Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής"

Transcript

1 Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας Τι μέρος της πίτσας περίσσεψε; Αφού γνωρίζουμε ότι ο ένας έφαγε το ένα κομμάτι από τα οκτώ της πίτσας, λέμε ότι έφαγε το (ένα όγδοο) της πίτσας. Όμοια ο δεύτερος έφαγε τα (τρία όγδοα) της πίτσας, ο τρίτος τα (δύο όγδοα) της πίτσας και περίσσεψαν τα (δύο όγδοα). Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. κλάσμα : πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής παρανομαστής Όταν ένα μέγεθος ή ένα σύνολο αντικειμένων χωρισθεί σε ν ίσα μέρη, το κάθε ένα από αυτά το συμβολίζουμε με ν. Κάθε τμήμα του μεγέθους ή του συνόλου, που αποτελείται από κ ίσα μέρη, κ συμβολίζεται με το κλάσμα ν. Η έννοια του κλάσματος επεκτείνεται και στην περίπτωση που ο αριθμητής είναι μεγαλύτερος από τον παρανομαστή.. Μια σοκολάτα ζυγίζει 0 γρ. Και έχει 6 ίσα κομμάτια. () Ποιο μέρος της σοκολάτας είναι το ένα κομμάτι; () Ποιο μέρος της σοκολάτας είναι τα δύο κομμάτια; () Πόσα κομμάτια πρέπει να κόψουμε για να πάρουμε 0 γρ. ; () Πόσα κομμάτια πρέπει να κόψουμε για να πάρουμε 0 γρ. ;. Το καμπαναριό μιας εκκλησίας έχει ύψος 0 μ. Ενώ η εκκλησία έχει ύψος τα του ύψους του καμπαναριού. Ποιο είναι το ύψος της εκκλησίας; Υπόδειξη: Χωρίζουμε το καμπαναριό σε ίσα μέρη. Τι ύψος θα έχει το κάθε μέρος; Ξενιτίδης Κλεάνθης, Μαθηματικός

2 Τι ύψος θα έχουν τα μέρη του καμπαναριού;. Μια δεξαμενή πετρελαίου σε μια πολυκατοικία, χωράει 000 λ. Ο διαχειριστής σε μια μέτρηση βρήκε ότι ήταν γεμάτη κατά τα. Πόσα λίτρα πετρέλαιο είχε η δεξαμενή;. Τι κλάσμα των μαθητών της τάξης μαθητών είναι οι απόντες;. Βρες ποιο μέρος του κιλού είναι τα: (α) 00 γρ. (β) 00 γρ. (γ) 0 γρ. ; 6. Ποιο μέρος (α) του μήνα, (β) του εξαμήνου, (γ) του έτους είναι οι μέρες;. Ένα κατάστημα κάνει έκπτωση στα είδη του ίση με τα της αρχικής τιμής τους. Ένα φόρεμα κόστιζε 00 ευρώ πριν την έκπτωση. Πόσο κοστίζει το φόρεμα μετά την έκπτωση;. Ένα ευθύγραμμο τμήμα έχει μήκος εκατοστά. Να σχεδιάσετε: (α) ένα ευθύγραμμο τμήμα με μήκος το του αρχικού, (β) ένα ευθύγραμμο τμήμα με μήκος το 0 του αρχικού. Ισοδύναμα Κλάσματα Τα παρακάτω πέντε τετράγωνα είναι χωρισμένα αντίστοιχα, σε ίσα μέρη. Προσπαθήστε να βρείτε για καθεμία περίπτωση το κλάσμα του τετραγώνου που αποτελεί το χρωματισμένο μέρος του. Τα κλάσματα είναι αντίστοιχα τα:, 6, 6 9, και 0. Παρατηρούμε ότι το χρωματισμένο μέρος του τετραγώνου δεν αλλάζει. Επομένως τα παραπάνω κλάσματα εκφράζουν το ίδιο μέρος του τετραγώνου. Δύο κλάσματα λέγονται ισοδύναμα όταν εκφράζουν το ίδιο τμήμα ενός μεγέθους. Επειδή εκφράζουν το ίδιο τμήμα ενός μεγέθους είναι ίσα. Στο προηγούμενο παράδειγμα για να εκφράσουμε την ισότητα γράφουμε: Ξενιτίδης Κλεάνθης, Μαθηματικός

3 = 6 = 6 9 = = 0. Πως ελέγχουμε όμως αν δύο κλάσματα είναι ίσα; Αν δύο κλάσματα είναι ίσα, τότε τα χι-αστή γινόμενα είναι ίσα. Θα κάνουμε την επαλήθευση για το προηγούμενο παράδειγμα. Θα δούμε δηλαδή αν τα παραπάνω κλάσματα είναι ίσα. = 6 άρα 6=. Όμοια 6 = 6 9 άρα 9=6 6. Με όμοιο τρόπο δείχνουμε ότι και τα υπόλοιπα κλάσματα είναι ισοδύναμα. Ασκήσεις. Να εξετάσετε αν τα (α) και 0 (β) και 6 6. Να εξετάσετε αν τα παρακάτω κλάσματα είναι ισοδύναμα. i. ii.,, 6,, 0,,, 6, 0 είναι ισοδύναμα. Εάν μας δοθεί ένα κλάσμα, τότε πως μπορούμε να βρούμε άλλα κλάσματα τα οποία να είναι ισοδύναμα με αυτό που μας δόθηκε; Όταν πολλαπλασιαστούν οι όροι ενός κλάσματος (αριθμητής και παρανομαστής) με τον ίδιο αριθμό (διάφορο του μηδενός) προκύπτει ισοδύναμο κλάσμα. Παράδειγμα Θα βρούμε κλάσματα ισοδύναμα με το κλάσμα Αυτό μπορούμε να το κάνουμε πολλαπλασιάζοντας τον αριθμητή και τον παρανομαστή με τον ίδιο αριθμό. Πολλαπλασιάζουμε με το και έχουμε: Πολλαπλασιάζουμε με το και έχουμε: Πολλαπλασιάζουμε με το και έχουμε:. = 6 0. = 9. = 0. Ξενιτίδης Κλεάνθης, Μαθηματικός

4 Άσκηση Να βρείτε κλάσματα ισοδύναμα με τα παρακάτω κλάσματα: i. ii. iii Σύγκριση Κλασμάτων Πως μπορούμε να συγκρίνουμε δύο κλάσματα; Για να απαντήσουμε σε αυτό το ερώτημα θα πρέπει να εισάγουμε τους παρακάτω όρους. Κλάσματα τα οποία έχουν ίδιους παρανομαστές, ονομάζονται ομώνυμα. Παράδειγμα Τα κλάσματα και είναι ομώνυμα. Κλάσματα τα οποία έχουν διαφορετικούς παρανομαστές, ονομάζονται ετερώνυμα. Παράδειγμα Τα κλάσματα 6 και 9 είναι ετερώνυμα. Επανερχόμαστε στο ερώτημα πως μπορούμε να συγκρίνουμε δύο κλάσματα. Είναι εύκολο να συγκρίνουμε δύο ομώνυμα κλάσματα. Για παράδειγμα, ποιο από τα δύο παρακάτω κλάσματα είναι πιο μεγάλο;... Προφανώς το κλάσμα είναι μεγαλύτερο, διότι αν χωρίσουμε ένα μέγεθος σε ίσα μέρη, τότε αν πάρουμε τα από τα μέρη προκύπτει μεγαλύτερη ποσότητα από την περίπτωση όπου παίρνουμε τα από τα μέρη. Συμπεραίνουμε ότι από δύο ομώνυμα κλάσματα (δηλαδή δύο κλάσματα που έχουν τον ίδιο παρανομαστή) μεγαλύτερο είναι εκείνο με τον μεγαλύτερο αριθμητή. Ξενιτίδης Κλεάνθης, Μαθηματικός

5 Η σύγκριση δύο ετερώνυμων κλασμάτων απαιτεί ένα βήμα παραπάνω. Άσκηση Να συγκρίνετε τα κλάσματα: Λύση και 0. Θα μας βόλευε αν τα δύο κλάσματα ήταν ομώνυμα. Γιαυτό θα προσπαθήσουμε να μετατρέψουμε το πρώτο κλάσμα σε ένα ισοδύναμό του, το οποίο να έχει παρανομαστή. Παρατηρούμε ότι αν πολλαπλασιάσουμε τον αριθμητή και τον παρανομαστή του πρώτου κλάσματος με το, τότε προκύπτει το ισοδύναμο κλάσμα. Επομένως αρκεί τώρα να συγκρίνουμε τα κλάσματα: και 0. Όμως τα δύο τελευταία κλάσματα είναι ομώνυμα, επομένως μεγαλύτερο είναι εκείνο με τον μεγαλύτερο αριθμητή, δηλαδή το. Τελικά συμπεραίνουμε ότι το κλάσμα είναι μεγαλύτερο από το κλάσμα 0. Άσκηση Να συγκρίνετε τα κλάσματα:.... και 0. και 9 0. και 6. 0 και 0. Τι γίνεται όταν δεν μπορούμε να βρούμε τον αριθμό με τον οποίον πρέπει πολλαπλασιάσουμε το ένα κλάσμα για να γίνει ομώνυμο με το άλλο; Σε αυτήν την περίπτωση θα μετατρέψουμε και τα δύο κλάσματα, έτσι ώστε να προκύψουν δύο καινούρια κλάσματα ισοδύναμα με τα προηγούμενα και ομώνυμα μεταξύ τους. Παράδειγμα Θα συγκρίνουμε τα κλάσματα και 0. Σε αυτήν την περίπτωση θα μετατρέψουμε και τα δύο κλάσματα. Θα πολλαπλασιάσουμε το πρώτο με τον παρανομαστή του δεύτερου και το δεύτερο με τον παρανομαστή του πρώτου. Δηλαδή, πολλαπλασιάζουμε το με το 6 Ξενιτίδης Κλεάνθης, Μαθηματικός

6 0 και προκύπτει το 0 0. Όμοια πολλαπλασιάζουμε το 0. με το και προκύπτει το 0. Έτσι τώρα μπορούμε να συγκρίνουμε εύκολα τα δύο κλάσματα, αφού είναι ομώνυμα. 0 Το 0. είναι μεγαλύτερο από το 0. Τέλος λόγω ισοδυναμίας, το είναι μεγαλύτερο από το Άσκηση 0. Να συγκρίνετε τα κλάσματα:.... Λύση.. και 6 0 και 9 και 0 και = 6 6 = 0 και 6 = 6 = 0. Έχουμε 0 = 0 = 0 και = 0 0 = 0 0. Έχουμε , επομένως , επομένως. Να βρείτε πόσα γραμμάρια είναι τα: i. ii. iii. iv. 0. Να βρείτε τα του κιλού. του κιλού. Του κιλού. Του κιλού. Ασκήσεις - Προβλήματα των μαθητών μιας τάξης που έχει 0 μαθητές. Ξενιτίδης Κλεάνθης, Μαθηματικός

7 . Από μια τάξη με μαθητές απουσιάζουν μια μέρα μαθητές. Να βρείτε ποιο μέρος των μαθητών της τάξης απουσίαζε εκείνη τη μέρα.. Ένα μπλουζάκι αξίας 6, πουλήθηκε. Να βρείτε το κλάσμα που εκφράζει την έκπτωση που έγινε στην αξία της μπλούζας.. Να βρείτε τα και τα 6 του Σε μια τάξη τα των μαθητών μαθαίνουν Αγγλικά. Ποιο είναι το πλήθος των μαθητών της τάξης αν γνωρίζεις ότι οι μαθητές που μαθαίνουν Αγγλικά είναι.. Τα. Τα κιλό. ενός κιλού μοσχαρίσιου κρέατος κοστίζουν 6. Πόσο κοστίζουν τα ; του κιλού ενός τυριού κοστίζουν 0. Να βρείτε πόσο κοστίζει το ένα 9. Τα των μαθητών ενός τμήματος είναι 0 μαθητές. Να βρείτε πόσους μαθητές έχει το τμήμα. 0. Τα των μαθητών μιας τάξης είναι αγόρια. Να βρείτε πόσους συνολικά μαθητές έχει η τάξη αν τα αγόρια είναι.. Τα του κιλού χοιρινού κρέατος στοιχίζουν,60. Να υπολογίσετε πόσο θα πληρώσουμε για κιλά χοιρινού κρέατος.. Ένας ανιψιός κληρονόμησε από τον θείο του Αν τα χρήματα αποτελούν τα ολόκληρης της περιουσίας του θείου του, να υπολογίσετε πόσα ευρώ ήταν ολόκληρη η περιουσία. Ποσοστά Το σύμβολο α% ονομάζεται ποσοστό επί τις εκατό ή απλούστερα ποσοστό και είναι α ισοδύναμο με το κλάσμα 00.. Το ποσοστό 0% είναι το κλάσμα Ξενιτίδης Κλεάνθης, Μαθηματικός

8 . Το ποσοστό % είναι το κλάσμα. Το ποσοστό 9,% είναι το κλάσμα 00. 9, 00. Αντίστροφα ένα κλάσμα μπορεί να γραφεί και ως ποσοστό.. Το κλάσμα. Το κλάσμα 00. μπορεί να γραφτεί ως ποσοστό στη μορφή % μπορεί να γραφτεί ως ποσοστό στη μορφή 9%. Ασκήσεις Να μετατρέψετε τα παρακάτω κλάσματα σε ισοδύναμα κλάσματα με παρανομαστή τον αριθμό 00 και στη συνέχεια να τα γράψετε στη μορφή ποσοστού Θυμόμαστε από την ενότητα Ισοδύναμα Κλάσματα ότι αν πολλαπλασιάσουμε τον αριθμητή και τον παρανομαστή ενός κλάσματος με τον ίδιο αριθμό τότε προκύπτει ένα ισοδύναμο κλάσμα. Έτσι αρκεί να βρούμε τον αριθμό με τον οποίον αν πολλαπλασιάσουμε το θα προκύψει το 00. Ο αριθμός αυτός είναι το. Επομένως έχουμε:. Άρα το κλάσμα = = 00. είναι ισοδύναμο με το κλάσμα 00 και με το ποσοστό %. Ο αριθμός με τον οποίον πρέπει να πολλαπλασιάσουμε αυτό το κλάσμα έτσι ώστε να προκύψει ισοδύναμο κλάσμα με παρανομαστή το 00 είναι ο αριθμός 0. Έτσι έχουμε: Άρα το κλάσμα 0.. = 0 0 = είναι ισοδύναμο με το κλάσμα και με το ποσοστό 60%. 9 Ξενιτίδης Κλεάνθης, Μαθηματικός

9 Προβλήματα. Ένα παντελόνι στοίχιζε 0. Στις εκπτώσεις το πλήρωσα 0. Πόσο ήταν το ποσοστό της έκπτωσης ;. Ένα κοστούμι πριν τις εκπτώσεις στοίχιζε 00. Το κατάστημα μας έκανε έκπτωση 0%. Πόσο θα πληρώσουμε στο ταμείο ;. Ένα διαμέρισμα νοικιαζόταν 00 και ο ιδιοκτήτης του αύξησε το ενοίκιο και τώρα νοικιάζεται 0. Πόσο είναι το ποσοστό της αύξησης ;. Το ένα κιλό ντομάτες στοιχίζει 0,90. Αυξήθηκε η τιμή τους κατά 0%. Πόσο θα στοιχίζει τώρα το ένα κιλό ;. Ένα δαχτυλίδι το πλήρωσα 60 με τις εκπτώσεις. Το κατάστημα μου είχε κάνει έκπτωση 0%. Ποια ήταν η αρχική τιμή του δαχτυλιδιού ; 6. (Ανάποδα) Αν ένα δαχτυλίδι στοίχιζε 00 και μας έκαναν έκπτωση 0% πόσο θα πληρώσουμε για να το αγοράσουμε ;. Ένα βιβλίο στοίχιζε χωρίς ΦΠΑ. Αν το ποσοστό ΦΠΑ είναι 0% ποια θα είναι η τιμή του βιβλίου ;. Ένα παντελόνι πωλείται όπου ο ΦΠΑ είναι 0% στην αρχική αξία. Ποια είναι η αρχική αξία του παντελονιού ; 9. Ποια είναι η τιμή πώλησης ενός ψυγείου αξίας 0 όταν το κατάστημα κάνει έκπτωση % ; 0. Η τιμή ενός computer πριν την έκπτωση είναι 00 και μετά την έκπτωση 0. Ποιο είναι το ποσοστό της έκπτωσης ;. Ο πληθυσμός μιας πόλης αυξήθηκε κατά % και σήμερα είναι 00 άτομα. Πόσος ήταν ο πληθυσμός της πόλης αρχικά ;. Σε ένα θερμοκήπιο φυτέψαμε 0 ντομάτες, 90 πιπεριές, 0 φασολάκια, 0 μελιτζάνες και 60 κολοκυθάκια. Να βρείτε το ποσοστό για κάθε λαχανικό.. Τον Κώστα τον ψήφισαν μαθητές του τμήματός του που είχε μαθητές και την Μαρία την ψήφισαν 6 μαθητές από τους 0 μαθητές του δικού της τμήματος. Ποιος είναι πιο δημοφιλής ;. Πόσο θα πάρουμε σε ένα χρόνο αν το κεφάλαιο μας σε μία τράπεζα είναι και το επιτόκιο % ; Πρόσθεση και Αφαίρεση Κλασμάτων Για να προσθέσουμε δύο ή περισσότερα κλάσματα θα πρέπει αυτά να είναι ομώνυμα. Εάν δεν είναι ομώνυμα τότε θα πρέπει να τα μετατρέψουμε σε ομώνυμα και στην 0 Ξενιτίδης Κλεάνθης, Μαθηματικός

10 συνέχεια να εκτελέσουμε την πράξη. Ας θυμηθούμε το παράδειγμα με την πίτσα στην αρχή της ενότητας. Ο πρώτος από τους φίλους έφαγε ένα κομμάτι από την πίτσα, ο δεύτερος τρία κομμάτια και ο τρίτος δύο. Για να δούμε πιο μέρος της πίτσας έφαγαν και οι τρεις μαζί θα προσθέσουμε τα κλάσματα, και. Προφανώς και οι τρεις μαζί έφαγαν 6 κομμάτια, δηλαδή έφαγαν τα 6 της πίτσας. Παρατηρούμε ότι για να υπολογίσουμε ένα τέτοιο άθροισμα προσθέτουμε τους αριθμητές των κλασμάτων και στον παρανομαστή αφήνουμε τον κοινό παρανομαστή των κλασμάτων. Συνοψίζοντας, για την πρόσθεση και αφαίρεση κλασμάτων ισχύουν οι παρακάτω κανόνες. Προσθέτουμε δύο ή περισσότερα ομώνυμα κλάσματα προσθέτοντας τους αριθμητές τους και αφήνοντας ίδιο τον παρανομαστή. Παράδειγμα: = 9 Προσθέτουμε ετερώνυμα κλάσματα αφού τα μετατρέψουμε σε ομώνυμα. Παράδειγμα: Όμοια γίνονται οι αφαιρέσεις. = 0 0 = 0. Να υπολογιστεί το άθροισμα Λύση =. Να υπολογιστεί το άθροισμα Λύση Ο αριθμός ισοδυναμεί με το κλάσμα. Αυτό το κλάσμα δεν είναι ομώνυμο με τα δύο προηγούμενα, επομένως πρέπει να το μετατρέψουμε σε ομώνυμο. Θα πολλαπλασιάσουμε το αριθμητή και τον παρανομαστή με το. = = Ξενιτίδης Κλεάνθης, Μαθηματικός

11 . Να υπολογιστεί η διαφορά και το άθροισμα των κλασμάτων και 0. Λύση Θα μετατρέψουμε τα δύο κλάσματα σε ομώνυμα. Θα πολλαπλασιάσουμε τον αριθμητή και τον παρανομαστή του πρώτου με το 0 και τον αριθμητή και τον παρανομαστή του δεύτερου με το. Άρα = 60 0 και 0. 0 = = 0 και = 0 Πολλαπλασιασμός Κλασμάτων Το γινόμενο δύο κλασμάτων είναι το κλάσμα που έχει αριθμητή το γινόμενο των αριθμητών και παρανομαστή το γινόμενο των παρανομαστών. 0 = 0 = Για να πολλαπλασιάσουμε έναν αριθμό με ένα κλάσμα γράφουμε τον αριθμό σε μορφή κλάσματος, βάζοντας τον αριθμό στη θέση του αριθμητή και την μονάδα στην θέση του παρανομαστή. = = = Παράδειγμα 0= 0 = 0 = 0 = Ένας πεζόδρομος στρώθηκε με πλάκες. Τα από τις πλάκες είναι χρωματιστές. Από αυτές τα είναι κόκκινες. Ποιο είναι το μέρος όλου του πεζόδρομου που καταλαμβάνουν οι κόκκινες πλάκες; Ξενιτίδης Κλεάνθης, Μαθηματικός

12 Λύση Ο πεζόδρομος έχει συνολικά πλάκες. Τα του είναι πλάκες. Από αυτές τα, δηλαδή οι 0 είναι κόκκινες. Άρα οι κόκκινες είναι τα 0 του συνόλου. Ένας δεύτερος τρόπος για να υπολογίσουμε πόσες πλάκες είναι κόκκινες είναι να πολλαπλασιάσουμε το με το. Θα βρούμε δηλαδή τα δύο τρίτα των πέντε εβδόμων. =0 Άσκηση Ο Κώστας ήπιε τα από ένα μπουκάλι, που περιείχε αναψυκτικό όγκου λίτρου. Πόσα λίτρα αναψυκτικού ήπιε; του Διαίρεση Κλασμάτων Για να διαιρέσουμε δύο κλάσματα αρκεί να πολλαπλασιάσουμε τον διαιρετέο με τον αντίστροφο του διαιρέτη. : = = = : = = = 6 : = = = = Για να διαιρέσουμε έναν αριθμό με ένα κλάσμα, γράφουμε τον αριθμό σε μορφή κλάσματος, βάζοντας τον αριθμό στη θέση του αριθμητή και την μονάδα στην θέση του παρανομαστή. : = : = = 9 : = 9 : = 9 = 9 6 = Ξενιτίδης Κλεάνθης, Μαθηματικός

13 Ασκήσεις. Ένας μελισσοκόμος παράγει 0 κιλά μέλι και θέλει να το συσκευάσει σε κουτιά του κιλού. Πόσα κουτιά θα χρειαστεί;. Πόσα πακέτα των Λύσεις ζάχαρη;. Θα υπολογίσουμε την διαίρεση 0:. Έχουμε 0:.=0 : = 0 = 0 =0.. Θα υπολογίσουμε την διαίρεση 0:. Έχουμε 0:.=0 : = 0 = 600 =00. του κιλού χρειάζονται για να συσκευάσουμε 0 κιλά Ασκήσεις Προβλήματα. Το βήμα ενός ενηλίκου είναι τα όταν κάνει: a) 0 βήματα b) 0 βήματα του μέτρου. Να βρείτε πόση απόσταση διανύει, c) 000 βήματα. Σε ένα σχολείο με 900 μαθητές, τα πόσα κορίτσια είναι στο σχολείο αυτό. των μαθητών είναι κορίτσια. Να βρείτε. Σε ένα περιβόλι γεμάτο με δέντρα το των δέντρων είναι λεμονιές και τα 9 των λεμονιών έχουν ξεραθεί. Τι μέρος των δέντρων όλου του περιβολιού έχει ξεραθεί;. Κάποιος είχε μαζί του στην αρχή της ημέρας 0. Ξόδεψε τα των χρημάτων του για επισκευή του αυτοκινήτου του και τα των υπολοίπων τα κατέθεσε στην τράπεζα. Πόσα χρήματα κατέθεσε στην τράπεζα;. Κάποιος αγόρασε 0 κιλά πατάτες προς 0 λεπτά του ευρώ το κιλό. Πούλησε τα Ξενιτίδης Κλεάνθης, Μαθηματικός

14 αυτών προς 90 λεπτά το κιλό, τα αυτών προς λεπτά το κιλό και τις υπόλοιπες στην τιμή που τις αγόρασε. Πόσα χρήματα κέρδισε; 6. Μία σοκολάτα είναι χαραγμένη σε ίσα μέρη. Ο Δημήτρης πήρε το της σοκολάτας και από το κομμάτι αυτό έδωσε στην αδερφή του το. Πόσα κομμάτια σοκολάτας πήρε η αδερφή του;. Ένας μαθητής γυμνασίου διαθέτει το της ημέρας του για το σχολείο, το σε εξωσχολικές δραστηριότητες (Ξένες γλώσσες, αθλητισμός κλπ.), το για διάβασμα των μαθημάτων του και τα για ύπνο. Πόσες ώρες διαθέτει την ημέρα για το σχολείο, τις διάφορες δραστηριότητες, το διάβασμα και τον ύπνο;. Σε μία πόλη το μάλιστα τα 00 των κατοίκων έχει ηλικία μεγαλύτερη από 6 χρόνια και από αυτούς έχουν ηλικία μεγαλύτερη από τα 0 χρόνια. a) Να βρείτε ποιο μέρος των κατοίκων έχουν ηλικία πάνω από τα 0 χρόνια. b) Αν το των κατοίκων είναι 00 κάτοικοι να βρείτε πόσοι έχουν ηλικία 0 πάνω από τα 0 χρόνια. 9. Για την αγορά ενός αυτοκινήτου αξίας 000 πλήρωσε κάποιος το προκαταβολή και συμφώνησε να πληρώνει μηνιαία δόση το μέχρι την εξόφληση. Πόσα ευρώ είναι η κάθε δόση; 9 ως του υπολοίπου 0. Για την εξόφληση ενός χρέους 000 προς την τράπεζα πλήρωσε κάποιος το ως προκαταβολή και το του υπόλοιπου ποσού τον επόμενο μήνα. Τι 0 ποσό οφείλει να πληρώσει ακόμα;.το σιτάρι όταν μετατρέπεται σε αλεύρι χάνει στο άλεσμα το Το αλεύρι δίνει στο ψήσιμο τα πάρουμε από 60 κιλά σιτάρι; του βάρους του. του βάρους του σε ψωμί. Πόσα κιλά ψωμί θα. Ένας παραγωγός πορτοκαλιών πούλησε τα της παραγωγής του και στη συνέχεια το των υπολοίπων. Αν είχε 00 κιλά πορτοκάλια πόσα του μένουν 6 ακόμα για πούλημα; Ξενιτίδης Κλεάνθης, Μαθηματικός

15 . Ένα μπουκάλι χωράει λάδι; Ασκήσεις Προβλήματα λίτρα λάδι. Πόσα μπουκάλια θα γεμίσουμε με λίτρα. Το ενός χωραφιού είναι φυτεμένο με λεμονιές, τα με πορτοκαλιές και το υπόλοιπο, που είναι στρέμματα, είναι ακαλλιέργητο. Πόσα στρέμματα είναι όλο το χωράφι;. Μια κληρονομιά μοιράστηκε σε δύο κόρες, στους τρεις γιούς και σε έξι άλλους συγγενείς ως εξής: Η κάθε κόρη πήρε το και ο κάθε γιος το της κληρονομιάς. Η υπόλοιπη κληρονομιά μοιράστηκε εξίσου στους 6 άλλους συγγενείς. a) Να βρείτε το μέρος της κληρονομιάς που πήρε ο καθένας από τους έξι συγγενείς. b) Αν ο καθένας από τους συγγενείς πήρε 0, να βρείτε πόσα ευρώ ήταν όλη η κληρονομιά και πόσα χρήματα πήρε ο κάθε γιος και η κάθε κόρη.. Τα των φοιτητών μιας σχολής γνωρίζουν Αγγλικά, το φοιτητές άλλες γλώσσες. Πόσους φοιτητές έχει η σχολή;. Σε πόσα μπουκάλια του, λίτρου χωράνε 0 λίτρα νερό; 6. Ένας εργάτης τελειώνει τα ολόκληρο το έργο;. Από την Α Γυμνασίου ενός σχολείου το μαθητές. Το 6 Γαλλικά και του έργου σε ώρες. Σε πόσες ώρες τελειώνει γράφει κάτω από τη βάση και είναι των υπολοίπων γράφει άριστα. Πόσοι μαθητές έγραψαν άριστα;. Πρέπει να συσκευαστούν 00 κιλά πορτοκάλια σε κιβώτια των, κιλών. Να βρείτε πόσα κιβώτια χρειαζόμαστε. 9. Μια πλατεία 00 τετραγωνικών μέτρων πρέπει να πλακοστρωθεί με πλακάκια εμβαδού του τετραγωνικού μέτρου. Πόσα πλακάκια χρειάζονται; 6 Ξενιτίδης Κλεάνθης, Μαθηματικός

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ

Α.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα:

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ. α. 3:8 β. 9:10 γ. 132:234 δ. 45:68. 2. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα: ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Κλάσματα Η έννοια του κλάσματος. Να γραφούν σαν κλάσματα τα πηλίκα των διαιρέσεων 0 δ.. Να βρεθεί ποια διαίρεση παριστάνουν το καθένα από τα παρακάτω κλάσματα δ.. Ένα σχολείο

Διαβάστε περισσότερα

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή

τον αριθμητή 8 την κλασματική γραμμή τον παρανομαστή ΤΑΞΗ: ΣΤ ΔΙΑΘΕΣΙΜΟ ΣΤΗ: http //blogs.sch.gr/anianiouris ΥΠΕΥΘΥΝΟΣ: Νιανιούρης Αντώνης (email: anianiouris@sch.gr) «Η έννοια του Κλάσματος και οι πράξεις του» Κλασματικός είναι ένας αριθμός ο οποίος εκφράζει

Διαβάστε περισσότερα

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ

Επιμέλεια: Σπυρίδων Τζινιέρης-ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Τι είναι κλάσμα; Κλάσμα είναι ένα μέρος μιας ποσότητας. ΘΕΩΡΙΑ ΚΛΑΣΜΑΤΩΝ Α ΓΥΜΝΑΣΙΟΥ Κλάσμα είναι ένας λόγος δύο αριθμών(fraction is a ratio of two whole numbers) Πως εκφράζετε συμβολικά ένα κλάσμα; Εκφράζετε

Διαβάστε περισσότερα

Η Έννοια του Κλάσµατος

Η Έννοια του Κλάσµατος Η Έννοια του Κλάσµατος Κεφάλαιο ο. Κλασµατική µονάδα λέγεται το ένα από τα ίσα µέρη, στα οποία χωρίζουµε την ακέραια µονάδα. Έχει τη µορφή, όπου α µη µηδενικός φυσικός αριθµός (α 0, α διάφορο του µηδενός).

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου Κεφ 5 ο - Ποσοστά. Μέρος Α Θεωρία 1. Πως ονομάζεται το σύμβολο α% και με τι είναι ίσο; 2. Πως μπορούμε να υπολογίσουμε το α% του β; 3. Τι είναι ο ΦΠΑ και πως τον υπολογίζουμε; Μέρος

Διαβάστε περισσότερα

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ Α ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ. Να γραφεί ο τύπος της Ευκλείδειας διαίρεσης. Πότε ένας αριθμός διαιρείται με το, πότε με το, το, και πότε με το 9. ( Δώστε παράδειγμα) Ποιοι αριθμοί καλούνται πρώτοι

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 02

ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 02 . Το εμβαδόν του παρακάτω σχήματος είναι ίσο με: 5α β. 6α γ. 9α δ. 4α ΜΑΘΗΜΑΤΙΚΕΣ ΔΕΞΙΟΤΗΤΕΣ - 0 α 3α α α. Αν το εμβαδόν του ορθογωνίου ΑΒΓΔΕΖ είναι 5m και το εμβαδόν του ορθογωνίου ΗΘΙΚ είναι 9m, πόσα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ)

ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) ΤΑΞΗ Α - ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ (ΓΙΑ ΤΗΝ ΤΕΛΙΚΗ ΕΠΑΝΑΛΗΨΗ) Α ΜΕΡΟΣ- ΑΛΓΕΒΡΑ ΕΡΩΤΗΣΗ 1 Ποιοι αριθμοί ονομάζονται πρώτοι και ποιοι σύνθετοι; Να δώσετε παραδείγματα. ΑΠΑΝΤΗΣΗ 1 Όταν ένας αριθμός διαιρείται

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΕΛΕΙΑ Π.ΦΥΛΑΧΤΟΣ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Α ΓΥΜΝΑΣΙΟΥ Α.1. Να γράψετε τις παρακάτω εκφράσεις με τη βοήθεια μιας μεταβλητής: i) Το πενταπλάσιο ενός αριθμού. ii) Το διπλάσιο

Διαβάστε περισσότερα

Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Η κλασματική γραμμή είναι η πράξη της διαίρεσης. όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Τα κόκκινα κομμάτια αποτελούν

Διαβάστε περισσότερα

Μαθηματικα A Γυμνασιου

Μαθηματικα A Γυμνασιου Μαθηματικα A Γυμνασιου Θεωρια & παραδειγματα livemath.eu σελ. απο 45 ΠΕΡΙΕΧΟΜΕΝΑ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 4 ΠΡΟΣΘΕΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΟΡΙΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ 4 ΑΦΑΙΡΕΣΗ ΦΥΣΙΚΩΝ

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 4 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 4 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 4 η Ενότητα Κεφ. 22 26 Πηγή: e-selides Εισαγωγή στα απλά κλάσματα Ασκήσεις. Να χρωματίσετε στα σχήματα το μέρος

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ

Διαβάστε περισσότερα

Πρόσθεση και αφαίρεση κλασμάτων

Πρόσθεση και αφαίρεση κλασμάτων Πρόσθεση και αφαίρεση κλασμάτων TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Γνωρίζω μέχρι τώρα Στην πρόσθεση, οι προσθετέοι και το άθροισμα είναι ομοειδείς αριθμοί. Π.χ 8 κεράσια + 6 κεράσια = κεράσια

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος

ΤΑ ΠΟΣΟΣΤΑ. 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ΤΑ ΠΟΣΟΣΤΑ 1. Ποσοστό επί τοις εκατό ή απλούστερα ποσοστό λέγεται το σύµβολο ν %, όπου ν ένας Φυσικός αριθµός. Είναι η λογιστική γραφή του κλάσµατος ν 100 80 Από συνήθεια λέµε «80 τοις εκατό» και γράφουµε

Διαβάστε περισσότερα

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;

αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα

Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Περιοδική έκδοση για τα Μαθηματικά Γυμνασίου https://mathsgymnasio.wordpress.com/ Τεύχος 2 Περιεχόμενα Σελίδα 4: Α Γυμνασίου, Μέρος Α, Αριθμητική - Άλγεβρα, Κεφάλαιο 2, Κλάσματα Σελίδα 22: Α Γυμνασίου,

Διαβάστε περισσότερα

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4%

Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις όπως: Ο πληθωρισμός αυξήθηκε τη περσινή χρονιά κατά 4% Ποσοστά: Τα Μαθηματικά της Αγοράς ===================================================================================== Κώστας Γ. Σάλαρης - Μάνια Κ. Σάλαρη Στη καθημερινή μας ζωή ακούμε συχνά εκφράσεις

Διαβάστε περισσότερα

Αρβανιτίδης Θεόδωρος, - Μαθηματικά Ε

Αρβανιτίδης Θεόδωρος,  - Μαθηματικά Ε Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική

Διαβάστε περισσότερα

Πρόβλημα 1. Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά!

Πρόβλημα 1. Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά! Πρόβλημα 1 Ο Τάκης και η Αριάδνη αγόρασαν ένα δώρο για τους γονείς τους, το οποίο κοστίζει 42. Πλήρωσαν μισά-μισά! Ο Τάκης έδωσε τα Αριάδνη τα από το χαρτζιλίκι του και η από το δικό της. Ποιος από τους

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ

Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ Μ Α Θ Η Μ Α Τ Ι Κ Α Α Γ Υ Μ Ν Α Σ Ι Ο Υ 1 Συνοπτική θεωρία Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα 2 ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ 1. Πότε ένας φυσικός αριθμός λέγεται άρτιος; Άρτιος

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 27 32 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ ΚΕΦ. 27 Προσθέσεις Αφαιρέσεις τετραψήφιων - Προβλήματα 1. Χθες

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ

2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.

Διαβάστε περισσότερα

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις

3 ο βήμα: Βγάζουμε παρενθέσεις 4 ο βήμα: Προσθέσεις και αφαιρέσεις 24 Κεφάλαιο ο. Να κάνετε τις πράξεις : α) 2 + 3 4-2 : (-4) + γ) -3 (-2) -5 +4: (-2) -6 β) 2 +3 (4-2): (-4 +) δ) -8 : (-3 +5) -4 (-2 + 6) Για να κάνουμε τις πράξεις ακολουθούμε τα εξής βήματα: ο βήμα: Πράξεις

Διαβάστε περισσότερα

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ

TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ TA ΚΛΑΣΜΑΤΑ ME ΛΙΓΑ ΛΟΓΙΑ Τα κλάσµατα ανέκαθεν ταν ένα δύσκολο κοµµάτι κάθε µαθητ. Μπως όµως απλά έχουµε παρεξηγσει κάποια πράγµατα; Ας περιπλανηθούµε µαζί στον «παράξενο» κόσµο των κλασµάτων, µε τη βοθεια

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C.

Ασκήσεις. Απάντηση : Η μέση θερμοκρασία της εβδομάδας στην Αλεξάνδρεια είναι 18,3 ο C. Ασκήσεις Μάθημα 25 ο 1. Ένα προϊόν πωλείται σε 3 διαφορετικά καταστήματα στις παρακάτω τιμές : 18, 20 και 22. Ποια είναι η μέση τιμή πώλησης του προϊόντος ; Κατάστημα Α Β Γ Τιμές 18 20 22 Μ.Ο. 18 20 22

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας Μαθηματικά Α Γυμνασίου Επαναληπτικές ερωτήσεις θεωρίας Επαναληπτικές Ερωτήσεις Θεωρίας 1. Τι ονομάζεται Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο ή περισσότερων αριθμών; Ελάχιστο Κοινό Πολλαπλάσιο (ΕΚΠ) δύο

Διαβάστε περισσότερα

Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000

Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 10, 100, 1.000 Γρήγοροι πολλαπλασιασμοί και διαιρέσεις με 0, 00,.000 α. Τα παιδιά ενός σχολείου πλήρωσαν για την εκδρομή τους 0. Πόσο κόστισε το εισιτήριο για κάθε παιδί αν πάρουν μέρος στην εκδρομή συνολικά 00 παιδιά;

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου

Διορθώσεις - Βελτιώσεις. στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου Διορθώσεις - Βελτιώσεις στα βιβλία μαθητή των Μαθηματικών του Γυμνασίου 1 Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρες τους έξι διαφορετικούς τριψήφιους αριθμούς που. Βρες

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

ΒΙΒΛΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟΥ

ΒΙΒΛΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΒΙΒΛΙΟ ΕΚΠΑΙΔΕΥΤΙΚΟΥ 1 η ΔΙΟΡΘΩΣΗ (Σελίδα 36, 3 ος στοίχος από κάτω): 1. Στην πρόσθεση που ακολουθεί να βρεθούν τα ψηφία που αντιπροσωπεύονται από τα γράμματα Α, Β, Γ, Δ και Ε. ΑΒΓ +ΔΑΓ Α736 2. Στην πρόσθεση

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α 11. Έστω η παράσταση Α = [(30 : 6) 2] 2 [(15 5) : 3 + 2 2 6] 3 (2 5 3 3 + 2 1 ) Να υπολογίσετε την τιµή της παράστασης Α Αν Α = 30, i) να αναλύσετε τον αριθµό Α σε γινόµενο

Διαβάστε περισσότερα

Κλασματικές μονάδες. αριθμητής. παρονομαστής. Η κλασματική γραμμή είναι η πράξη της διαίρεσης.

Κλασματικές μονάδες. αριθμητής. παρονομαστής. Η κλασματική γραμμή είναι η πράξη της διαίρεσης. Μαθηματικά Ε Τεύχος οο ΑΡΒΑΝΙΤΙΔΗΣ ΘΕΟΔΩΡΟΣ ΣΠΥΡΙΔΩΝΙΔΗΣ ΑΝΤΩΝΙΟΣ ΑΚΡΙΒΟΠΟΥΛΟΥΥ ΓΕΩΡΓΙΑ Μάθημα 8 ο Κλασματικές μονάδες όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια.

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά * Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. * Ο βαθμός για την κάθε

Διαβάστε περισσότερα

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου

Γιώργος Νάνος Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ. Μαθηματικά. Γυμνασίου Φυσικός MSc ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΑΣΚΗΣΕΙΣ & ΠΡΟΒΛΗΜΑΤΑ Μαθηματικά A Γυμνασίου Περιεχόμενα ΚΕΦΑΛΑΙΟ : Φυσικοί & Δεκαδικοί Αριθμοί Η θεωρία με Ερωτήσεις Ασκήσεις & Προβλήματα ΚΕΦΑΛΑΙΟ : Μετρήσεις Μεγεθών Η

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 2 ΕΠΝΛΗΠΤΙΚ ΘΕΜΤ ΓΥΝΜΣΙΟΥ ΜΘΗΜΤΙΚ ΛΓΕΡ ΚΕΦΛΙΟ. Να διατυπώσετε τα κριτήρια διαιρετότητας. πό τους αριθμούς 675, 0, 4404, 7450 να γράψετε αυτούς που διαιρούνται με το, με το, με το 4, με το 9.. Ποια είναι

Διαβάστε περισσότερα

Ασκήσεις

Ασκήσεις Ασκήσεις Μάθημα 1 ο 1. Να κάνεις τις προσθέσεις : 209 101 595 614 185 212 709 221 127 667 + 127 + 111 + 100 + 202 + 103 548 921 916 943 955 345 538 816 248 347 723 707 340 248 394 307 + 249 + 237 + 185

Διαβάστε περισσότερα

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop

qwertyuiopasdfghjklzxcvbnmq ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyui opasdfghjklzxcvbnmqwertyuiop qwertyuiopasdfghjklzxcvbnmq wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty Επαναληπτικό Φυλλάδιο Μαθηματικών Α Γυμνασίου uiopasdfghjklzxcvbnmqwertyui 3 η έκδοση 29/04/15

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Δ ΔΗΜΟΤΙΚΟΥ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 2010 Χρόνος: 60 λεπτά Δ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Ποια από τις ακόλουθες παραστάσεις έχει το ίδιο αποτέλεσμα με (15-5) + 6 ; Α) (15-6)

Διαβάστε περισσότερα

6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ )

6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 41 46) Πηγή πληροφόρησης: e-selides 6η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 41 47) 1. α) Πολλαπλασιάζω κάθετα και αναλυτικά:

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της.

7.Αριθμητική παράσταση καλείται σειρά αριθμών που συνδέονται με πράξεις μεταξύ τους. Το αποτέλεσμα της αριθμητικής παράστασης ονομάζεται τιμή της. ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Α.1.2 1. Οι ιδιότητες της πρόσθεσης των φυσικών αριθμών είναι οι εξής : Αντιμεταθετική ιδιότητα π.χ. α+β=β+α Προσετεριστική ιδιότητα π.χ. α+β+γ=(α+β)+γ=α+(β+γ) 2.Η πραξη της αφαίρεσης

Διαβάστε περισσότερα

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5

1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 25 να διαιρείται ακριβώς με το 2, το 3 και το 5 Μαθηματικά Α' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Να συμπληρώσετε τα τετραγωνάκια με τον κατάλληλο μονοψήφιο αριθμό ώστε: (α) ο αριθμός 5 να διαιρείται ακριβώς με το, το και το 5 (β)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ 0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» ΚΕΦΑΛΑΙΟ 1 Ο : Εξισώσεις - Ανισώσεις 1 1.1 Η ΕΝΝΟΙΑ ΤΗΣ ΜΕΤΑΒΛΗΤΗΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΟΡΙΣΜΟΙ Μεταβλητή

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 2: Δεκαδικοί αριθμοί, κλάσματα, δυνάμεις, ρίζες και ποσοστά Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης

Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ. Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1 Α ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ Α1 Προβλήματα πρόσθεσης και αφαίρεσης 1. Ο κ. Γιάννης έδωσε 4.800 και αγόρασε ένα μεταχειρισμένο αυτοκίνητο. Ξόδεψε για την επισκευή του 1.750.Θέλει να κερδίσει 1.600. Πόσο πρέπει

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ. Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΑΣΚΗΣΕΙΣ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ Ανακεφαλαίωση ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ: 1, 2,,, Άρτιοι αριθμοί είναι οι φυσικοί

Διαβάστε περισσότερα

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí

ÊåöÜëáéï 3 ï. Ôá êëüóìáôá. -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí ÊåöÜëáéï ï Ôá êëüóìáôá âéâëéïììüèçìá : -Ç Ýííïéá ôïõ êëüóìáôïò -Ôï êëüóìá ùò ðçëßêï äýï öõóéêþí áñéèìþí -Éóïäýíáìá êëüóìáôá -Óýãêñéóç êëáóìüôùí âéâëéïììüèçìá 2: -Ðñüóèåóç êëáóìüôùí -Áöáßñåóç êëáóìüôùí

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα ΑΛΓΕΒΡΑ Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα 1 Εξισώσεις 1. Η Αντωνία διάβασε τις πρώτες 78 σελίδες ενός βιβλίου, που έχει συνολικά 130 σελίδες. Ποια μαθηματική πρόταση μπορεί να χρησιμοποιήσει η Αντωνία,

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της

Διαβάστε περισσότερα

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ

1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΔΑΜΑΝΤΙΟΣ ΣΧΟΛΗ ΤΑΞΗ Δ ΟΝΟΜΑ α. Αντιμεταθετική ιδιότητα 1. ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Π Ρ Ο Σ Θ Ε Σ Η Α. ΙΔΙΟΤΗΤΕΣ ΤΗΣ ΠΡΟΣΘΕΣΗΣ 8 + 7 = 15 ή 7 + 8 = 15 346 ή 517 ή 82 + 517 + 82 + 346 82 346 517 945 945

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1 ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΩΡΙΑ ΜΕΡΟΣ 1ο : ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1ο ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ 1. Ποιοι αριθμοί ονομάζονται φυσικοί, ποια ιδιότητα έχουν και πως χωρίζονται; Οι αριθμοί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ. Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Α σ κ ή σ ε ι ς γ ι α τ ι ς δ ι α κ ο π έ ς τ ω ν Χ ρ ι σ τ ο υ γ έ ν ν ω ν () Στρογγυλοποίησε τον αριθμό 8.987. στις πλησιέστερες: (α) δ ε- κάδες, (β) εκατοντάδες, (γ) χιλιάδες,

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής

Δηλαδή η ρητή συνάρτηση είναι πηλίκο δύο ακέραιων πολυωνύμων. Επομένως, το ζητούμενο ολοκλήρωμα είναι της μορφής D ολοκλήρωση ρητών συναρτήσεων Το θέμα μας στην ενότητα αυτή είναι η ολοκλήρωση ρητών συναρτήσεων. Ας θυμηθούμε πρώτα ποιες συναρτήσεις ονομάζονται ρητές. Ορισμός: Μία συνάρτηση ονομάζεται ρητή όταν μπορεί

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 3 η Ενότητα Κεφ. 14 20 Πηγή: e-selides 1. Μετρώ από το 1.000 μέχρι το 2.000 ανά 100: 1.000, 1.100. 2. Γράφω με

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά Ε Δημοτικού E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ E 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - Ε Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 2013, Εκδόσεις Κυριάκος Παπαδόπουλος Α.Ε., Γιάννης

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

Αισθητοποίηση, γραφή και ονομασία αριθμών

Αισθητοποίηση, γραφή και ονομασία αριθμών Αριθμοί Θέματα: - Αισθητοποίηση, γραφή και ονομασία αριθμών - Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών - Σύγκριση αριθμών - Στρογγυλοποίηση - Πράξεις και ιδιότητες πράξεων - Κλάσματα - εκαδικοί - Αναλογίες

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Μαθηματικά Α Γυμνασίου

Μαθηματικά Α Γυμνασίου Μαθηματικά Α Γυμνασίου A/A Σελίδα Αντί Να γραφεί 1 11, 1 η Δραστηριότητα Βρε του έξι διαφορετικού τριψήφιου αριθμού που. Βρε όλου του διαφορετικού τριψήφιου αριθμού που. 2 11, Θυμόμαστε Η δυνατότητα αυτή

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ

5.2 ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ 1 5. ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΠΟΣΟΣΤΑ ΑΣΚΗΣΕΙΣ 1. ύο υπάλληλοι έχουν µηνιαίο µισθό 1500. Στον έναν από τους δύο έγινε αύξηση % και στον άλλο µείωση 5% πάνω στις αποδοχές του πρώτου υπαλλήλου όπως αυτές διαµορφώθηκαν

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 33 38 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ - Κεφ. 33 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕ ΤΟ,,.000. Κάνω τους

Διαβάστε περισσότερα

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ ΜΕΡΟΣ Α. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ ΕΠΑΝΑΛΗΨΕΙΣ- ΣΥΜΠΛΗΡΩΣΕΙΣ Α Οι πραγματικοί αριθμοί και οι πράξεις τους Όπως γνωρίζουμε, το σύνολο των φυσικών αριθμών Ν είναι

Διαβάστε περισσότερα

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ

6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ 1 6.5 ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΟΓΙΩΝ ΘΕΩΡΙΑ 1. Τρόποι ελέγχου αν δύο ποσά είναι ανάλογα α) Εξετάζουµε αν µεταβάλλονται µε τον ίδιο τρόπο. ηλαδή, όταν πολλαπλασιάζεται (διαιρείται) η τιµή του ενός µε έναν αριθµό,

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ

Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Η ΕΝΝΟΙΑ ΤΟΥ ΠΟΣΟΣΤΟΥ - ΕΦΑΡΜΟΓΕΣ Στην καθημερινή ζωή μας ακούμε φράσεις όπως: Ο έμπορος κερδίζει 30% (τριάντα τοις εκατό ή τριάντα στα εκατό) στην τιμή της αγοράς Τι σημαίνει ο έμπορος κερδίζει 30%; Αν

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη. 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14)

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη. 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14) Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 2η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 8 14) 1. Υπολογίζω τα γινόμενα. 44 Χ 10 = 57 Χ 10 = 35 Χ 10 = 34 Χ 100 = 27 Χ 100 = 42 Χ 10 = 39 Χ 100 = 15

Διαβάστε περισσότερα

3 η ενότητα. Αριθμοί μέχρι το Οι τέσσερις πράξεις Χαράξεις, ορθές γωνίες

3 η ενότητα. Αριθμοί μέχρι το Οι τέσσερις πράξεις Χαράξεις, ορθές γωνίες 0-0059MATHIMATIKAGDIMOTIKOU_0 MAΘHTHΣ MAΘHM Γ 4//03 :38 μμ Page 3 η ενότητα Αριθμοί μέχρι το 3.000 Οι τέσσερις πράξεις Χαράξεις, ορθές γωνίες 4 5 6 7 8 9 0 Κεφάλαιο 4 : Αριθμοί μέχρι το 3.000 Κεφάλαιο

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις :

ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN. Επιλέξτε τη σωστή απάντηση στις παρακάτω προτάσεις : ΓΥΜΝΑΣ Ο ΕΞΑΠ ΑΤΑΝΟΥ ΣχολK Έτος: OMNM-OMNN Τάξη: Α Μάθημα: ΜΑΘΗΜΑΤΙ Α Ημερομηνία : 30/0/2011 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ OMNN Θέμα 1 ο (ΘΕΩΡ Α) Επιλέξτε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α

ΓΥΜΝΑΣΙΟ ΜΑΘΗΜΑΤΙΚΑ ΤΑΞΗ Α 1 2 Α. Πότε ένας φυσικός αριθμός λέγεται πρώτος και πότε σύνθετος; Β. Πότε ένας φυσικός αριθμός διαιρείται με το 2; Γ. Πότε ένας φυσικός αριθμός διαιρείται με το 3; Α. Να αναφέρετε ποια είναι τα είδη των

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΚΑΙ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟΥ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί

Πρόλογος. Κ. Τζιρώνης Θ. Τζουβάρας Μαθηματικοί Πρόλογος Το βιβλίο αυτό περιέχει όλη την ύλη των Μαθηματικών της Β Γυμνασίου, χωρισμένη σε ενότητες, όπως ακριβώς στο σχολικό βιβλίο. Κάθε ενότητα περιλαμβάνει: Τη θεωρία Λυμένες ασκήσεις Χρήσιμες παρατηρήσεις

Διαβάστε περισσότερα

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού

Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων Τάξεις Ε+ΣΤ Δημοτικού Πρόγραμμα Σπουδών Εκπαίδευσης Παιδιών-Προφύγων 2016-2017 Τάξεις Ε+ΣΤ Δημοτικού Περιεχόμενα Στόχοι Πηγή Υλικού 3.1 Αριθμοί Οι μαθητές πρέπει: Σχολικά βιβλία Ε και ΣΤ Φυσικοί, Δεκαδικοί, μετρήσεις Να μπορούν

Διαβάστε περισσότερα

Διαχειρίζομαι αριθμούς έως το 10.000

Διαχειρίζομαι αριθμούς έως το 10.000 Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ!

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ! THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΑ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΚΑΛΗ ΕΠΙΤΥΧΙΑ! Χρόνος: 1 ώρα και 30 λεπτά Αυτό το γραπτό αποτελείται από 25 ερωτήσεις. Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις,

Διαβάστε περισσότερα