατανόηση προφορικού λόγου 1 Άσκηση 1 Άκουσε

Διαβάστε περισσότερα

1.5 Αξιοσημείωτες Ταυτότητες

1.5 Αξιοσημείωτες Ταυτότητες 1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος

Διαβάστε περισσότερα

Χριστουγεννιάτικα στολίδια από ανακυκλώσιμα υλικά!

Χριστουγεννιάτικα στολίδια από ανακυκλώσιμα υλικά! Χριστουγεννιάτικα στολίδια από ανακυκλώσιμα υλικά! Αυτές τις γιορτές βλέπουμε τη χριστουγεννιάτικη διακόσμηση με πολλή δημιουργικότητα και λιγότερα έξοδα! Το Sofan Handmade και η ομάδα του Ftiaxto.gr μοιράζονται

Διαβάστε περισσότερα

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού

Παίζοντας με τα νομίσματα (Ευρώ) 2. Παρουσίαση των εφαρμογών του λογισμικού 1. Εισαγωγή Παίζοντας με τα νομίσματα (Ευρώ) Το εκπαιδευτικό λογισμικό «Παίζοντας με τα νομίσματα (Ευρώ)» είναι κυρίως κατάλληλο για τις μικρές τάξεις του δημοτικού σχολείου και ενισχύει τη διδασκαλία

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 5ο Σχηματισμοί όπου επιτρέπεται η επανάληψη στοιχείων 2 Παράδειγμα 2.4.1 Πόσα διαφορετικά αποτελέσματα μπορούμε

Διαβάστε περισσότερα

ΠΕΔΙΟ ΔΡΑΣΗΣ ΚΑΘΗΜΕΡΙΝΟΤΗΤΑ

ΠΕΔΙΟ ΔΡΑΣΗΣ ΚΑΘΗΜΕΡΙΝΟΤΗΤΑ i^^i^^^^^^^^^^^j^y^^^^y^^m^^n ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΓΕΝΙΚΗ ΓΡΑΜΜΑΤΕΙΑ ΕΚΠΑΙΛΕΥΣΗΣ ΕΝΗΛΙΚΩΝ ΤΙΤΟΥΤΟ ΑΙΑΡΚΟΥΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΝΗΛΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΟΙΚΟΓΕΝΕΙΑΚΟΣ ΑΡΙΟΜΗΤΙΣΜΟΣ ΠΕΔΙΟ ΔΡΑΣΗΣ

Διαβάστε περισσότερα

τον ΤΥΧΕΡΟ ΑΠΟΔΕΚΤΗ αυτής της πρόσκλησης.

τον ΤΥΧΕΡΟ ΑΠΟΔΕΚΤΗ αυτής της πρόσκλησης. Ευχές σε σένα Ευχές σε σένα Ευχές σε σένα Ευχές σε σένα Ευχές σε σένα Ευχές σε σένα ΕΙΣΑΓΩΓΗ Γιόρτασε την 50ή λαχταριστή επέτειο του βιβλίου Ο ΤΣΑΡΛΙ ΚΑΙ ΤΟ ΕΡΓΟΣΤΑΣΙΟ ΣΟΚΟΛΑΤΑΣ. Αγαπητέ/ή αναγνώστη/τρια,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε.

ΚΕΦΑΛΑΙΟ 1 ο. Επίλυση. είναι ίση με μ το 1 3 της ηλικίας του. από πόσα χρόνια. Απάντηση: 10 έτη. Απάντηση: 22 χρόνια. 42, Λυδία 11. κάθε. Επίλυση προβλημάτων με τη χρήση εξισώσεων 1. Ένας πατέρας είναι σήμερα 38 ετών και η κόρη του είναι 6 ετών. Έπειτα από πόσα χρόνια η ηλικία της κόρης θα είναι ίση με μ το 1 3 της πατέρα. ηλικίας του Απάντηση:

Διαβάστε περισσότερα

Μαθηματικα Γ Γυμνασιου

Μαθηματικα Γ Γυμνασιου Μαθηματικα Γ Γυμνασιου Θεωρια και παραδειγματα livemath.eu σελ. απο 9 Περιεχομενα Α ΜΕΡΟΣ: ΑΛΓΕΒΡΑ ΚΑΙ ΠΙΘΑΝΟΤΗΤΕΣ 4 ΣΥΣΤΗΜΑΤΑ Χ 4 ΜΟΝΩΝΥΜΑ & ΠΟΛΥΩΝΥΜΑ 5 ΜΟΝΩΝΥΜΑ 5 ΠΟΛΥΩΝΥΜΑ 5 ΡΙΖΑ ΠΟΛΥΩΝΥΜΟΥ 5 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ

ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ ΓΙΑ ΠΑΙΔΙΑ 8 - ΕΤΩΝ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Κ Α Τ Α Ν Ο Η Σ Η Γ Ρ Α Π Τ Ο Υ Λ Ο Γ Ο Υ ΔΕΥΤΕΡΗ ΣΕΙΡΑ Δ Ε Ι Γ Μ Α Τ Ω Ν Μ Ν Α Δ Ε Σ Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ (4) Ημερομηνία και ώρα εξέτασης: Δευτέρα, 25/5/2015

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ.

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. ΜΕΡΟΣ A ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 36, Γραφ. 102, Στρόβολος 2003, Λευκωσία Τηλ. 357-22378101 Φαξ: 357-22379122 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ κ.κ. Ημερομηνία:

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17

ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ. Μαθαίνω να σχηµατίζω απλές προτάσεις... 7. Μαθαίνω να οµορφαίνω τις προτάσεις µου... 17 3 ΠΕΡΙΕΧΟΜΕΝΑ Α ΜΕΡΟΣ Μαθαίνω να σχηµατίζω απλές προτάσεις................ 7 Μαθαίνω να οµορφαίνω τις προτάσεις µου.............. 17 Μαθαίνω να µεγαλώνω τις προτάσεις µου............... 25 Μαθαίνω να γράφω

Διαβάστε περισσότερα

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1 Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1. Ο κ. Γιάννης έδωσε 4.800 και αγόρασε ένα μεταχειρισμένο αυτοκίνητο. Ξόδεψε για την επισκευή του 1.750.Θέλει να κερδίσει 1.600. Πόσο πρέπει

Διαβάστε περισσότερα

Πιθανότητες ΣΤ Δημοτικού

Πιθανότητες ΣΤ Δημοτικού ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Διδακτική των Μαθηματικών Χειμερινό εξάμηνο ακαδ. έτους 2012-2013 ΣΧΕΔΙΑΣΜΟΣ ΜΑΘΗΜΑΤΟΣ Πιθανότητες ΣΤ Δημοτικού Σοφία Άιζενμπαχ Α.Μ. 5898 Πάτρα,

Διαβάστε περισσότερα

0 1 0 0 0 1 p q 0 P =

0 1 0 0 0 1 p q 0 P = Στοχαστικές Ανελίξεις - Σεπτέμβριος 2015 ΟΔΗΓΙΕΣ (1) Απαντήστε σε όλα τα θέματα. Τα θέματα είναι ισοδύναμα. (2) Οι απαντήσεις να είναι αιτιολογημένες. Απαντήσεις χωρίς να φαίνεται η απαιτούμενη εργασία

Διαβάστε περισσότερα

ΜΕΡΟΣ Α : ΕΚΘΕΣΗ (30 ΜΟΝΑΔΕΣ)

ΜΕΡΟΣ Α : ΕΚΘΕΣΗ (30 ΜΟΝΑΔΕΣ) ΤΕΛΙΚΕΣ ΕΝΙΑΙΕΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑ : Ελληνικά ΕΠΙΠΕΔΟ : 2 ΑΠΑΝΤΗΣΕΙΣ ΜΕΡΟΣ Α : ΕΚΘΕΣΗ (30 ΜΟΝΑΔΕΣ) Να αναπτύξετε ΕΝΑ από τα πιο κάτω θέματα (150-180 λέξεις ή 15-20 γραμμές) 1. Πώς πέρασα το περασμένο

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Α. 12 Β. 18 Γ. 42 Δ. 60 Ε. 90 Α. 19 Β. 39 Γ. 63 Δ. 87 Ε. 93

Α. 12 Β. 18 Γ. 42 Δ. 60 Ε. 90 Α. 19 Β. 39 Γ. 63 Δ. 87 Ε. 93 ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 1 η ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ Ιανουάριος 2000 ΧΡΟΝΟΣ: 50 ΛΕΠΤΑ Δοκίμιο για τη Ε Τάξη Δημοτικού Άσκηση 1. Ποιος από τους πιο κάτω αριθμούς διαιρείται με το 3, το 4, το 5

Διαβάστε περισσότερα

ΣΥΝΔΥΑΣΤΙΚΟΙ ΓΡΙΦΟΙ. 1. Ένα αραβικό πρόβλημα του 8 ου αιώνα

ΣΥΝΔΥΑΣΤΙΚΟΙ ΓΡΙΦΟΙ. 1. Ένα αραβικό πρόβλημα του 8 ου αιώνα ΣΥΝΔΥΑΣΤΙΚΟΙ ΓΡΙΦΟΙ Οι γρίφοι αυτοί σε καμία περίπτωση δε συνιστούν τεστ ευφυϊας. Ωστόσο, προσφέρονται για να εξασκήσουν το μυαλό και να σας χαρίσουν στιγμές διασκέδασης. Ας ξεφύγουμε, λοιπόν, από την

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +...

Για να εξασκηθώ 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200. ... +... =... β) 4.100... +... +... +... 2 Διαχειρίζομαι αριθμούς ως το 10. 00 Για να εξασκηθώ 1. Βρίσκω το διπλάσιο των αριθμών όπως στο παράδειγμα. 2.600 2.000 + 600 + 2.000 + 600 4.000 + 1.200 = 5.200 α) 3.400... +... +... +...... +... =...

Διαβάστε περισσότερα

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε

Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε Ι ΑΚΤΙΚΟ ΣΕΝΑΡΙΟ: Ας γνωριστούμε Ενότητα: Χαιρετισμοί, συστάσεις, γνωριμία (2 φύλλα εργασίας) Επίπεδο: Α1, Α2 Κοινό: αλλόγλωσσοι ενήλικες ιάρκεια: 4 ώρες (2 δίωρα) Υλικοτεχνική υποδομή: Για τον διδάσκοντα:

Διαβάστε περισσότερα

Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω. 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5)

Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω. 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5) Του Friedmann Friese, για 3 έως 6 παίκτες 13 ετών και άνω 60 κάρτες: - 36 κάρτες με αριθμούς (έξι σετ καρτών από το 0 έως 5) - 24 κάρτες αποστολών (με 1 έως 6 σύμβολα) 35 πλακίδια αντικειμένων: - 8 x σκαμπό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ 2013 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός http://cutemaths.wordpress.com/ ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία μου δεν στοχεύει απλά στο κυνήγι του 20,

Διαβάστε περισσότερα

ραστηριότητα - Ανακάλυψη...

ραστηριότητα - Ανακάλυψη... 1 Θυμάμαι ό, τι έμαθα από τη Γ τάξη ραστηριότητα - Ανακάλυψη... Η Φανή, με την έναρξη της σχολικής χρονιάς, πήρε 30 και πήγε στο βιβλιοπωλείο να αγοράσει σχολικά είδη. Κοίταξε τον τιμοκατάλογο και αγόρασε

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια

Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Οδηγίες Εγκατάστασης & Εγχειρίδιο Χρήσης Πίνακας περιεχομένων 1. Εισαγωγή... 3 2. Οδηγίες εγκατάστασης...

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 3ο Διατάξεις και μεταθέσεις 2 ΔΙΑΤΑΞΕΙΣ-ΜΕΤΑΘΕΣΕΙΣ- ΣΥΝΔΥΑΣΜΟΙ 2.1 Διατάξεις και μεταθέσεις 2.2 Κυκλικές διατάξεις

Διαβάστε περισσότερα