Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)"

Transcript

1 Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης Θέµατα Καγκουρό 2010 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Αν όπου είναι κάποιος συγκεκριµένος αριθµός, τότε ο αριθµός αυτός είναι Α) 2 Β) 3 Γ) 4 ) 5 Ε) 6 2) Ο αριθµός 4 είναι δίπλα σε δύο καθρέφτες οπότε βλέπουµε δύο ανακλάσεις του. Αν κάνουµε το ίδιο µε τον αριθµό 5, τι θα δούµε στη θέση του στο διπλανό σχήµα; Α) Β) Γ) ) Ε) 3) Η Τασία πήγε από το ΣΠΙΤΙ απευθείας στο ΣΧΟΛΕΙΟ. Ακολούθησε µία από τις πιθανές διαδροµές που δείχνει ο χάρτης. Στον δρόµο µέτρησε τα δέντρα που συνάντησε στη διαδροµή της. Ποιος από τους παρακάτω αριθµούς δεν µπορεί να είναι το αποτέλεσµα που βρήκε; ΣΠΙΤΙ ΣΧΟΛΕΙΟ Α) 9 Β) 10 Γ) 11 ) 12 Ε) 13 4) Είκοσι ένα λουλούδια είναι σχεδιασµένα στη σειρά, το ένα δίπλα στο άλλο. Η Μαρία άρχισε από αριστερά να τα Μαρία Ντίνα ζωγραφίζει ένα ένα στη σειρά µε κόκκινο χρώµα. Η Ντίνα άρχισε από δεξιά να τα ζωγραφίζει ένα ένα στη σειρά µε κίτρινο χρώµα. Τα δύο παιδιά συναντήθηκαν στο λουλούδι που η Μαρία µέτρησε ως δέκατο, και το ζωγράφισαν και οι δύο. Το λουλούδι αυτό σύµφωνα µε την Ντίνα ήταν Α) Το δέκατο τρίτο. Β) Το δέκατο τέταρτο. Γ) Το ενδέκατο. ) Το δωδέκατο. Ε) Το δέκατο. 14 Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2

2 Καγκουρό: Μαθηµατικά για όλους τόµος 4 5) Η Άννα ζωγράφισε µε τον χάρακα γραµµές που συνδέουν κάθε κουκίδα της πάνω σειράς µε κάθε κουκίδα της κάτω σειράς. Πόσες γραµµές ζωγράφισε η Άννα; Α) 20 Β) 25 Γ) 30 ) 35 Ε) 40 6) Ένα ζουζούνι έχει 6 πόδια και µία πασχαλίτσα έχει 8 πόδια. ύο τέτοια ζουζούνια και τρεις τέτοιες πασχαλίτσες έχουν µαζί τόσα πόδια όσα έχουν 10 πουλιά και Α) 2 γάτες. Β) 3 γάτες. Γ) 4 γάτες. ) 5 γάτες. Ε) 6 γάτες. 7) Σε ένα κουτί διαστάσεων 5 5 υπάρχουν επτά πλακάκια διαστάσεων 3 1. Θέλουµε να µετακινήσουµε τα πλακάκια µέσα στο κουτί (χωρίς να τα βγάλουµε έξω) ώστε να δηµιουργηθεί χώρος για άλλο ένα πλακάκι. Ποιος είναι ο µικρότερος αριθµός από πλακάκια που πρέπει να µετακινήσουµε; Α) 1 Β) 2 Γ) 3 ) 4 Ε) 5 8) Η µύτη του Πινόκιο είχε αρχικά µήκος τρία εκατοστά. Κάθε φορά που ο Πινόκιο έλεγε ψέµατα, το µήκος της µύτης του διπλασιαζόταν. Αν ο Πινόκιο είπε έξι φορές ψέµατα, πόσο µήκος έγινε η µύτη του; Α) 18 εκατοστά Β) 96 εκατοστά Γ) 182 εκατοστά ) 192 εκατοστά Ε) 384 εκατοστά 9) Ποια είναι η περίµετρος του διπλανού σχήµατος; (Όλες οι γωνίες είναι ορθές). Α) 21 Β) 27 Γ) 36 ) 42 Ε) κανένα από τα προηγούµενα Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2 15

3 Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης 10) Ο Τάκης έχει ένα λαστιχάκι όπως το διπλανό σχήµα. Κάποια στιγµή το λαστιχάκι του έπεσε στο πάτωµα. Ποιο από τα παρακάτω αποκλείεται να είναι το λαστιχάκι του Τάκη; Α) Β) Γ) ) Ε) Ερωτήσεις 4 πόντων: 11) Το διπλανό σχήµα διπλώνεται ώστε να γίνει κύβος. Ποιός αριθµός θα βρεθεί απέναντι από το 2; Α) το 1 Β) το 3 Γ) το 4 ) το 5 Ε) το ) Στο σχήµα αριστερά έχουµε στρίψει το ΑΒ µέχρι να έρθει στη θέση ΑΓ. Ποια θα είναι η τελική θέση του σχήµατος δεξιά, αν στραφεί µε όµοιο τρόπο; Γ Α) Β) Γ) ) Ε) 13) Ο Μπάµπης σκέφτηκε έναν αριθµό. Μετά έκανε τις εξής πράξεις: Πρώτα διαίρεσε τον αριθµό διά 7. Στο αποτέλεσµα που βρήκε, πρόσθεσε το 7 και, τέλος, το νέο αποτέλεσµα το πολλαπλασίασε επί 7. Αν το τελικό αποτέλεσµα που βρήκε ήταν 777, ποιος ήταν ο αρχικός αριθµό του Μπάµπη; Α) 7 Β) 111 Γ) 722 ) 567 Ε) Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2

4 Καγκουρό: Μαθηµατικά για όλους τόµος 4 14) Ο ηµήτρης έχει µια ζυγαριά και βαρίδια των 2, 4, 5, 8 και 9 κιλών. Κατάφερε να ισορροπήσει την ζυγαριά τοποθετώντας δύο από τα βαρίδια στο ένα σκέλος της ζυγαριάς και δύο στο άλλο σκέλος. Πιο βαρίδι δεν χρησιµοποίησε; Α) των 2 κιλών Β) των 4 κιλών Γ) των 5 κιλών ) των 8 κιλών Ε) των 9 κιλών 15) Για να φτιάξει ο Γιάννης µία εφηµερίδα 40 σελίδων, πήρε 10 µεγάλα φύλλα χαρτί, τα τοποθέτησε το ένα πάνω στο άλλο και µετά τα δίπλωσε όλα µαζί στη µέση. Κατόπιν ο Γιάννης αρίθµησε τις σελίδες από το 1 έως το 40 µε τη σειρά. Αργότερα αφαίρεσε το φύλλο που είχε την σελίδα 7. Ποιές άλλες σελίδες αφαιρέθηκαν µαζί µε την 7; Α) οι 8, 9 και 10 Β) οι 6, 34 και 35 Γ) οι 8, 31 και 32 ) οι 8, 32 και 33 Ε) οι 8, 33 και 34 16) Πόσα από τα παρακάτω σχήµατα έχουν ακριβώς δύο άξονες συµµετρίας στο επίπεδό τους; Α) ένα Β) δύο Γ) τρία ) τέσσερα Ε) όλα 17) Μία τάξη έχει τριάντα µαθητές. Σε οποιαδήποτε οµάδα δώδεκα µαθητών αυτής της τάξης υπάρχει τουλάχιστον ένα αγόρι και σε οποιαδήποτε οµάδα είκοσι µαθητών υπάρχει τουλάχιστον ένα κορίτσι. Πόσα περισσότερα είναι τα αγόρια από τα κορίτσια της τάξης; Α) 5 Β) 6 Γ) 7 ) 8 Ε) 9 18) Πόσοι φυσικοί αριθµοί έχουν γινόµενο ψηφίων 5 και άθροισµα ψηφίων 7; Α) κανένας Β) δύο Γ) τρεις ) τέσσερις Ε) περισσότεροι από πέντε Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2 17

5 Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης 19) Ένα βιβλίο Μαθηµατικών αποτελείται από δύο κεφάλαια, το κεφάλαιο της Αριθµητικής και το κεφάλαιο της Γεωµετρίας. Το κεφάλαιο της Γεωµετρίας έχει µέγεθος όσο το Αριθµητικής. Τι κλάσµα του βιβλίου αποτελεί το κεφάλαιο της Αριθµητικής; 1 3 του κεφαλαίου της Α) 2 3 Β) 2 9 Γ) 3 4 ) 4 9 Ε) κανένα από τα προηγούµενα 20) Τρία ίδια ζάρια έχουν κολληθεί το ένα στο άλλο όπως δείχνει το σχήµα. Το άθροισµα των αριθµών στις απέναντι πλευρές των ζαριών είναι πάντα 7. Πόσο είναι το άθροισµα όλων των αριθµών στις πλευρές που έχουν κολληθεί; Α) 12 Β) 13 Γ) 14 ) 15 Ε) 16 Ερωτήσεις 5 πόντων: 21) Η εικόνα δείχνει µία κατασκευή µε χριστουγεννιάτικα στολίδια που ισορροπούν. Το βάρος των σπάγκων και των οριζόντιων ξύλων είναι αµελητέο. Οι σπάγκοι είναι δεµένοι είτε στη µέση είτε στα άκρα των ξύλων. Αν όλη η κατασκευή ζυγίζει 48 γραµµάρια, πόσο είναι το βάρος του αστεριού; Α) 2 γραµµάρια Β) 3 γραµµάρια Γ) 4 γραµµάρια ) 8 γραµµάρια Ε) εν µπορούµε να ξέρουµε 18 Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2

6 Καγκουρό: Μαθηµατικά για όλους τόµος 4 22) Ένα παιδί επισκέπτεται τη θεία του που µένει στην άλλη άκρη του χωριού κάθε Τρίτη, κάθε Παρασκευή και κάθε µία από τις ηµέρες που η ηµεροµηνία είναι περιττός (µονός) αριθµός. Ποιος είναι ο µεγαλύτερος δυνατός αριθµός από συνεχόµενες ηµέρες που µπορεί το παιδί να επισκεφτεί τη θεία του; Α) 3 Β) 4 Γ) 5 ) 6 Ε) 7 23) Ο Χάρης έγραψε στη σειρά τους αριθµούς 1, 2, 3, 4, 5,... Από κάτω η Φανή έγραψε τους ίδιους αριθµούς αλλά παρέλειψε όλα τα πολλαπλάσια του 4. ηλαδή η Φανή έγραψε µε τη σειρά τους 1, 2, 3, 5, 6, 7, 9, 10,... Ποιον αριθµό έγραψε η Φανή κάτω από το 40 του Χάρη; Χάρης Φανή Α) 50 Β) 51 Γ) 52 ) 53 Ε) κανέναν από τους προηγούµενους 24) Μία αλυσίδα αποτελείται από όµοιους κρίκους. Η αριστερή εικόνα δείχνει ένα τµήµα της. Οι διαστάσεις του κάθε κρίκου φαίνονται στην δεξιά εικόνα. Πόσο είναι το µήκος µιας τεντωµένης αλυσίδας µε πέντε κρίκους; 0,5 εκατοστά 4 εκατοστά Α) 20 εκατοστά Β) 19 εκατοστά Γ) 17, 5 εκατοστά ) 16 εκατοστά Ε) 15 εκατοστά 25) Στον πίνακα δίπλα είναι γραµµένος ένας πολλαπλασιασµός, όπου κάποια ψηφία έχουν αντικατασταθεί µε γράµµατα. Αν οι Α, Β, Γ είναι όλοι διαφορετικοί από το µηδέν, πόσο είναι το Α+ Β ; Α) 9 Β) 11 Γ) 12 ) 13 Ε) 16 Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2 19

7 Μιχάλης Λάµπρου Νίκος Κ. Σπανουδάκης 26) Πόσα πράσινα τετράγωνα πρέπει να βαφτούν γαλάζια αν θέλουµε κάθε γραµµή και κάθε στήλη του µεγάλου τετραγώνου να περιέχει ακριβώς από ένα πράσινο τετράγωνο; Α) 4 Β) 5 Γ) 6 ) 7 Ε) το ζητούµενο δεν γίνεται 27) Ο Ανδρέας τύλιξε ένα σπάγκο γύρω από ένα κοµµάτι ξύλο, όπως δείχνει η εικόνα δεξιά. Μετά γύρισε το ξύλο από την άλλη πλευρά. Ποια από τις παρακάτω µπορεί να είναι η σωστή εικόνα της πίσω πλευράς της κατασκευής του Ανδρέα; Α) Β) Γ) ) Ε) 28) Οι θέσεις σε ένα θέατρο είναι αριθµηµένες όπως δείχνει το σχήµα. Ο Κώστας έχει το εισιτήριο για την θέση µε νούµερο 100. Η Καίτη θέλει να καθίσει όσο πιο κοντά γίνεται στον Κώστα, αλλά οι µόνες επιλογές που έχει είναι τα εισιτήρια για τις θέσεις µε νούµερα 76, 94, 99, 104 και 118. Ποιο εισιτήριο πρέπει να προτιµήσει; Α) 76 Β) 94 Γ) 99 ) 104 Ε) Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2

8 Καγκουρό: Μαθηµατικά για όλους τόµος 4 29) Θέλουµε να βάλουµε τους αριθµούς 1, 2, 3, 4 µέσα στα τρίγωνα αριστερά. Κάθε φορά που τοποθετούµε πάνω σε τέσσερα τρίγωνα το σχήµα δεξιά, θέλουµε να κρύβει τέσσερις διαφορετικούς αριθµούς. (Το σχήµα δεξιά µπορούµε να το τοποθετούµε σε όποια θέση θέλουµε, ακόµη και αναποδογυρισµένο). Μερικοί αριθµοί έχουν ήδη γραφτεί. Ποιοι αριθµοί µπορούν να µπουν στο τρίγωνο µε το αστεράκι; Α) Οποιοσδήποτε από τους 2 ή 4 Β) Μόνο ο 2 Γ) Μόνο ο 3 ) Μόνο ο 4 Ε) Κανένα από τα προηγούµενα 30) Σε µια σπηλιά της Παραµυθίας ζούνε δράκοι µε δύο κεφάλια, µε τρία κεφάλια και µε τέσσερα κεφάλια. Οι δράκοι µε τα τρία κεφάλια λένε πάντα ψέµατα ενώ τα δράκοι µε δύο ή µε τέσσερα κεφάλια λένε πάντα την αλήθεια. Μια µέρα µαζεύτηκαν τρεις δράκοι. Ο πρώτος είπε "µεταξύ µας έχουµε 11 κεφάλια", ο δεύτερος είπε "µεταξύ µας έχουµε 9 κεφάλια" και ο τρίτος είπε "µεταξύ µας έχουµε 8 κεφάλια". Ποιος δράκος είπε την αλήθεια; Α) κανένας Β) ο πρώτος Γ) ο δεύτερος ) ο τρίτος Ε) δεν µπορούµε να ξέρουµε Θέµατα ιαγωνισµού Καγκουρό Επίπεδο 2 21

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Θέµατα Καγκουρό 2010 Επίπεδο: 1 (για µαθητές της Γ' και ' τάξης ηµοτικού) Ερωτήσεις 3 πόντων: 1) Η γάτα θέλει να πάει στο γάλα και το ποντίκι στο τυρί, ακολουθώντας τους δρόµους του κήπου. Οι διαδροµές

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 5 6 (E - Στ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Γνωρίζοντας ότι + + 6 = + + +, ποιόν αριθμό αντιπροσωπεύει το ; A) 2 B) 3 C) 4 D) 5 E) 6

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου)

Θέµατα Καγκουρό 2007 Επίπεδο: 4 (για µαθητές της Γ' τάξης Γυµνασίου και Α' τάξης Λυκείου) Kangourou Sans Frontières αγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό έντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα αγκουρό 007 Επίπεδο: 4 (για

Διαβάστε περισσότερα

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού)

Θέµατα Καγκουρό 2007 Επίπεδο: 2 (για µαθητές της Ε' και ΣΤ' τάξης ηµοτικού) Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα Καγκουρό 007 Επίπεδο: (για

Διαβάστε περισσότερα

1 8 και ο δεύτερος παίρνει το υπόλοιπο. Παρακάτω, ο πρώτος παραπόταμος χωρίζεται στα 3 και το ένα τμήμα του παίρνει το του νερού του 8 ) 1 2

1 8 και ο δεύτερος παίρνει το υπόλοιπο. Παρακάτω, ο πρώτος παραπόταμος χωρίζεται στα 3 και το ένα τμήμα του παίρνει το του νερού του 8 ) 1 2 Kangourou Sans Frontières Θέματα Καγκουρό 00 LEVELS: - (για μαθητές της Β' και ' τάξης Λυκείου) Ερωτήσεις βαθμών: ) Οι αριθμοί και και δύο άγνωστοι αριθμοί γράφονται μέσα στα τετραγωνάκια του διπλανού

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ

THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ THE G C SCHOOL OF CAREERS ΜΑΘΗΜΑΤΙΚΟ ΣΧΟΛΕΙΟ ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΙΚΑΝΟΤΗΤΩΝ ΧΡΟΝΟΣ: 1 ΩΡΑ 3 ΛΕΠΤΑ Το δοκίμιο αυτό αποτελείται από δύο μέρη. Το πρώτο μέρος αποτελείται από 15 ερωτήσεις πολλαπλής επιλογής.

Διαβάστε περισσότερα

Επώνυµο:... Όνοµα:... Όνοµα πατέρα: ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:...

Επώνυµο:... Όνοµα:... Όνοµα πατέρα: ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:... Kangourou Sans Frontières Καγκουρό Ελλάς Επώνυµο:... Όνοµα:... Όνοµα πατέρα:... e-mail:... ιεύθυνση:... Τηλέφωνο:... Εξεταστικό Κέντρο:... Σχολείο προέλευσης:... Τάξη:... Θέµατα Καγκουρό 007 Επίπεδο: (για

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 0-0 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 0 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής). THE G

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 1. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος Καγκουρό Ελλάς 0 007 (ο πρώτος αριθµός σε µια γραµµή αναφέρεται στη σελίδα που αρχίζει το άρθρο και ο δεύτερος στη σελίδα που περιέχει τις απαντήσεις) Πρόλογος

Διαβάστε περισσότερα

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι :

Α = 2010 2009 + 2008 2007 + 2006 2005 +...+ 4 3 + 2 1 είναι : Α) 2010 Β) 1005 Γ) 5 Δ) 2009 Ε) Κανένα από τα προηγούμενα. είναι : ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ 11 η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 010 Χρόνος: 60 λεπτά Ε ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ 1 Η τιμή της αριθμητικής παράστασης Α = 010 009 + 008 007 + 006 005 +...+ 4 3 + 1 είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ. ΕΠΑΝΑΛΗΨΗ 3 ης. Όνομα: Ημ/νία: 1. Βρίσκω το γινόμενο στους πιο κάτω πολλαπλασιασμούς: 3 Χ 9 = 8 Χ 8 = 10 Χ 8 = 9 Χ 9 =

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ. ΕΠΑΝΑΛΗΨΗ 3 ης. Όνομα: Ημ/νία: 1. Βρίσκω το γινόμενο στους πιο κάτω πολλαπλασιασμούς: 3 Χ 9 = 8 Χ 8 = 10 Χ 8 = 9 Χ 9 = ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΕΠΑΝΑΛΗΨΗ 3 ης ΕΝΟΤΗΤΑΣ Όνομα: Ημ/νία: 1. Βρίσκω το γινόμενο στους πιο κάτω πολλαπλασιασμούς: 3 Χ 9 = 8 Χ 8 = 10 Χ 8 = 9 Χ 9 = 3 Χ 5 = 6 Χ 7 = 11 Χ 9 = 8 Χ 5 = 6 Χ 5 = 7 Χ 8 = 6 Χ 11

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 21 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

Πάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής

Διαβάστε περισσότερα

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ

THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ Αριθμός Επίθετο Όνομα Όνομα πατέρα THE G C SCHOOL OF CAREERS ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-2015 ΜΑΘΗΜΑΤΙΚΑ (Αυτό το γραπτό αποτελείται από 20 σελίδες, συμπεριλαμβανομένης της σελίδας αυτής).

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 9 10 (Γ Γυμνασίου Α Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιο από τα ακόλουθα είναι το αποτέλεσμα της διαίρεσης του αριθμού 20102010 με τον

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 13 ο. Μάντεψε το µυστικό κανόνα µου. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:

ΚΕΦΑΛΑΙΟ 13 ο. Μάντεψε το µυστικό κανόνα µου. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: ΚΕΦΑΛΑΙΟ 13 ο Κριτήρια διαιρετότητας Μάντεψε το µυστικό κανόνα µου Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: 1. Να µάθεις να ξεχωρίζεις ποιοι αριθµοί διαιρούνται µε το 2, το

Διαβάστε περισσότερα

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 6. Καγκουρό Ελλάς

Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης. τόμος 6. Καγκουρό Ελλάς Μιχάλης Λάμπρου Νίκος Κ. Σπανουδάκης τόμος 6 Καγκουρό Ελλάς 0 Εκτύπωση: ΤΥΠΟΚΡΕΤΑ ISBN: 978 960 8970 6 6 Απαγορεύεται η αναδηµοσίευση ολόκληρου ή µέρους αυτού του βιβλίου µε οποιοδήποτε τρόπο χωρίς την

Διαβάστε περισσότερα

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού

Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Çëßáò Ã. ÊáñêáíéÜò - Έφη Ι. Σουλιώτου Τετράδιο Πρώτης Αρίθµησης Α ηµοτικού Α Τεύχος 1 Απαγορεύεται η αναπαραγωγή µέρους ή του συνόλου του παρόντος έργου µε οποιοδήποτε τρόπο ή µορφή, στο πρωτότυπο ή σε

Διαβάστε περισσότερα

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου;

Ποιος είναι ο 66ος όρος στην ακολουθία γραμμάτων ΑΒΒΓΓΓΔΔΔΔΕΕΕΕΕ, όπου Α, Β, Γ, Δ, Ε είναι γράμματα του ελληνικού αλφαβήτου; Πρόβλημα 214 Τα θρανία στην τάξη του Γιάννη είναι τοποθετημένα σε γραμμές και στήλες. Το θρανίο του Γιάννη είναι στην τρίτη γραμμή από την αρχή και στην τέταρτη από το τέλος. Είναι επίσης στην τρίτη στήλη

Διαβάστε περισσότερα

Αισθητοποίηση, γραφή και ονομασία αριθμών

Αισθητοποίηση, γραφή και ονομασία αριθμών Αριθμοί Θέματα: - Αισθητοποίηση, γραφή και ονομασία αριθμών - Αξία θέσης ψηφίου, ανάλυση/σύνθεση αριθμών - Σύγκριση αριθμών - Στρογγυλοποίηση - Πράξεις και ιδιότητες πράξεων - Κλάσματα - εκαδικοί - Αναλογίες

Διαβάστε περισσότερα

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω.

Α) 4 Β) 5 Γ) 7 Δ) 6 Ε) Κανένα από τα πιο πάνω. η Κυπριακή Μαθηματική Ολυμπιάδα Απρίλιος 200 Χρόνος: 60 λεπτά ΣΤ ΔΗΜΟΤΙΚΟΥ ΑΣΚΗΣΗ Ο πενταψήφιος αριθμός 45Β7Α, στον οποίο τα ψηφία των μονάδων και των εκατοντάδων είναι σημειωμένα με Α και Β, διαιρείται

Διαβάστε περισσότερα

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν

( ) Ερωτήσεις ανάπτυξης. 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + + + L + 2 ν Ερωτήσεις ανάπτυξης 1. * Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών: α) α ν = 4ν + 3 β) α = + ( 1) ν ν γ) α ν = 1 1 1 1 + + + L + 1 3 34 ν ν + 1 δ) α1 = 0, αν+ 1 = 3α + 1 ν ( ). ** Να

Διαβάστε περισσότερα

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ

ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΠΑΡΑΓΡΑΦΟΣ 1. 2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΜΕ ΑΘΡΟΙΣΜΑΤΑ ΚΑΙ ΑΦΑΙΡΕΣΕΙΣ ( 1 ) Να υπολογίσετε τις παραστάσεις Α = 3 + 23 + 19 Β = 8 +13 +45-7 Γ = 3 + 0 Α = 3+23 +19 =

Διαβάστε περισσότερα

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0

Α) 474,3 : 18,6 = Β) 394,8 : 15 = Γ) 999,4 : 26,3 = ) 28748,96 : 752 = Ε) 5,88 : 0,245 = Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν 85,25 : 6,2 = 8 5, 2 5 6, 2 0 Ι Α Ι Ρ Ε Σ Ε Ι Σ Ε Κ Α Ι Κ Ω Ν Να λύσετε τις παρακάτω πράξεις σύµφωνα µε τo παράδειγµα : 85,25 : 6,2 = 8 5, 2 5 6, 2 0 8 5 2 ' 5 ' 6 2 0 6 2 0 2 1 3 1 2 5 1 3, 7 5 1 8 6 0 = 4 6 5 0 4 3 4 0 = 3 1 0 0

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 7 8 (A - Β Γυμνασίου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Ποιά η τιμή: 12 + 23 + 34 + 45 + 56 + 67 + 78 + 89 ; A) 389 B) 396 C) 404 D) 405 E) άλλη απάντηση

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 33 38 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ - Κεφ. 33 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕ ΤΟ,,.000. Κάνω τους

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα

ΑΛΓΕΒΡΑ. Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα ΑΛΓΕΒΡΑ Θέματα: - Εξισώσεις - Σχέσεις/μοτίβα 1 Εξισώσεις 1. Η Αντωνία διάβασε τις πρώτες 78 σελίδες ενός βιβλίου, που έχει συνολικά 130 σελίδες. Ποια μαθηματική πρόταση μπορεί να χρησιμοποιήσει η Αντωνία,

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

Δραστηριότητα για µαθητές Γυµνασίου

Δραστηριότητα για µαθητές Γυµνασίου Δραστηριότητα για µαθητές Γυµνασίου Παρουσίαση: Τεύκρος Μιχαηλίδης ΘΑΛΗΣ+ΦΙΛΟΙ Επικοινωνία info@thalesandfriends.org Ιστοσελίδα www.thalesandfriends.org Το τρίγωνο του Sierpinski Α Β Γ ΘΑΛΗΣ+ΦΙΛΟΙ 2 Στο

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ Συμπεράσματα Ενοτήτων Πηγή πληροφόρησης: e-selides ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗΣ 1η ΕΝΟΤΗΤΑ (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.)

Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α. Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 6 ο, Τμήμα Α Μέγιστος Κοινός Διαιρέτης (Μ.Κ.Δ.) και Ελάχιστο Κοινό Πολλαπλάσιο (Ε.Κ.Π.) Ε.Κ.Π. (Ελάχιστο Κοινό Πολλαπλάσιο) Κοινό όταν δύο άτομα έχουν ένα κοινό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ

Διαβάστε περισσότερα

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: ΕΡΩΤΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Ερωτήσεις συµπλήρωσης 1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση: Φυσική γλώσσα Μαθηµατική γλώσσα ύο αριθµοί x, y διαφέρουν κατά και έχουν γινόµενο x (x

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα ilias ili Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη 1 η Ενότητα Αριθμοί μέχρι το 1000 - Οι τέσσερις πράξεις Γεωμετρικά σχήματα Πηγή: e-selides 1) Γράφω τους

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS LEVEL: 3 4 (Γ - Δ Δημοτικού) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 βαθμοί 1. Υπάρχει ένα σκιασμένο μέρος της εικόνας για το γάτο και το ποντίκι. Ο γάτος θέλει να φτάσει

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 10 ο, Τμήμα Α Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 10 ο, Τμήμα Α Ορθογώνιο παραλληλόγραμμο 3 cm 5 cm Ο τύπος όπως είναι γραμμένος δείχνει ότι μπορούμε να πολλαπλασιάσουμε δύο μήκη. Ε=3cm x 5cm=15cm 2. Πώς καταλαβαίνετε

Διαβάστε περισσότερα

Γεωμετρία, Αριθμοί και Μέτρηση

Γεωμετρία, Αριθμοί και Μέτρηση 1. Εισαγωγή Γεωμετρία, Αριθμοί και Μέτρηση Μαθαίνω Γεωμετρία και Μετρώ Παίζω με τους αριθμούς Βρίσκω τα πολλαπλάσια Το εκπαιδευτικό λογισμικό «Γεωμετρία, Αριθμοί και Μέτρηση» δίνει τη δυνατότητα στα παιδιά

Διαβάστε περισσότερα

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013

ΣΤ ΤΑΞΗΣ ΔΗΜΟΤΙΚΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΓΙΑ ΜΑΘΗΤΕΣ. Σάββατο, 8 Ιουνίου 2013 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Διεύθυνση: Προξένου Κορομηλά 51 Τ.Κ. 54622, Θεσσαλονίκη Τηλέφωνο και Fax 2310 285377 e-mail: emethes@otenet.gr http://www.emethes.gr ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ

Διαβάστε περισσότερα

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ

ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ ΑΤΥΠΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ 1. Ταξινόμηση αντικειμένων ως προς τα χαρακτηριστικά τους Βάλε μαζί σε έναν κύκλο τα λουλούδια με το ίδιο χρώμα και το ίδιο όνομα. Κοίταξε προσεκτικά την εικόνα και απάντησε: Πόσα

Διαβάστε περισσότερα

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ

1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 1 η ΕΝΔΕΙΚΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΕΙΣΑΓΩΓΗΣ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ ΓΥΜΝΑΣΙΑ 2015 ΜΑΘΗΜΑΤΙΚΑ 2 1. Ο Άρης έφαγε 5 μιας σοκολάτας και ο Φίλιππος έφαγε 1 10 σοκολάτας περισσότερο από τον Άρη. Τι μέρος της σοκολάτας έμεινε;

Διαβάστε περισσότερα

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα.

Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει τους διαμερισμούς και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης.

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ

ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΠΟΥ ΛΥΝΟΝΤΑΙ ΜΕ ΕΞΙΣΩΣΕΙΣ 1. Η συνδρομή για την συμμετοχή στον όμιλο κολύμβησης είναι 15 τον μήνα και 5 για κάθε φορά που χρησιμοποιούμε την πισίνα. Αν τον προηγούμενο μήνα πληρώσαμε 75, πόσες

Διαβάστε περισσότερα

Μαθηματικά της Φύσης και της Ζωής

Μαθηματικά της Φύσης και της Ζωής Μαθηματικά της Φύσης και της Ζωής Τάξη: Ε Η ομάδα χορού 1. Σε μια ομάδα παραδοσιακών χορών συμμετέχουν 39 αγόρια και 23 κορίτσια. Κάθε εβδομάδα προστίθενται στην ομάδα 6 νέα αγόρια και 8 νέα κορίτσια.

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί

ΓΕΩΜΕΤΡΙΑ. Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί ΓΕΩΜΕΤΡΙΑ Θέματα: - Έννοιες χώρου και καρτεσιανές συντεταγμένες - ισδιάστατη γεωμετρία - Γωνίες - Στερεομετρία - Συμμετρία/ μετασχηματισμοί 1 Έννοιες χώρου και καρτεσιανές συντεταγμένες 1. Ο χάρτης δείχνει

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα

Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 2015. Εισαγωγικό σημείωμα Ενδεικτικές δοκιμασίες για την εισαγωγή στα Πρότυπα Γυμνάσια 015 Εισαγωγικό σημείωμα Σύμφωνα με τις οδηγίες της ΔΕΠΠΣ: Στα Μαθηματικά ελέγχονται οι ικανότητες των μαθητών/τριών στην κατανόηση και στην

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Γ Γυμνασίου Logo- Κοκκόρη Αθηνά

Γ Γυμνασίου Logo- Κοκκόρη Αθηνά LOGO: Λυμένες ασκήσεις επανάληψης για τις τελικές εξετάσεις. ΑΣΚΗΣΗ 1 1. Τι θα εμφανιστεί στην οθόνη του υπολογιστή από την παρακάτω εντολή: δείξε "Μαρία Μαρία 2. Τι θα εμφανιστεί στην οθόνη του υπολογιστή

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 6 1) Να εκφράσετε τον αριθμό 48 σε γινόμενο πρώτων παραγόντων με δενδροδιάγραμμα. 2) Να συγκρίνετε

Διαβάστε περισσότερα

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν

2 α1 = 0, αν+1 = 2. Να βρείτε τον αναδρομικό τύπο των ακολουθιών : α. αν = 2ν 3 β. βν = 5 3 ν γ. γν = 1 + 2 ν 1. Να βρείτε τους τέσσερις πρώτους όρους των παρακάτω ακολουθιών και να παραστήσετε σε ορθογώνιο σύστημα αξόνων τα αντίστοιχα σημεία. α. αν = 4ν + 3 β. αν = 2 + ( 1) ν γ. 1 1 1 1 αν = + + +... + 1 2 2

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

Οι φυσικοί αριθμοί. Παράδειγμα

Οι φυσικοί αριθμοί. Παράδειγμα Οι φυσικοί αριθμοί Φυσικοί Αριθμοί Είναι οι αριθμοί με τους οποίους δηλώνουμε πλήθος ή σειρά. Για παράδειγμα, φυσικοί αριθμοί είναι οι: 0, 1,, 3,..., 99, 100,...,999, 1000, 0... Χωρίζουμε τους Φυσικούς

Διαβάστε περισσότερα

ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΗΜΕΡΟΜΗΝΙΑ.

ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ...ΗΜΕΡΟΜΗΝΙΑ. ΔΟΚΙΜΙΟ ΜΑΘΗΜΑΤΙΚΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ....ΗΜΕΡΟΜΗΝΙΑ. Να λύσεις όλες τις ασκήσεις. 1. Ποιο από τα παρακάτω περιγράφει λεκτικά τον αριθµό 9740; (α) Εννιά χιλιάδες εβδοµήντα τέσσερα (β) Εννιά χιλιάδες εφτακόσια

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 21 26) Πηγή πληροφόρησης: e-selides 4 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ - κεφ. 21 26 Συμπληρώνουμε σωστά τον παρακάτω

Διαβάστε περισσότερα

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ

ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΑΡΙΘΜΩΝ ΜΕΧΡΙ ΤΟ 10 Η ενότητα 7 περιλαμβάνει την ανάλυση και τη σύνθεση των αριθμών μέχρι το 10, στρατηγικές πρόσθεσης/αφαίρεσης και επίλυση προβλημάτων πρόσθεσης και αφαίρεσης. ΔΕΙΚΤΕΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε. 11η Κυπριακή Μαθηματική Ολυμπιάδα πρίλιος 010 Χρόνος: 60 λεπτά ΛΥΚΕΙΟΥ 1. Το τελευταίο ψηφίο του αριθμού 1 3 5 Ε 9 7. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 του 100 αυξάνονται κατά 9 μονάδες όταν αντιστραφούν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α 1 ΣΚΗΣΙΣ ΠΝΛΗΨΗΣ 3 η Κ 1. Στο διπλανό σχήµα το τετράπλευρο παριστάνει µία τετράγωνη πλατεία και τα τετράπλευρα ΚΛΘ και ΗΜΡΖ παριστάνουν δύο κήπους. Η πλευρά του είναι 30m και η απόσταση των ΚΛ και ΡΜ είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΓΥΜΝΣΙΟ ΥΜΗΤΤΟΥ ΜΘΗΜΤΙΚ ΓΥΜΝΣΙΟΥ ΜΙ ΠΡΟΕΤΟΙΜΣΙ ΓΙ ΤΙΣ ΕΞΕΤΣΕΙΣ - Σελίδα 1 από 11 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΤΩΝ ΤΩΝ ΕΞΕΤΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και τρείς ασκήσεις.

Διαβάστε περισσότερα

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ...

Ύλη εξετάσεων Κλάσματα Δεκαδικοί Δυνάμεις Ρητοί Αριθμοί Διαιρετότητα ΕΚΠ ΜΚΔ... ΠΕΡΙΕΧΟΜΕΝΑ Ύλη εξετάσεων...2 1. Κλάσματα...3 2. Δεκαδικοί...8 3. Δυνάμεις...11 4. Ρητοί Αριθμοί...13. Διαιρετότητα...16 6. ΕΚΠ ΜΚΔ...17 7. Εξισώσεις- υστήματα...19 8. Αναλογίες - Απλή μέθοδος των τριών...2

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου

ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο

Διαβάστε περισσότερα

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας

Γυµ.Ν.Λαµψάκου Α Γυµνασίου Γεωµ.Β2.6 γωνίες από 2 παράλληλες + τέµνουσα 19/3/10 Φύλλο εργασίας Φύλλο εργασίας Mπορείτε να βρείτε τη γωνία κάβων; ραστηριότητα Ένα δεξαµενόπλοιο που στο σχήµα είναι στο σηµείο Β, πλέει προς την είσοδο µιας διώρυγας µε την βοήθεια δύο ρυµουλκών που απεικονίζονται µε

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ

ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος

Διαβάστε περισσότερα

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια

Ενδεικτικά θέματα Μαθηματικών για την εισαγωγή στα Πρότυπα Πειραματικά Γυμνάσια ΕΝΔΕΙΚΤΙΚΕΣ ΔΟΚΙΜΑΣΙΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΤΗΝ ΕΙΣΑΓΩΓΗ ΜΑΘΗΤΩΝ ΣΤΑ ΠΡΟΤΥΠΑ-ΠΕΙΡΑΜΑΤΙΚΑ ΓΥΜΝΑΣΙΑ ΔΟΚΙΜΑΣΙΑ 1 (ΜΟΝΑΔΕΣ 40) α) Ο αριθμός 1.047 έχει διαιρέτη το 3; Να δικαιολογήσετε την απάντησή σας. β) Να βάλετε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012. Χρόνος: 1 ώρα και 30 λεπτά ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2012 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά Να απαντήσετε σε ΟΛΕΣ τις ερωτήσεις. Όπου χρειάζεται να γίνουν πράξεις για να βρεθεί η απάντηση, να τις κάνετε

Διαβάστε περισσότερα

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια.

ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Χρόνος: 1 ώρα και 30 λεπτά. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. ΑΓΓΛΙΚΗ ΣΧΟΛΗ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΠΡΩΤΗ ΤΑΞΗ Χρόνος: 1 ώρα και 30 λεπτά * Να απαντήσεις σε ΟΛΕΣ τις ερωτήσεις. * Όλες οι απαντήσεις να δοθούν πάνω στα φυλλάδια. * Ο βαθμός για την κάθε

Διαβάστε περισσότερα

α) Συµπληρώστε τα κενά γνωρίζοντας ότι: β) Αν στη κάτω σειρά χρησιµοποιούνται µονοψήφιοι θετικοί ακέραιοι και διαφορετικοί µεταξύ τους τότε ποιος είναι µεγαλύτερος αριθµός που µπορεί να υπάρχει στην κορυφή;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας.

ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. 1. ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 2 Ο ΜΕΤΡΗΣΕΙΣ ΜΕΓΕΘΩΝ 2.1 Παράσταση αριθμών με σημεία μιας ευθείας. α) Στην παραπάνω εικόνα οι χρωματιστοί δείκτες μας δείχνουν κάποιους αριθμούς. Συμπληρώστε τον παρακάτω

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 4 106 79 ΑΘΗΝΑ Τηλ. 61652-617784 - Fax: 641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 4, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ.

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013. Όνομα μαθητή /τριας: Τμήμα: Αρ. ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΤΑΞΗ: B ΜΑΘΗΜΑ: Μαθηματικά ΔΙΑΡΚΕΙΑ: 2 ώρες ΗΜΕΡΟΜΗΝΙΑ: 12 / 6 / 2013 Βαθμός: Ολογράφως: Υπογραφή: Όνομα μαθητή

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα

Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 2 η Ενότητα Πηγή: e-selides 1. Βρίσκω και γράφω τα γινόμενα: 4Χ8= 3Χ8= 4Χ9= 3Χ9= 2Χ8= 8Χ8= 6Χ8= 8Χ9= 6Χ9= 2Χ9=

Διαβάστε περισσότερα

Α.Π.Σ. «ΟΙ ΑΜ ΠΕΛΟΚΗΠΟΙ»

Α.Π.Σ. «ΟΙ ΑΜ ΠΕΛΟΚΗΠΟΙ» Α.Π.Σ. «ΟΙ ΑΜ ΠΕΛΟΚΗΠΟΙ» mm ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Ά ΐίΑ ΙίΙ για παιαια ΤΗΣ Σ 1 1 Δ Η Μ Ο Τ ΙΚ Ο Υ Διάρκεια : 120 λεπτά ΕΠΙΠΕΔΟ I Ονοματεπώνυμο :....... Σχολείο :... Τηλέφωνο επικ/νίας Θέματα 5 μονάδων

Διαβάστε περισσότερα

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò

ÊåöÜëáéï 1 ï. -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí. -Ç Ýííïéá ôçò åîßóùóçò ÊåöÜëáéï 1 ï Öõóéêïß êáé Äåêáäéêïß áñéèìïß âéâëéïììüèçìá 1: -Öõóéêïß áñéèìïß -Ïé äåêáäéêïß áñéèìïß -Óýãêñéóç äýï áñéèìþí -Óôñïããõëïðïßçóç ôùí áñéèìþí âéâëéïììüèçìá : -Ç Ýííïéá ôçò ìåôáâëçôþò -Ç Ýííïéá

Διαβάστε περισσότερα

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ...

1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό: ... Eλέγχω τις γνώσεις μου Aσκήσεις 1. Με τα ψηφία 5, 8, 0, 2, 6, 1 δημιουργώ εξαψήφιους αριθμούς και μετά τους διατάσσω από τον μικρότερο στον μεγαλύτερο αριθμό:......

Διαβάστε περισσότερα

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it.

Νοέμβρης Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού 1/11/2012. Φιλοσοφία διδασκαλίας. What you learn reflects how you learned it. Επιμόρφωση Εκπαιδευτικών Β Τάξης Δημοτικού Νοέμβρης 2012 Χρύσω Αθανασίου (Σύμβουλος Μαθηματικών ) Ελένη Δεληγιάννη (Συγγραφική Ομάδα) Άντρη Μάρκου (Σύμβουλος Μαθηματικών) Ελένη Μιχαηλίδου (Σύμβουλος Μαθηματικών)

Διαβάστε περισσότερα

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής

Κλάσματα. Στις προηγούμενες ερωτήσεις απαντήσαμε με την βοήθεια των κλασμάτων. πόσα μέρη πήραμε σε πόσαίσα μέρη χωρίσαμε : αριθμητής Κλάσματα Ένα βράδυ τρεις φίλοι αγοράζουν πίτσα και την χωρίζουν σε οκτώ κομμάτια. Ο ένας έφαγε το ένα, ο δεύτερος τα τρία και ο τρίτος δύο κομμάτια. Μπορείς να βρεις το μέρος της πίτσας που έφαγε ο καθένας

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Σχολική Χρονιά: Α ΓΥΜΝΑΣΙΟΥ Ενότητα 1: Σύνολα 1. Με τη βοήθεια του πιο κάτω διαγράμματος να γράψετε με αναγραφή τα σύνολα: Ω A 5. 1. B Ω =. 6. 4. 3. 7. 8.. Από το διπλανό διάγραμμα, να γράψετε με αναγραφή τα σύνολα: 3. Δίνεται το

Διαβάστε περισσότερα

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ

B. ΠΡΟΒΛΗΜΑΤΑ ΑΠΟ ΔΙΑΓΩΝΙΣΜΟΥΣ Τα Μαθηματικά παίζουν κυρίαρχο ρόλο σε όλους τους χώρους της σύγχρονης κοινωνίας. Όλα σχεδόν τα επιτεύγματα της τεχνολογίας και της ε- πιστήμης στηρίζονται στην ανάπτυξη των Μαθηματικών. Αλλά και τα προβλήματα

Διαβάστε περισσότερα

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ

ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ 1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν

Διαβάστε περισσότερα

Πώς να λύσετε τον κύβο του Rubik

Πώς να λύσετε τον κύβο του Rubik Πώς να λύσετε τον κύβο του Rubik από τον Έλτον 1 Σκόντι, Β Λυκείου 1 ο ΓΕ.Λ. Ελευσίνας σχολικό έτος 2008-9 ΒΗΜΑ 1 Ο : Φτιάχνουμε έναν σταυρό σε όποιο χρώμα θέλουμε. Δηλαδή: Αν π.χ. θέλουμε να φτιάξουμε

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 1 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, μειωτέος, αφαιρετέος, προσθετέος,

Διαβάστε περισσότερα

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ.

Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 1. Οι φυσικοί αριθμοί. Όλοι οι ακέραιοι αριθμοί από το 0 και μετά λέγονται φυσικοί αριθμοί π.χ. 0, 1,2,3,4,5,6,7,8,9, 10,..., 100,..., 1.000,..., 10.0000,10.001,..., 100.000, 100.001, 100.002,..., 200.000,...,

Διαβάστε περισσότερα

(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία.

(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. (ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. Περίμετρος ενός σχήματος είναι το άθροισμα των πλευρών του το οποίο εκφράζεται με τη μονάδα

Διαβάστε περισσότερα

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου:

Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Μια πρακτική συμβουλή για τη λύση του σταυρόλεξου: ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Κανόνας, για να λύσεις αυτό το μαθηματικό σταυρόλεξο. Όλα τα κενά τετράγωνα με ροζ χρώμα πρέπει συμπληρωθούν είτε με μονοψήφιους αριθμούς είτε με ένα από τα μαθηματικά σύμβολα: +, -, >,

Διαβάστε περισσότερα

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη.

Η εξίσωση 0 x = 0 επαληθεύεται για οποιαδήποτε τιμή του x και ο- νομάζεται ταυτότητα ή αόριστη. ΜΕΡΟΣ Α 2.1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 16 2. 1 Η ΕΞΙΣΩΣΗ ΑX+Β=0 Η εξίσωση αx+β=0 Κάθε εξίσωση της μορφής αx+β=0 όπως για παράδειγμα οι εξισώσεις x- 2=0, 4x=-,2x-2=x+6 ονομάζεται εξίσωση 1ου βαθμού με έναν άγνωστο

Διαβάστε περισσότερα

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ

Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Ενότητα 2 : Ζωγραφίζοντας με το ΒΥΟΒ -1- Ενότητα 2. Ζωγραφίζοντας με το ΒΥΟΒ Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα α. Θέση και προσανατολισμός της μορφής Η θέση της κάθε μορφής στο σκηνικό προσδιορίζεται

Διαβάστε περισσότερα

6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ

6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ 1 6.3 ΑΝΑΛΟΓΑ ΠΟΣΑ Ι ΙΟΤΗΤΕΣ ΘΕΩΡΙΑ 1. Ανάλογα ποσά : ύο ποσά τα λέµε ανάλογα όταν µεταβάλονται µε τέτοιο τρόπο ώστε όταν πολλαπλασιάζεται (διαιρείται) το ένα µε έναν αριθµό να πολλαπλασιάζεται (διαιρείται)

Διαβάστε περισσότερα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα

Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Εργαλείο Εκπαιδευτικής Αξιολόγησης για παιδιά µε Αυτισµό στο Γνωστικό τοµέα Οπτική αντίληψη Ακουστική αντίληψη Γνωστικός - εκτελεστικός τοµέας Γνωστικός - εκφραστικός τοµέας Μίµηση Οπτική µνήµη Λειτουργική

Διαβάστε περισσότερα

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ

1.2 Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1 1. Α. ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ MΟΝΩΝΥΜΑ ΘΕΩΡΙΑ 1. Αριθµητική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών. Αλγεβρική παράσταση : Είναι η παράσταση που περιέχει πράξεις µεταξύ αριθµών

Διαβάστε περισσότερα

Σοφία Κ. Αδάµου. Τα Μαθηµατικά µου. Για παιδιά προσχολικής και σχολικής ηλικίας

Σοφία Κ. Αδάµου. Τα Μαθηµατικά µου. Για παιδιά προσχολικής και σχολικής ηλικίας Σοφία Κ. Αδάµου Τα Μαθηµατικά µου Για παιδιά προσχολικής και σχολικής ηλικίας 1 Θέση υπογραφής δικαιούχου δικαιωµάτων πνευµατικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από τη σύµβαση. Το παρόν έργο

Διαβάστε περισσότερα

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50

ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 ΜΑΘΗΜΑΤΙΚΗ ΣΚΕΨΗ ρ Κορρές Κωνσταντίνος ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ 1 50 1. Μία έρευνα από 50 µαθητές έδειξε ότι 30 είχαν γάτες, 25 είχαν σκύλους, 5 είχαν χάµστερ, 16 είχαν σκύλους και γάτες, 4 είχαν σκύλους και χάµστερ,

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides

Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά»

5 ος Πανελλήνιος Μαθητικός Διαγωνισμός «Παιχνίδι και Μαθηματικά» ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 106 79 ΑΘΗΝΑ Τηλ. 3616532-3617784 - Fax: 3641025 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou

Διαβάστε περισσότερα