Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχ/κων Στοιχεία Μηχανών Διδάσκων: Αλ. Κερμανίδης. Κοχλίες

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανολόγων Μηχ/κων Στοιχεία Μηχανών Διδάσκων: Αλ. Κερμανίδης. Κοχλίες"

Transcript

1 Κοχλίες Γενικά-Ορισμοί- Προδιαγραφές Ανάλογα με τον σκοπό οι κοχλίες διακρίνονται σε (α) κοχλίες σύσφιγξης (σύνδεση με κοχλίες) και σε () κοχλίες κινήσεως ή μεταφοράς ισχύος Οι κοχλίες σύσφιγξης χρησιμοποιούνται για συνδέσεις στοιχείων μεταξύ τους, είτε χρησιμοποιώντας περικόχλιο, είτε κατασκευάζοντας σπειρώματα πάνω στα ίδια τα τμήματα που πρόκειται να συνδεθούν. Οι κοχλιωτές συνδέσεις χρησιμοποιούνται εκτενώς στον σχεδιασμό μηχανών, γιατί έχουν χαμηλό κόστος, είναι τυποποιημένοι και τα συνδεόμενα μέρη μπορεί να αποσυναρμολογηθούν πολύ εύκολα. Οι κοχλίες κινήσεως αποτελούν μηχανικά στοιχεία που χρησιμοποιούνται να μετατρέψουν περιστροφική κίνηση σε ευθύγραμμη και για την μετάδοση ισχύος. Χαρακτηριστικές εφαρμογές τους είναι: (ι) η ανύψωση φορτίων (ανυψωτήρες αυτοκινήτων κλπ) (ιι) επίτευξη ακρίειας στην κίνηση μηχανών (τόρνος, κλπ) (ιιι) επίτευξη ακρίειας στην επιολή φορτίων-μετατοπίσεων σε μηχανές δοκιμών (Μηχανές εφελκυσμού, κλπ). Σχήμα 1 Αρχή λειτουργίας T p ήμα περικόχλιο Οι κοχλίες κινήσεως παρουσιάζουν ιδιαίτερα πλεονεκτήματα, όπως: έχουν μεγάλη ικανότητα να παραλάουν και να μεταφέρουν φορτία οι διαστάσεις τους είναι σχετικά μικρές με αποτέλεσμα να οδηγούν σε μικρές και συμπαγείς κατασκευές είναι απλοί στον σχεδιασμό και η διαδικασία για την παραγωγή τους δεν απαιτεί ιδιαίτερα εξειδικευμένες μηχανές Υπάρχουν δύο ασικοί τύποι σπειρώματος για κοχλίες μεταφοράς ισχύος, αυτοί που έχουν (ι) ορθογωνικά σπειρώματα και αυτοί με (ιι) τραπεζοειδή σπειρώματα

2 Τα σπειρώματα για κοχλίες σύνδεσης είναι τυποποιημένα και διακρίνονται σε μετρικά, πριονωτά, και στρογγυλά (Σχ. 3). Η απόσταση μεταξύ δύο συνεχόμενων σπειρωμάτων ονομάζεται ήμα (ppitch). Σε πίνακες, εγχειρίδια και παραρτήματα ιλίων στη διεθνή ιλιογραφία μπορεί κανείς να ρει όλα τα είδη και μεγέθη των σπειρωμάτων που χρησιμοποιούνται στην τεχνολογία. Οι κοχλίες που χρησιμοποιούνται για σύσφιξη με σπείρωμα τύπου V έχουν κύριο στόχο να παρέχουν εγγυημένη σταθερότητα συνδεσμολογίας. Aυτό επιτυγχάνεται λόγω των μεγάλων δυνάμεων τριής μεταξύ των επιφανειών των σπειρωμάτων. Από την άλλη πλευρά οι κοχλίες ισχύος κύριο σκοπό έχουν να μεταφέρουν φορτία κατά το δυνατόν με λιγότερες απώλειες, Αυτό απαιτεί όσο το δυνατόν μικρότερες τριές μεταξύ κοχλία και περικοχλίου. Από την θεμελιώδη αυτή διαφορά γίνεται κατανοητό, ότι το σπείρωμα τύπου V δεν είναι κατάλληλο στοιχείο για μεταφορά ισχύος. p/ p/ p p p/ p/ p 9 o p p/ V- σπείρωμα κυκλικό σπείρωμα Κοχλίες σύσφιγξης πριονωτό σπείρωμα r m ορθογωνικό σπείρωμα Κοχλίες κίνησης τραπεζοειδές σπείρωμα Σχήμα Αποδοτικότητα κοχλία και απώλειες λόγω τριής Η αρχή λειτουργίας κάθε κοχλία στηρίζεται στην ύπαρξη σπειρώματος. Το σπείρωμα λειτουργεί σαν κεκλιμένο επίπεδο, το οποίο εκτείνεται ελικοειδώς κατά μήκος του κορμού του κοχλία (Σχήμα 3).

3 W R Ρ u α N F R Ρ u w α πr Σχήμα 3 Η κλίση του σπειρώματος (κεκλιμένου επίπεδου) α του κοχλία είναι: ήµα σπειρώµατος tgα µ ήκος περιφέρειας p πr (1) Για να κινηθεί το περικόχλιο εφαρμόζουμε περιφερειακή δύναμη u, η οποία για να ανυψώσει ή να κατεάσει φορτίο W πρέπει να υπερνικήσει και τις τριές, που δημιουργούνται μεταξύ κοχλία και περικοχλίου (δύναμη τριής F R μν, όπου μ ο συντελεστής τριής και Ν η αντίδραση του κεκλιμένου επιπέδου).

4 Σύσφιγξη Αποσύσφιγξη y W y W Ρ u Ρ u α N F R p x α N F R p x πr m πr m F R F R φ N N φ ΣX 0 : ΣY 0 : N sinα F cosα 0, u W + N cosα F sinα 0 R R ΣX 0 : ΣY 0 : N sinα + F cosα 0, u W + N cosα + F sinα 0 R R Σχήμα 4 Από τις συνθήκες ισορροπίας στο κεκλιμένο επίπεδο προκύπτει η ελάχιστη δύναμη που πρέπει να εφαρμοσθεί ώστε να υπάρχει ισορροπία. Για να ανυψωθεί ή για να κατέει το φορτίο η εφαρμοσμένη δύναμη πρέπει να είναι τουλάχιστον ίση με αυτην που προκύπτει από τις συνθήκες ισορροπίας. Από τις συνθήκες ισορροπίας (λ. Σχήμα 4) προκύπτει για την δύναμη ώθησης η ακόλουθη έκφραση: u µ cosα ± sinα µ ± tgα W W W tg( ± α), () cosα µ sinα 1 µ tgα όπου, (+) για την σύσφιγξη (ανύψωση του φορτίου), και (-) για την αποσύσφιγξη (κατάαση του φορτίου) του κοχλία. Η ροπή που απαιτείται για την ανύψωση του φορτίου ισούται με την δύναμη u επί την μέση ακτίνα του σπειρώματος m /: m W m MT u tg( ± α), (3) όπου m ( r +)/ Από την εξίσωση αυτή προκύπτει το συμπέρασμα ότι, για την αποσύσφιγξη ενός κοχλία απαιτείται ροπή ίση με

5 m W m MT u tg( α) (4) Άρα, αν η διαφορά είναι θετική: φ-α>0 ο κοχλίας για την αποσύσφιγξη του χρειάζεται εξωτερική ροπή, ο κοχλίας θεωρείται ευσταθείς. Στην περίπτωση αυτή ισχύει tgφ > tgα και άρα μ> tgα (5) αυτό σημαίνει ότι, αν ο συντελεστής τριής είναι μεγαλύτερος από την εφαπτομένη της γωνίας του σπειρώματος (μ>p/πr m ) δεν υπάρχει κίνδυνος αποσύσφιγξης του κοχλία. Με άλλα λόγια όσο μικρότερη είναι η γωνία α του σπειρώματος, τόσο σταθερότερος είναι ο κοχλίας. Ο συντελεστής τριής με λίπανση μπορεί να μειωθεί. Σε περίπτωση, όπου η τριή θεωρείται αμελητέα η παραπάνω θεμελιώδης συνθήκη γίνεται (δεν υπάρχουν απώλειες) u W tgα (6) Απόδοση κοχλία Ως απόδοση ενός κοχλία, ορίζεται ο λόγος του ωφέλιμου έργου (άρος επί ύψοςwxp) προς το εφαρμοσμένο έργο (δύναμη επί απόσταση u xπr m ). Λόγω τριής ένα μέρος του εφαρμοσμένου έργου που δίνεται στον κοχλία χάνεται. η ωφέλιµο εργο εφαρµοσµ ένο εργο Wp u πr m Αντικαθιστώντας στην εξίσωση αυτή την σχέση tgα p / πr m προκύπτει η Wtg α u tgα tg ( + α ) (7) Για έναν ευσταθή κοχλία πρέπει, όπως είδαμε παραπάνω να εκπληρούται η συνθήκη α Αντικαθιστώντας Αντικαθιστώντας την οριακή τιμή φα στην εξ. 7 παίρνουμε η tgα tg ( + ) tgα tg, Με tgφ tg 1 tg η tg[1 tg tg ] 1 tg (8)

6 Από εδώ προκύπτει ότι η απόδοση ενός κοχλία με ορθογωνικό σπείρωμα δεν μπορεί να είναι μεγαλύτερη από 50%. Απόδοση τραπεζοειδή κοχλία Υπάρχει μια ουσιώδης διαφορά μεταξύ ορθογωνικού και τραπεζοειδούς σπειρώματος. Στο Σχ. 5 παριστάνεται τραπεζοειδείς κοχλίας και οι δυνάμεις στο σπείρωμα. Η αντίδραση Ν στον τραπεζοειδή κοχλία είναι στραμμένη κατά γωνία θ ΝW/cos θ, και επειδή η δύναμη τριής εξαρτάται από την ορθή δύναμη Ν, εξαρτάται δηλαδή και από την γωνία θ, οπότε (F R μνw μ/cosθ) W θ Ν Η γωνία θ για ISO σπειρώματα είναι (ι) θ30 ο (ιι) θ9 ο θ Σx.5 Δυνάμεις σε τραπεζοειδές σπείρωμα Αντικαθιστώντας στην εξίσωση () αντί του συντελεστή (μ) την τιμή (μ/cosθ) παίρνουμε την ακόλουθη έκφραση για την αναγκαία δύναμη ώθησης: u µ / cosθ ± tgα W, (9) 1 µ tgα / cosθ Αντίστοιχα παίρνουμε για την ροπή την ακόλουθη έκφραση: m m µ / cosθ ± tgα MT u W, (10) 1 µ tgα / cosθ Με secθ1/cosθ η παραπάνω εξίσωση γίνεται u µ secθ ± tgα W (11) 1 µ secθtgα m µ secθ ± tgα MT W, (1) 1 µ secθ tgα Αν τώρα στην εξίσωση (7) που περιγράφει την απόδοση του ορθογωνικού σπειρώματος

7 η Wtgα u αντικαταστήσουμε την εξ.(11), παίρνουμε την ακόλουθη εξίσωση για την εκτίμηση της απόδοσης ενός τραπεζοειδούς κοχλία: η tgα(1 µ secθtgα) µ secθ + tgα (13) Κατά την μεταφορά ισχύος μέσω κοχλιών μπορεί ανάλογα με την εφαρμογή να δημιουργούνται μεταξύ των μηχανικών μερών που έρχονται σε επαφή πρόσθετες τριές, πχ μεταξύ κολάρου και συσκευής, όπως φαίνεται στο σχήμα 6: W κολάρο D o D i κολάρο μ c W D m Σχ.6 Δυνάμεις τριής μεταξύ κινούμενων μερών Ροπή στρέψης: Μ Tc μ c W R m 1 D0 + Di Μέση ακτίνα Rm Τις δυνάμεις αυτές τις εκτιμούμε θεωρώντας ομοιόμορφη κατανομή των φορτίων στην επιφάνεια επαφής. H συνισταμένη ροπή των δυνάμεων τριής είναι μια ροπή στρέψης, ίση με 1 D0 + Di Dm M Tc µ cw µ cw (14) Παράδειγμα1 Ένας κοχλίας κίνησης με απλό ορθογωνικό σπείρωμα έχει διάμετρο 5 mm, το ήμα του σπειρώματος είναι p5mm και ο συντελεστής τριής στο σπείρωμα είναι O κοχλίας χρησιμοποιείται για την ανύψωση άρους 6κΝ. Προσδιόρισε την αναγκαία ροπή για την ανύψωση του άρους, αν μεταξύ κολάρου και άσης ανύψωσης του άρους ο συντελεστής τριής είναι Η εξωτερική διάμετρος του κολάρου είναι D o 55 mm.

8 Λύση Η ροπή του κοχλία για την ανύψωση του άρους συνίσταται από δύο τμήματα. Το ένα τμήμα Μ Τ1 αφορά στη ροπή για την ανύψωση του άρους και το άλλο Μ Τ αφορά στις τριές, που αναπτύσσονται στο κολάρο της συσκευής. Δεδομένα: W 6kN, 5mm, p5mm, r -p0mm Χρησιμοποιώντας τις εξ. για την ροπή ανύψωσης του άρους και για την ροπή των δυνάμεων τριής του κολάρου έχουμε m W m M tg( + ) 1 α T u, D + Di D M Tc µ cw µ cw 1 0 m παίρνουμε την συνισταμένη ροπή Μ Τ Μ Τ1 + Μ Τc Η μέση διάμετρος είναι p + ) m. 5mm Η κλίση σπειρώματος είναι p 5mm tgα α 1. 7 π 40mm 51. o Υπολογισμός γωνία κώνου τριής: tg o Αντικαθιστούμε τις τιμές αυτές στις παραπάνω εξισώσεις των επί μέρους ροπών W m 6kN.5mm MT1 tg( + α) tg( ) 6754Nmm, 1 D0 + Di M Tc µ cw kN mm 6000Nmm 4 Άρα η συνισταμένη ροπή είναι M T M Tc + M T Nm

9 Διαστασιολόγηση Κοχλία-Περικοχλίου Για τον σχεδιασμό του κοχλία το υλικό κατασκευής θα πρέπει: (ι) να παρουσιάζει ικανοποιητική αντοχή, ώστε ο κοχλίας να μπορέσει να αντέξει τις τάσεις εξαιτίας των φορτίων που μεταιάζει. (ιι) να διαθέτει ικανοποιητική αντίσταση στη φθορά και (ιιι) να είναι κατεργάσιμο. Οι κοχλίες, όπως είδαμε παραπάνω, μεταιάζουν ορθές δυνάμεις, ροπές στρέψης και ανάλογα με την εφαρμογή τους μπορεί να μεταιάζουν ροπές κάμψης καθώς και διατμητικές δυνάμεις. Για τις περιπτώσεις, που ο κοχλίας μεταφέρει αξονικά φορτία W και ροπή στρέψης Μ Τ, στον κορμό αναπτύσσονται ορθές και διατμητικές τάσεις. (ι) Ορθές τάσεις εξαιτίας της αξονικής δύναμης W W σ (15) π / 4 (ιι) Διατμητικές τάσεις εξαιτίας της ροπής στρέψης Μ Τ W 1 1 εξωτ. διάμετρος κοχλία διάμετρος κορμού κοχλία t πάχος σπειρώματος z αριθμός ενεργών σπειρωμάτων t Κολαρο: τριές μεταξύ κινούμενων μερών Μ Τ Σχήμα 7 Δυνάμεις τριής μεταξύ κινούμενων μερών M t τ (16) 3 π /16

10 Στη συνδυασμένη αυτή καταπόνηση αντιστοιχεί η μέγιστη διατμητική τάση σ max τ (17) τ + (ιιι) Διατμητικές τάσεις στο σπείρωμα Το σπείρωμα του κοχλία καταπονείται σε διάτμηση W τ σπειρ. (18) π t z όπου t το πάχος σπειρώματος και z ο αριθμός των σπειρωμάτων που ρίσκονται σε επαφή. (ιv) Επιφανειακές τάσεις μεταξύ σπειρώματος και περικοχλίου Οι πιέσεις που αναπτύσσονται μεταξύ των επιφανειών των σπειρωμάτων του κοχλία και του περικοχλίου είναι πολύ σημαντικές για την ασφαλή διαστασιολόγηση του κοχλία και του περικοχλίου. Οι διεπιφανειακές αυτές θλιπτικές τάσεις σ W σπειρ. σ επιτρ π ( 1 ) / 4 (19) δεν πρέπει να ξεπεράσουν το κρίσιμο όριο σ επ. Προένταση Κοχλιωτών Συνδέσεων Φλάντζες πιεστικών δοχείων, κεφαλές μηχανών, φλάντζες αγωγών μεταφοράς υγρών και αερίων κλπ. συσφίγγονται με ίδες με τα λοιπά τμήματα. Η προένταση της σύνδεσης είναι αναγκαία τόσο για την στεγανότητα, όσο και για την ασφάλεια του συστήματος σε συνθήκες λειτουργίας. Κατά την σύσφιγξη του περικοχλίου η ίδα τεντώνεται αναπτύσσοντας σ αυτήν δύναμη, την οποία ονομάζουμε δύναμη προέντασης. Τα λοιπά τμήματα κατά την διαδικασία αυτή συμπιέζονται και παραμορφώνονται. Όταν το σύστημα μετά την συναρμολόγηση του τεθεί σε λειτουργία, η σύνδεση και προφανώς η ίδα αναλαμάνει επιπρόσθετα φορτία, τα οποία ονομάζουμε φορτία λειτουργίας. Δηλαδή η ίδα και η όλη σύνδεση θα πρέπει να είναι ικανή να αντέξει στα φορτία προέντασης και στα φορτία λειτουργίας με ασφάλεια. Με άση αυτόν τον στόχο ο Μηχανικός προαίνει στην διαστασιολόγιση και σχεδιασμό της σύνδεσης λαμάνοντας υπόψη προφανώς και φαινόμενα συγκέντρωσης τάσεων κα.

11 τσιμούχα Σχήμα 8. Κοχλιωτές συνδέσεις ροδέλα Κατά την προένταση ο κοχλίας επιμηκύνεται κατά δ s ενώ η φλάντζα και τα λοιπά τμήματα κατά δ f (ο δείκτης s υποδουλώνει ίδα-screw και ο δείκτης f φλάντζα). Αν έχουμε υπόψη μας ως παράδειγμα την φλάντζα ενός πιεστικού δοχείου, θα κατανοήσουμε πολύ εύκολα, ότι όταν το πιεστικό δοχείο τεθεί σε λειτουργία, η δύναμη στους κοχλίες αυξάνει, ενώ η σύσφιγξη της σύνδεσης αποδυναμώνεται (λασκάρει) όλο και περισσότερο με την αύξηση της εσωτερικής πίεσης του δοχείου μέχρι που μπορεί να εκμηδενισθεί τελικά η στεγανότητα της σύνδεσης. Δεδομένου ότι τα στοιχεία είναι γραμμικά ελαστικά δηλαδή η παραμόρφωση τους είναι ανάλογη της δύναμης, που μεταφέρουν, η επιμήκυνση του κοχλία, και αντίστοιχα η ράχυνση του πάχους της φλάντζας θα είναι ανάλογη της δύναμης που μεταφέρει κάθε ένα από αυτά. Ανάλυση Δυνάμεων Σύνδεσης Στο σχήμα 8 παριστάνεται κοχλιωτή σύνδεση κάτω από την επίδραση εφελκυστικής δύναμης Ρ. Αν η δύναμη που καταπονεί τον κοχλία είναι γνωστή ο σχεδιασμός της ίδας είναι απλός. Η μέγιστη ορθή τάση στη ίδα εξαιτίας της δύναμης Ρ θα αναπτύσσεται στην μικρότερη διατομή. Αν δεν λάουμε υπόψη φαινόμενα συγκέντρωσης τάσεων στο σπείρωμα έχουμε σ ε π / 4 c Λαμάνοντας υπόψη ότι το υλικό έχει όριο διαρροής σ y και πρέπει να παρέχει ασφάλεια η, τότε η δύναμη δεν πρέπει να ξεπεράσει την τιμή που προκύπτει από την ακόλουθη συνθήκη διαρροής: π 4 c σ y η Τα σπειρώματα της ίδας υπόκεινται σε διάτμηση. Η επιφάνεια διάτμησης είναι Απ c h (h πάχος περικοχλίου), άρα η αντοχή της ίδας σε διάτμηση θα είναι

12 τ διατµηση τ y διατµηση διατµ, τ y 0. 5 y c h σ (0) π η Ως όριο αντοχής σε διάτμηση παίρνουμε το μισό του ορίου διαρροής σε εφελκυσμό. Σε μία σύνδεση όμως πρώτα απ όλα πρέπει να υπολογισθεί η συνολική δύναμη που μεταφέρει η ίδα. Ο πιο απλός τρόπος για να γίνει αυτό είναι η υποκατάσταση της σύνδεσης με ελατήρια συνδεδεμένα μεταξύ τους εν παραλλήλω ή εν σειρά. Για παράδειγμα τα στοιχεία της σύνδεσης, που συνθλίονται μεταξύ κεφαλής και περικοχλίου ενδίδουν στην συμπίεση και συμπεριφέρονται σαν ελατήρια, μπορεί λοιπόν να τα υποκαταστήσουμε με ελατήρια συνδεδεμένα μεταξύ τους εν σειρά. c c ελάχιστη διάμετρος μέγιστη διάμετρος h πάχος περικοχλίου h Η συνολική σταθερά c των εν σειρά ελατηρίων προκύπτει από την ακόλουθη εξίσωση: (1) c c c c 1 Σχήμα 9. Βίδα σε εφελκυσμό 3 c i Όπου c 1, c,, c ι η σταθερά δυσκαμψίας του 1 ου, ου i ου ελατηρίου. Η ίδα σύσφιγξης έχει ένα τμήμα δίχως σπείρωμα και ένα με σπείρωμα, επομένως το υποκατάστατο ελατήριο της ίδας πρέπει να αποτελείται από δύο ελατήρια εν σειρά με σταθερές k 1 και k. Άρα η σταθερά του υποκατάστατου ελατηρίου της ίδας θα είναι k1k + k k k k k + k 1 1 () Λαμάνοντας υπόψη τα δεδομένα του σχήματος 10 προκύπτει

13 A E A E k 1 1, k (3) L1 L A L δ Ρ Α εμαδόν διατομής L μήκος ράδου Ε μέτρο ελαστικότητας Ρ εφελκυστική δύναμη κ Ρ L EA δ δ kδ EA L EA k σταθερά υποκατάστατου ελατηρίου L Σχήμα 10 Άρα k A A E 1 (4) A L1 + A1 L Όπου: Α 1 η διατομή του τμήματος της ίδας δίχως σπείρωμα Α η διατομή του τμήματος της ίδας με σπείρωμα L 1 το μήκος του τμήματος της ίδας δίχως σπείρωμα L το μήκος του τμήματος της ίδας με σπείρωμα k η σταθερά του υποκατάστατου ελατηρίου της ίδας στην ζώνη σύσφιγξης, δηλαδή το μήκος (λ. Σχ.11) L L 1 + L (5) Είναι το συνολικό ενεργό μήκος της ίδας. Ας επανέλθουμε τώρα στη σύνδεση. Αν ένα από τα στοιχεία που συμμετέχουν στην σύνδεση έχει πολύ μικρή σταθερά δυσκαμψίας (τσιμούχα), σύμφωνα με την εξ (1) οι σταθερές των υπόλοιπων στοιχείων μπορεί να θεωρηθούν αμελητέες και να μη ληφθούν υπόψη στην συνολική δυσκαμψία της σύνδεσης. Αν όμως δεν υπάρχει κανένα τέτοιο στοιχείο, τότε η εκτίμηση της δυσκαμψίας της σύνδεσης είναι πολύ δύσκολη, γιατί η συμπίεση των στοιχείων διαχέεται κατά το άθος της ίδας και όχι με ομοιόμορφο τρόπο. Η δυσκαμψία των στοιχείων μεταξύ κεφαλής και περικοχλίου προσεγγίζεται θεωρώντας ότι η περιοχή κάτω από την κεφαλή της ίδας και ή περιοχή κάτω από το

14 περικόχλιο συνθλίεται σαν να ήταν ένας κόλουρος κώνος Rotsher s pressure cone, ο οποίος έχει εσωτερική διάμετρο (όσο είναι η διάμετρος της ίδας) και εξωτερική διάμετρο D1.5 (στην κορυφή), όπως δείχνει το Σχ. 10. Η γωνία α του κόλουρου κώνου παίρνεται μεταξύ 5 ο και 33 ο (συνήθως α33 ο ), εκτός αν υπάρχουν πειραματικά αποτελέσματα. Όταν η εξωτερική διάμετρος της φλάντζας είναι μικρότερη από την διάμετρο της κεφαλής ή αντίστοιχα του περικοχλίου η κατανομή είναι σταθερή. D D L c L α Σχήμα 11. Κωνική περιοχή σύνθλιψης ελασμάτων για την εκτίμηση της δυσκαμψίας της φλάντζας Για την εκτίμηση της δυσκαμψίας της φλάντζας η σχεδιασμένη με πορτοκαλί χρώμα επιφάνεια παίρνεται ως ενεργός επιφάνεια, δηλαδή λαμάνεται υπόψη στην παραμόρφωση των διάφορων τμημάτων που ρίσκονται στην περιοχή σύνθλιψης. Για να υπολογίσει κανείς την σταθερά δυσκαμψίας κάθε στοιχείου εντός αυτής της περιοχής θα πρέπει να υπολογίσει την επιμήκυνση κάθε στοιχείου. Για παράδειγμα ένα απειροστό στοιχείο x του κόλουρου κώνου (Σχ. 1) συνθλίεται κατά δρx/eα(x),

15 D α κόλουρος κώνος D m x H x φλάντζα D x φλάντζα Σχήμα 1. Προσέγγιση περιοχής σύνθλιψης (a) κόλουρος κώνος () κύλινδρος (, D m ) Υποκατάστατος κύλινδρος όπου Α(x)π[(D o +x tgα) -D i ] /4 το εμαδόν της διατομής του κόλουρου κώνου στη θέση x. Ολοκληρώνοντας σε όλο το πάχος ενός στοιχείου προκύπτει η σύνθλιψη του στοιχείου και στη συνέχεια η σταθερά δυσκαμψίας αυτού του στοιχείου. Αν όλα τα στοιχεία που συμμετέχουν στην σύνδεση έχουν το ίδιο μέτρο ελαστικότητας, τότε όλα τα στοιχεία μαζί λειτουργούν σαν μια ενιαία φλάντζα και μπορεί να υποκατασταθούν με ένα ελατήριο. Για την σταθερά του υποκατάστατου αυτού ελατηρίου προκύπτει η ακόλουθη έκφραση (D i ) c f ln π E tga ( l tga + D )( D + ) ( l tga + D + )( D, όπου D1.5 (6) Επειδή η διαδικασία αυτή είναι πολύπλοκη συχνά προσεγγίζεται ο κόλουρος κώνος με κύλινδρο, ο οποίος έχει εσωτερική διάμετρο και εξωτερική D m όπου D m (D/ +H tgα) (7) Στα σκίτσα του Σχ. 13 παριστάνεται η μηχανική συμπεριφορά της ίδας και της φλάντζας αντίστοιχα. Αν i είναι η δύναμη προέντασης της ίδας, τότε λόγω ισορροπίας και η φλάντζα καταπονείται με την ίδια δύναμη i. Αν k και k φ είναι οι σταθερές των υποκατάστατων ελατηρίων ίδας και φλάντζας αντίστοιχα, τότε A A k E, k E (8) l l

16 i φ i δ φ δ i δ δ δ iφ k k φ i i i i ίδα φλάντζα Σχήμα 13. Διαγράμματα συμπεριφοράς (α) ίδας, () φλάντζας Υπό την δύναμη αυτή η ίδα επιμηκύνεται κατά δ ι, ενώ η φλάντζα συρρικνώνεται κατά δ ιφ. Άρα A E A E i kδ i kδ i, δ i δ i l l δ i A E l k k δ i δ i (9) δ A E l i Έστω ότι η σύνδεση τίθεται σε κατάσταση λειτουργίας και δέχεται επιπρόσθετο φορτίο Ρ. Ένα μέρος αυτού του φορτίου, έστω Ρ*, θα μεταφερθεί στην ίδα και ένα μέρος, έστω * φ, θα παραλάει η ίδια η φλάντζα. Υπό την επίδραση των δυνάμεων αυτών η μεν ίδα θα επιμηκυνθεί επιπρόσθετα κατά δ, η δε φλάντζα θα ξελασκάρει κατά ίδιο μέγεθος, δηλαδή δ φ δ. Με * +* φ, Όπου A δ k δ E, δ k l δ A E l και δ φ δ, προκύπτει k k + k και k k + k (30)

17 Οι εξισώσεις αυτές συχνά παριστάνονται για λόγους απλότητας και στην ακόλουθη μορφή Cκαι ( 1 C) (31) Όπου, C η παράμετρος της κοχλιωτής σύνδεσης k C η παράµετρος της κοχλιωτής σύνδεσης (3) k + k Επομένως η συνισταμένη δύναμη που καταπονεί την ίδα και είναι αναγκαία για τον σχεδιασμό της ίδας, και αντίστοιχα η συνισταμένη δύναμη για τη φλάντζα είναι : i + + C i και i (1 C) i (33) Στο διάγραμμα του Σχ. 14 παριστάνεται σε ενιαίο διάγραμμα η μηχανική συμπεριφορά της σύνδεσης με προένταση. (b) φλάντζα (a) ίδα * i * φ φ δ i δ Σχήμα 14. Στατική φόρτιση (α) ίδα, () φλάντζα Σχέση μεταξύ Δύναμης και Ροπής προέντασης Για την επιολή της δύναμης προέντασης απαιτείται ροπή στρέψης. Αυτή πρέπει να υπερνικήσει τις αντιστάσεις των ροπών που δημιουργούν οι δυνάμεις τριής μεταξύ των σπειρωμάτων και του περικοχλίου, το οποίο κατά την περιστροφή (με κλειδί) τρίεται πάνω στην φλάντζα. Για τη εκτίμηση της ροπής προέντασης σε τραπεζοειδές σπείρωμα:

18 m µ secθ ± tgα MTk W, 1 µ secθ tgα Η ροπή στρέψης εξ αιτίας των τριών του περικοχλίου υπολογίζονται από την συνθήκη M Tπ µ π m π i Η συνισταμένη ροπή στρέψης είναι (ΡW) m secθ + tgα M it M Tk + M T i + 1 µ secθ tgα Η παραπάνω σχέση συνδέει την ροπή στρέψης Μ ιτ, που απαιτείται για επιολή της απαιτούμενης δύναμης προέντασης i. µ mπ π µ π i Η 5Η/8 Η/8 p/ p/4 60 ο p p/8 1 Σχ. 15 -Βασικό προφίλ σπειρώματος ίδας σύσφιγξης Στην πράξη χρησιμοποιείται η εμπειρική σχέση Μ ιτ K i Όπου: Κ (0. δίχως λίπανση, 0.15 με λίπανση) μια παράμετρος στρεπτικής ροπής η ασική διάμετρος του σπειρώματος Ρ ι η δύναμη προέντασης

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ. Ασκήσεις προηγούμενων εξετάσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΟΙΧΕΙΩΝ ΤΕΧΝΙΚΩΝ ΕΡΓΩΝ ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ασκήσεις προηγούμενων

Διαβάστε περισσότερα

Κοχλίες - 2 / 34 - - 2 / 34 - Παπαδόπουλος Α. Χρήστος

Κοχλίες - 2 / 34 - - 2 / 34 - Παπαδόπουλος Α. Χρήστος ΚΕΦΑΛΑΙΟ 7 ΚΟΧΛΙΕΣ Κοχλίες - / 4 - - / 4 - Παπαδόπουλος Α. Χρήστος ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ 7 Κοχλίες Οι κοχλίες διακρίνονται σε δυό κατηγορίες ως προς την αποστολή τους: τους κοχλίες

Διαβάστε περισσότερα

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ

ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΟΧΗΜΑΤΩΝ 2. ΣΤΑΤΙΚΗ Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στη δοκό του σχήματος: Να χαραχθούν τα διαγράμματα [Ν], [Q], [M] στον φορέα του σχήματος: Ασκήσεις υπολογισμού τάσεων Άσκηση 1 η (Αξονικός εφελκυσμός

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΔΙΑΤΜΗΣΗ 1. Γενικά Όλοι γνωρίζουμε ότι σε μια διατομή ενός καταπονούμενου φορέα

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2010 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 010 ΤΕΧΝΟΛΟΓΙΑ (Ι) ΠΡΑΚΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μάθημα: Βασικά Στοιχεία Εφαρμοσμένης Μηχανικής

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΙΣΗΓΗΤΗΣ : ΜΑΡΚΟΥ ΑΘΑΝΑΣΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΥΠΟΛΟΓΙΣΜΟΣ ΣΧΕΔΙΑΣΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ TREYLOR ΜΕΓΙΣΤΗΣ ΙΚΑΝΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑΣ ΦΟΡΤΙΟΥ 500Kp ΣΠΟΥΔΑΣΤΕΣ

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Εξαιτίας της συνιστώσας F X αναπτύσσεται εντός του υλικού η ορθή τάση σ: N σ = A N 2 [ / ] Εξαιτίας της συνιστώσας F Υ αναπτύσσεται εντός του υλικού η διατμητική τάση τ: τ = mm Q 2 [ N / mm ] A

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ

ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΞΟΝΙΚΟΣ ΕΦΕΛΚΥΣΜΟΣ, ΘΛΙΨΗ ΠΑΡΑΔΕΙΓΜΑ 1: Ο κύλινδρος που φαίνεται στο σχήμα είναι από χάλυβα που έχει ένα ειδικό βάρος 80.000 N/m 3. Υπολογίστε την θλιπτική τάση που ενεργεί στα σημεία Α και

Διαβάστε περισσότερα

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών

7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών 7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα

Διαβάστε περισσότερα

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ

Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ. ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΣΕΩΝ - ΕΛΕΓΧΟΣ ΑΝΤΟΧΗΣ Δ1. Η φέρουσα διατομή και ο ρόλος της στον υπολογισμό αντοχής Όπως ξέρουμε, το αν θα αντέξει ένα σώμα καθορίζεται όχι μόνο από το φορτίο που επιβάλλουμε αλλά και

Διαβάστε περισσότερα

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη

Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη Ανοξείδωτοι Χάλυβες - Μέρος 1.4 του Ευρωκώδικα 3 Ιωάννη Ραυτογιάννη Γιώργου Ιωαννίδη 1. Εισαγωγή Οι ανοξείδωτοι χάλυβες ως υλικό κατασκευής φερόντων στοιχείων στα δομικά έργα παρουσιάζει διαφορές ως προ

Διαβάστε περισσότερα

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M)

Γ. ΥΠΟΛΟΓΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M) . ΥΠΟΛΟΙΣΜΟΣ ΦΟΡΤΙΩΝ ΔΙΑΤΟΜΗΣ (N, Q, M). Ορισμοί φορτίσεων μίας δοκού Οι φορτίσεις που μπορεί να εμφανισθούν σ'ένα σώμα είναι ο εφελκυσμός (ή η θλίψη με κίνδυνο λογισμού), η διάτμηση, η κάμψη και η στρέψη.

Διαβάστε περισσότερα

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης

Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Μάθημα: Πειραματική αντοχή των υλικών Πείραμα Στρέψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχήμα 1 Στρέψη κυκλικής διατομής

Διαβάστε περισσότερα

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1.

ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ. Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ. 1. ΤΕΙ ΠΑΤΡΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ Γεώργιος Κ. Μπαράκος Διπλ. Αεροναυπηγός Μηχανικός Καθηγητής Τ.Ε.Ι. ΚΑΜΨΗ 1. Γενικά Με τη δοκιμή κάμψης ελέγχεται η αντοχή σε κάμψη δοκών από διάφορα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 016 3. Διαγράμματα NQM Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr Α3. Διαγράμματα NQΜ/ Μηχανική Υλικών 1 Σκοποί ενότητας Να εξοικειωθεί ο φοιτητής

Διαβάστε περισσότερα

Προσδιορισμός της σταθεράς ενός ελατηρίου.

Προσδιορισμός της σταθεράς ενός ελατηρίου. Μ3 Προσδιορισμός της σταθεράς ενός ελατηρίου. 1 Σκοπός Στην άσκηση αυτή θα προσδιοριστεί η σταθερά ενός ελατηρίου χρησιμοποιώντας στην ακολουθούμενη διαδικασία τον νόμο του Hooke και τη σχέση της περιόδου

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Η εντατική κατάσταση στην οποία βρίσκεται μία δοκός, που υποβάλλεται σε εγκάρσια φόρτιση, λέγεται κάμψη. Αμφιέριστη δοκός Πρόβολος Κατά την καταπόνηση σε κάμψη αναπτύσσονται καμπτικές ροπές, οι

Διαβάστε περισσότερα

ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι

ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι ΥΛΗ ΓΙΑ ΤΟ 2ο ΤΕΣΤ ΕΡΓΑΣΤΗΡΙΟΥ ΣΤΟΙΧΕΙΩΝ ΜΗΧΑΝΩΝ Ι Το τεστ θα περιλαμβάνει ασκήσεις στα παρακάτω κεφάλαια: Υπολογισμός ελέγχου συγκόλλησης Υπολογισμός μελέτης δοκού που φορτίζεται σε κάμψη Υπολογισμός

Διαβάστε περισσότερα

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων

Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Ε.3 Λυμένες ασκήσεις με υπολογισμό τάσεων Πρόβλημα Ε.1 Να ελεγχθεί αν αντέχουν σε εφελκυσμό οι ράβδοι στα παρακάτω σχήματα. (Έχουν όλες την ίδια εφελκυστική δύναμη Ν=5000Ν αλλά διαφορετικές διατομές. Η

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Σχήμα 2 Παραγόμενη Μονάδες S.I. όνομα σύμβολο Εμβαδό Τετραγωνικό μέτρο m 2 Όγκος Κυβικό μέτρο m 3 Ταχύτητα Μέτρο ανά δευτερόλεπτο m/s Επιτάχυνση Μέτρο ανά δευτ/το στο τετράγωνο m/s 2 Γωνία Ακτίνιο

Διαβάστε περισσότερα

α. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ

α. Άτρακτος ονομάζεται κάθε ράβδος που περιστρέφεται μεταφέροντας ροπή. Σ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΤΕΤΑΡΤΗ 08/04/05 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

Σχήμα 22: Αλυσίδες κυλίνδρων

Σχήμα 22: Αλυσίδες κυλίνδρων Αλυσοκινήσεις Πλεονεκτήματα ακριβής σχέση μετάδοση λόγω μη ύπαρξης διολίσθησης, η συναρμολόγηση χωρίς αρχική πρόταση επειδή η μετάδοση δεν βασίζεται στην τριβή καθώς επίσης και ο υψηλός βαθμός απόδοσης

Διαβάστε περισσότερα

ΒΙΔΕΣ ΚΑΤΑ DIN 933. d 6 8 10 12 14 16 18 20 22 24 27 30 s 10 13 17 19 22 24 27 30 32 36 41 46 k 4 5,3 6,4 7,5 8,8 10 11,5 12,5 14 15 17 18,7

ΒΙΔΕΣ ΚΑΤΑ DIN 933. d 6 8 10 12 14 16 18 20 22 24 27 30 s 10 13 17 19 22 24 27 30 32 36 41 46 k 4 5,3 6,4 7,5 8,8 10 11,5 12,5 14 15 17 18,7 ΒΙΔΕΣ ΚΑΤΑ DIN 933 ΠΟΙΟΤ: 8.8 d 6 8 10 12 14 16 18 20 22 24 27 30 s 10 13 17 19 22 24 27 30 32 36 41 46 k 4 5,3 6,4 7,5 8,8 10 11,5 12,5 14 15 17 18,7 BHMA (P) 1 1,25 1,5 1,75 2 2 2,5 2,5 2,5 3 3 3,5 ΜΗΚΟΣ

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3)

ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) ΣΤΟΙΧΕΙA ΜΗΧΑΝΩΝ Ι - ΘΕΩΡΙΑ (για τις ασκήσεις βλ. σελ. 3) Η εξεταστέα ύλη για τις περιγραφικές ερωτήσεις (στο πρώτο μέρος της γραπτής εξέτασης) θα είναι η παρακάτω: - Κεφ. 1: Ποια είναι τα δύο πλεονεκτήματα

Διαβάστε περισσότερα

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ

Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ Κεφ. 3. ΕΙΔΗ ΦΟΡΤΙΣΕΩΝ 3.1. Εφελκυσμός Τάση λόγω εφελκυσμού: Ν σz = ----(3-1) Α όπου Ν = η εφελκυστική δύναμη Α = το εμβαδό της διατομής του σώματος («διατομή» είναι το σχήμα που έχει το σώμα σε μία κάθετη

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ

ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ 47 ΕΝΟΤΗΤΑ 6: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΝΤΟΧΗΣ ΥΛΙΚΩΝ ΣΤΟΧΟΙ Με τη συμπλήρωση του μέρους αυτού ο μαθητής θα πρέπει να μπορεί να: 1. Ορίζει τι είναι στοιχείο μηχανής και να αναγνωρίζει και να κατονομάζει τα βασικά

Διαβάστε περισσότερα

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1

Δρ. Μηχ. Μηχ. Α. Τσουκνίδας. Σχήμα 1 Σχήμα 1 Τεχνικής Μηχανικής Διαγράμματα Ελευθέρου Σώματος (Δ.Ε.Σ.) Υπολογισμός Αντιδράσεων Διαγράμματα Φορτίσεων Διατομών (MNQ) Αντοχή Φορέα? Αντικείμενο Τεχνικής Μηχανικής Σχήμα 2 F Y A Γ B A Y B Y 1000N

Διαβάστε περισσότερα

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών

6. Κάμψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 6. Κάμψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 1 Περιεχόμενα ενότητας Ανάλυση της κάμψης Κατανομή ορθών τάσεων Ουδέτερη γραμμή Ροπές αδρανείας Ακτίνα καμπυλότητας 2 Εισαγωγή (1/2) Μελετήσαμε

Διαβάστε περισσότερα

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ

Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 119 Κεφάλαιο 6 ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΡΕΨΗ 6.1 Εισαγωγή Όταν ένα δομικό στοιχείο καταπονείται με ροπές των οποίων τα διανύσματα είναι παράλληλα προς τον άξονα του στοιχείου, δηλαδή προκαλούν συστροφή του στοιχείου

Διαβάστε περισσότερα

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης

Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων. Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Γεωμετρικές Μέθοδοι Υπολογισμού Μετακινήσεων Εισαγωγή ΜέθοδοςΔιπλήςΟλοκλήρωσης Εισαγωγή Παραμορφώσεις Ισοστατικών Δοκών και Πλαισίων: Δ22-2 Οι κατασκευές, όταν υπόκεινται σε εξωτερική φόρτιση, αναπτύσσουν

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ *

ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΕΠΙΛΥΣΗ * 1 η σειρά ΑΣΚΗΣΗ 1 Ζητείται ο έλεγχος σε κάμψη μιάς δοκού ορθογωνικής διατομής 250/600 (δηλ. Πλάτους 250 mm και ύψους 600 mm) για εντατικά μεγέθη: Md = 100 KNm Nd = 12 KN Προσδιορίστε

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης. ΕργαστηριακήΆσκηση 3 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ Πείραμα Στρέψης ΕργαστηριακήΆσκηση 3 η Σκοπός Σκοπός του πειράµατος είναι ηκατανόησητωνδιαδικασιώνκατάτηκαταπόνησηστρέψης, η κατανόηση του διαγράµµατος διατµητικής τάσης παραµόρφωσης η ικανότητα

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης ΘΕΜΑ: ΣΧΕΔΙΑΣΜΟΣ, ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΔΥΟ ΒΑΣΕΩΝ ΣΤΗΡΙΞΗΣ ΚΙΝΗΤΗΡΩΝ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ Μ.Ε.Κ.

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης ΘΕΜΑ: ΣΧΕΔΙΑΣΜΟΣ, ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΔΥΟ ΒΑΣΕΩΝ ΣΤΗΡΙΞΗΣ ΚΙΝΗΤΗΡΩΝ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ Μ.Ε.Κ. Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης ΘΕΜΑ: ΣΧΕΔΙΑΣΜΟΣ, ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΔΥΟ ΒΑΣΕΩΝ ΣΤΗΡΙΞΗΣ ΚΙΝΗΤΗΡΩΝ ΓΙΑ ΤΟ ΕΡΓΑΣΤΗΡΙΟ Μ.Ε.Κ. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Του Σταύρου Μηλιαρά Επιβλέπων καθηγητής Κουδουμάς Γεώργιος

Διαβάστε περισσότερα

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET

Σχήμα 1: Διάταξη δοκιμίου και όργανα μέτρησης 1 BUILDNET Παραμετρική ανάλυση κοχλιωτών συνδέσεων με μετωπική πλάκα χρησιμοποιώντας πεπερασμένα στοιχεία Χριστόφορος Δημόπουλος, Πολιτικός Μηχανικός, Υποψήφιος Διδάκτωρ ΕΜΠ Περίληψη Η εν λόγω εργασία παρουσιάζει

Διαβάστε περισσότερα

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler.

Δυναμική Αντοχή. Σύνδεση με προηγούμενο μάθημα. Περιεχόμενα F = A V = M r = J. Δυναμική καταπόνηση κόπωση. Καμπύλη Woehler. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Δυναμική Αντοχή Σύνδεση με προηγούμενο μάθημα Καμπύλη τάσης παραμόρφωσης Βασικές φορτίσεις A V y A M y M x M I

Διαβάστε περισσότερα

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος)

20/3/2016. Δρ. Σωτήρης Δέμης. Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου. Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Σημειώσεις Εργαστηριακής Άσκησης Εφελκυσμός χαλύβδινης ράβδου Δρ. Σωτήρης Δέμης Πολιτικός Μηχανικός (Πανεπιστημιακός Υπότροφος) Εργαστηριακή Άσκηση 1 Εισαγωγή στη Δοκιμή Εφελκυσμού Δοκίμιο στερεωμένο ακλόνητα

Διαβάστε περισσότερα

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών

Ευρωκώδικας EΝ 1993 Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Σχεδιασμός Μεταλλικών Κατασκευών

Σχεδιασμός Μεταλλικών Κατασκευών Χάρης Ι. Γαντές Αναπληρωτής Καθηγητής Εργαστήριο Μεταλλικών Κατασκευών Εθνικό Μετσόβιο Πολυτεχνείο Σχεδιασμός Κατασκευών με Ευρωκώδικες Εφαρμογές Εθνικά Προσαρτήματα Κέρκυρα Ιούνιος 2009 Περιεχόμενα παρουσίασης

Διαβάστε περισσότερα

Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια

Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Ερωτήσεις, λυμένες ασκήσεις και τυπολόγια Κ. ΝΤΑΒΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ Α. ΗΛΩΣΕΙΣ. Να αναφέρετε τα μέσα σύνδεσης.. Σε ποιες κατηγορίες διακρίνονται οι συνδέσεις;. Ποιες συνδέσεις ονομάζονται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ

ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΜΑΘΗΜΑ: ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ ΔΙΔΑΣΚΩΝ: ΓΚΟΥΝΤΑΣ Δ. ΙΩΑΝΝΗΣ ΤΜΗΜΑ: ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ / ΚΑΤΕΥΘΥΝΣΗ ΑΝΤΙΡΡΥΠΑΝΣΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης CreatveCommons. Για

Διαβάστε περισσότερα

Γενικές αρχές στοιχείων μηχανών και αντοχής υλικών

Γενικές αρχές στοιχείων μηχανών και αντοχής υλικών Γενικές αρχές στοιχείων μηχανών και αντοχής υλικών Στοιχεία Μηχανών Τα στοιχεία μηχανών είναι τεμάχια που χρησιμοποιούνται κατ' επανάληψη, στην ίδια ή παραπλήσια μορφή, για τη συγκρότηση μηχανών, συσκευών

Διαβάστε περισσότερα

α. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ

α. Οι ήλοι κατασκευάζονται από ανθρακούχο χάλυβα, χαλκό ή αλουμίνιο. Σ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 6/04/206 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ ο ) Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ.

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ» ΕΠΑ.Λ. ΖΗΤΗΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΞΕΤΑΣΕΙΣ ΑΠΟΦΟΙΤΩΝ ΤΜΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ Τ.Ε.Λ. ΠΕΜΠΤΗ 1 ΙΟΥΝΙΟΥ 001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΕΙ ΙΚΟΤΗΤΑΣ ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΑΠΟΦΟΙΤΟΥΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΣΧΕΔΙΑΣΜΟ ΤΕΧΝΟΛΟΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΣΠΕΙΡΩΜΑΤΑ - ΚΟΧΛΙΕΣ Διαμόρφωση Σπειρώματος Το σπείρωμα δημιουργείται από την κίνηση ενός παράγοντος σχήματος (τρίγωνο, ορθογώνιο κλπ) πάνω σε έλικα που

Διαβάστε περισσότερα

Φυσικές & Μηχανικές Ιδιότητες

Φυσικές & Μηχανικές Ιδιότητες Μάθημα 5 ο Ποιες είναι οι Ιδιότητες των Υλικών ; Φυσικές & Μηχανικές Ιδιότητες Κατεργαστικότητα & Αναφλεξιμότητα Εφελκυσμός Θλίψη Έλεγχοι των Υλικών Φορτίσεις -1 ιάτμηση Στρέψη Έλεγχοι των Υλικών Φορτίσεις

Διαβάστε περισσότερα

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει:

ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ. Ενότητα Ζ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ. 1.1 Περιγραφή Δοκιδωτών Πλακών. 1.2 Περιοχή Εφαρμογής. προκύπτει: Ενότητα Ζ ΔΟΚΙΔΩΤΕΣ ΠΛΑΚΕΣ 1. ΔΙΑΜΟΡΦΩΣΗ ΔΟΚΙΔΩΤΩΝ ΠΛΑΚΩΝ 1.1 Περιγραφή Δοκιδωτών Πλακών Δοκιδωτές πλάκες, γνωστές και ως πλάκες με νευρώσεις, (σε αντιδιαστολή με τις συνήθεις πλάκες οι οποίες δηλώνονται

Διαβάστε περισσότερα

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ

9. ΦΟΡΤΙΑ ΔΙΑΤΟΜΗΣ ΔΟΚΩΝ 9. ΦΟΡΤΙ ΔΙΤΟΜΗΣ ΔΟΚΩ 9.1 ενικά Ο όρος φορτία σημαίνει είτε δυνάμεις είτε ροπές. Συνοψίζοντας αυτά που αναφέρθηκαν σε προηγούμενα κεφάλαια, μπορούμε να πούμε ότι δοκός είναι ένα σώμα με μεγάλο μήκος και

Διαβάστε περισσότερα

Ρόλος συνδέσεων στις μεταλλικές κατασκευές

Ρόλος συνδέσεων στις μεταλλικές κατασκευές Ρόλος συνδέσεων στις μεταλλικές κατασκευές Σύνδεση μελών κατασκευής μεταξύ τους Ασφαλής μεταφορά εντατικών μεγεθών από μέλος σε μέλος Απαιτήσεις: Ασφάλεια Κατασκευασιμότητα Συνέπεια με υπολογιστικό προσομοίωμα

Διαβάστε περισσότερα

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων

Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη

Διαβάστε περισσότερα

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία

Εισαγωγή. Σύνδεση με μαθήματα Σχολής ΝΜΜ. Μειωτήρας Στροφών Βασική λειτουργία Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ναυπηγών Μηχανολόγων Μηχανικών Μάθημα: ΣΤΟΙΧΕΙΑ ΜΗΧΑΝΩΝ ιδάσκων: Χ. Παπαδόπουλος Σύνδεση με μαθήματα Σχολής ΝΜΜ Μηχανική Φορτίσεις, Είδη φορτίσεων (εφελκυσμός, θλίψη,

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Κεφάλαιο 1: Εισαγωγή

Κεφάλαιο 1: Εισαγωγή 1-1 Η Επιστήµη της Αντοχής των Υλικών, 1-2 Γενικές παραδοχές, 1-3 Κατάταξη δυνάµεων, 1-4 Είδη στηρίξεων, 1-5 Μέθοδος τοµών, Παραδείγµατα, 1-6 Σχέσεις µεταξύ εσωτερικών και εξωτερικών δυνάµεων, Παραδείγµατα,

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ

ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ Θεωρούµε ινώδες σύνθετο υλικό ενισχυµένο µονοδιευθυντικά µε συνεχείς ίνες. Για τη µελέτη της µηχανικής συµπεριφοράς µιας τυχαίας στρώσης, πρέπει να είναι γνωστές οι

Διαβάστε περισσότερα

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 3 η

Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 3 η Μετροτεχνικό Εργαστήριο Τομέας Βιομηχανικής Διοίκησης & Επιχειρησιακής Έρευνας Σχολή Μηχανολόγων Μηχανικών Έλεγχος Μηχανουργικού Προϊόντος Άσκηση 3 η Δομή παρουσίασης 1. ΕΙΣΑΓΩΓΗ ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΕΙΔΗ

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα θλίψης με λυγισμό Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Στο

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016

Γραπτή εξέταση προόδου «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Απρίλιος 2016 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΘΕΜΑ 1 ο (25 Μονάδες) (Καθ. Β.Ζασπάλης) Σε μια διεργασία ενανθράκωσης κάποιου

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης

Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Μάθημα: Πειραματική Αντοχή των Υλικών Πείραμα Κάμψης Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 Α. Ασημακόπουλος

Διαβάστε περισσότερα

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας

ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια:

ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: ΛΥΚΕΙΟ ΑΓ. ΦΥΛΑΞΕΩΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΤΑΞΗΣ Ημερομηνία: 31 /05 / 2011 Διάρκεια: 10.30-13.00 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 10

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ

ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 105 Κεφάλαιο 5 ΘΕΩΡΙΕΣ ΑΣΤΟΧΙΑΣ ΥΛΙΚΩΝ 5.1 Εισαγωγή Στα προηγούμενα κεφάλαια αναλύσαμε την εντατική κατάσταση σε δομικά στοιχεία τα οποία καταπονούνται κατ εξοχήν αξονικά (σε εφελκυσμό ή θλίψη) ή πάνω

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης

ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης 5.1. Μορφές κάµψης ΚΕΦΑΛΑΙΟ 5 Κάµψη καθαρή κάµψη, τάσεις, βέλος κάµψης Η γενική κάµψη (ή κάµψη), κατά την οποία εµφανίζεται στο φορέα (π.χ. δοκό) καµπτική ροπή (Μ) και τέµνουσα δύναµη (Q) (Σχ. 5.1.α).

Διαβάστε περισσότερα

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ

ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ 7 ο Φοιτητικό Συνέδριο «Επισκευές Κατασκευών -01», Μάρτιος 2001. ΣΥΜΠΕΡΙΦΟΡΑ ΔΙΑΤΜΗΤΙΚΉΣ ΑΝΤΟΧΗΣ ΔΙΕΠΙΦΑΝΕΙΑΣ Η ΟΠΟΙΑ ΔΙΑΠΕΡΝΑΤΑΙ ΑΠΟ ΒΛΉΤΡΑ Εργασία Νο B3 ΠΕΡΙΛΗΨΗ Στην παρούσα εργασία μελετάται το πώς

Διαβάστε περισσότερα

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων

Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Μελέτη Περιγραφή Μελετητής Ημερομηνία Ρυθμίσεις : : : Pile Group - Exaple 3 Ing. Jiri Vanecek 28.10.2015 (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα

Διαβάστε περισσότερα

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065

( ) L v. δ Τύμπανο. κίνησης. Αντίβαρο τάνυσης. 600m. 6000Ν ανά cm πλάτους ιµάντα και ανά ενίσχυση 0.065 Ανυψωτικές & Μεταφορικές Μηχανές Ακαδημαϊκό έτος: 010-011 Άσκηση (Θέμα Επαναληπτικής Γραπτής Εξέτασης Σεπ010 / Βαρύτητα: 50%) Έστω η εγκατάσταση της ευθύγραµµης µεταφορικής ταινίας του Σχήµατος 1, η οποία

Διαβάστε περισσότερα

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες:

Γενικές πληροφορίες μαθήματος: Τίτλος CE07_S04 Πιστωτικές. Φόρτος εργασίας μονάδες: Γενικές πληροφορίες μαθήματος: Τίτλος Μεταλλικές Κωδικός CE07_S04 μαθήματος: Κατασκευές ΙI μαθήματος: Πιστωτικές Φόρτος εργασίας μονάδες: 5 150 (ώρες): Επίπεδο μαθήματος: Προπτυχιακό Μεταπτυχιακό Τύπος

Διαβάστε περισσότερα

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Διοίκηση Εργοταξίου. Διδάσκων: Γιάννης Χουλιάρας ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Διοίκηση Εργοταξίου Διδάσκων: Γιάννης Χουλιάρας Στοιχεία περιστροφικής κίνησης (άξονες, άτρακτοι, έδρανα) Άξονες και άτρακτοι Οι άξονες είναι κυλινδρικά κατά

Διαβάστε περισσότερα

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών

Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1

με τόξο ακτίνας R 43 1.2.14 Σύνδεση ευθείας τ με δύο τόξα ακτίνας R και R 1 Πρόλογος 19 1 1.1 ΒΑΣΙΚΟΙ ΚΑΝΟΝΙΣΜΟΙ ΚΑΙ ΟΡΓΑΝΑ ΣΧΕΔΙΟΥ 21 1.1.1 Χαρτί σχεδίου 21 1.1.2 Κανονισμοί στο σχέδιο 21 1.1.3 Τοποθέτηση του χαρτιού 23 1.1.4 Αναδίπλωση 23 1.1.5 Υπόμνημα 24 1.1.6 Κλίμακα 25 1.1.7

Διαβάστε περισσότερα

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης

Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Σχεδιασµός φορέων από σκυρόδεµα µε βάση τον Ευρωκώδικα 2 Οριακή κατάσταση αστοχίας έναντι ιάτµησης-στρέψης- ιάτρησης Καττής Μαρίνος, Αναπληρωτής Καθηγητής ΕΜΠ Λιβαδειά, 26 Σεπτεµβρίου 2009 1 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ

Διαβάστε περισσότερα

Επαλήθευση πασσάλου Εισαγωγή δεδομένων

Επαλήθευση πασσάλου Εισαγωγή δεδομένων Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης

Διαβάστε περισσότερα

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1

ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1 ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk

Διαβάστε περισσότερα

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m

Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m Βιομηχανικός χώρος διαστάσεων σε κάτοψη 24mx48m, περιβάλλεται από υποστυλώματα πλευράς 0.5m μέσα στο επίπεδο του πλαισίου, 0.4m κάθετα σ αυτό. Τα γωνιακά υποστυλώματα είναι διατομής 0.4x0.4m. Υπάρχουν

Διαβάστε περισσότερα

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση:

Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: Με βάση την ανίσωση ασφαλείας που εισάγαμε στα προηγούμενα, το ζητούμενο στο σχεδιασμό είναι να ικανοποιηθεί η εν λόγω ανίσωση: S d R d Η εν λόγω ανίσωση εφαρμόζεται και ελέγχεται σε κάθε εντατικό μέγεθος

Διαβάστε περισσότερα

ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ

ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ 8 Κ Ε Φ Α Λ Α Ι Ο ΣΥΝΔΕΣΕΙΣ ΕΞΑΡΤΗΜΑΤΩΝ 8. Συνδέσεις Γενικά ονομάζουμε συνδέσεις τις άμεσες ενώσεις δύο εξαρτημάτων ή μηχανικών οργάνων. Οι ενώσεις αυτές μπορεί να είναι: Κινητές, όπου τα συνδεδεμένα κομμάτια

Διαβάστε περισσότερα

Πειραματική Αντοχή Υλικών Ενότητα:

Πειραματική Αντοχή Υλικών Ενότητα: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πειραματική Αντοχή Υλικών Ενότητα: Λυγισμός Κωνσταντίνος Ι.Γιαννακόπουλος Τμήμα Μηχανολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ

ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΠΑΡΑΡΤΗΜΑ ΤΡΙΚΑΛΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΣΤΟΙΧΕΙΑ ΤΕΧΝΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΤΟΧΗ ΥΛΙΚΩΝ Σημειώσεις για το μάθημα Αντοχή Υλικών ΓΡΗΓΟΡΙΟΣ ΜΑΝΟΥΚΑΣ Δρ. Πολιτικός Μηχανικός

Διαβάστε περισσότερα

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων

Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Ανάλυση κεκλιμένων καρφιών Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.05 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Aνάλυση τοίχου Υπολ ενεργητικών

Διαβάστε περισσότερα

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών

Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Μηχανικές ιδιότητες συνθέτων υλικών: κάμψη Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Δοκιμή κάμψης: συνοπτική θεωρία Όταν μια δοκός υπόκειται σε καμπτική ροπή οι αξονικές γραμμές κάπτονται σε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΑΓ.ΚΩΝΣΤΑΝΤΙΝΟΥ -- ΠΕΙΡΑΙΑΣ -- 83 -- ΤΗΛ. 0-447, 43687 ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ. Α. Σώμα εκτελεί εξαναγκασμένη ταλάντωση με εξίσωση x A ημωt. H δύναμη που αντιστέκεται

Διαβάστε περισσότερα

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ

Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος

Διαβάστε περισσότερα

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η

ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η ΑΝΤΟΧΗ ΥΛΙΚΩΝ ΠείραμαΚάμψης(ΕλαστικήΓραμμή) ΕργαστηριακήΆσκηση 7 η Σκοπός Σκοπός του πειράµατος είναι ο προσδιορισµός των χαρακτηριστικών τιµών αντοχής του υλικού που ορίζονταιστηκάµψη, όπωςτοόριοδιαρροήςσεκάµψηκαιτοόριοαντοχής

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ

ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΩΤΑΤΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΕΤΟΥΣ 2008 ( ΠΡΟΚΗΡΥΞΗ 5Π /2008) ΚΕΝΤΡΙΚΗ ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΟΥ Κλάδος-Ειδικότητες: ΠΕ 12.04 ΜΗΧΑΝΟΛΟΓΩΝ, ΝΑΥΠΗΓΩΝ, ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ &

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

υ λ γ. λ δ. λ 0 υ. Μονάδες 5

υ λ γ. λ δ. λ 0 υ. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού

Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Μάθημα: Πειραματική Αντοχή Υλικών Πείραμα εφελκυσμού Κατασκευαστικός Τομέας Τμήμα Μηχανολόγων Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Περιεχόμενα Σχήμα 1 οκίμια εφελκυσμού

Διαβάστε περισσότερα

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου

Διατμητική αστοχία τοιχώματος ισογείου. Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Διατμητική αστοχία τοιχώματος ισογείου Διατμητική αστοχία υποστυλώματος λόγω κλιμακοστασίου Ανάλογα με τη στατική φόρτιση δημιουργούνται περιοχές στο φορέα όπου έχουμε καθαρή κάμψη ή καμπτοδιάτμηση. m(x)

Διαβάστε περισσότερα

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς.

Σχήμα: Κιβώτιο ταχυτήτων με ολισθαίνοντες οδοντωτούς τροχούς. ΑΣΚΗΣΗ 1 Ένας οδοντωτός τροχός με ευθείς οδόντες, z = 80 και m = 4 mm πρόκειται να κατασκευασθεί με συντελεστή μετατόπισης x = + 0,5. Να προσδιοριστούν με ακρίβεια 0,01 mm: Τα μεγέθη της οδόντωσης h α,

Διαβάστε περισσότερα

Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Method, Slab Analysis)

Η ΜΕΘΟ ΟΣ ΛΟΦΟΣ-ΤΡΙΒΗ ( Friction-Hill Method, Slab Analysis) Η ΜΕΘΟ ΟΣ "ΛΟΦΟΣ-ΤΡΙΒΗ" ( Friction-Hill Metod, Slab Analysis) Α. Προβλήµατα επίπεδης παραµορφωσιακής κατάστασης A. ιπλή συµµετρία γεωµετρίας και φόρτισης Θεωρούµε τη σφυρηλάτηση ορθογωνικής µπιγέτας µε

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη

Διαβάστε περισσότερα

Βασικές Αρχές Σχεδιασμού Υλικά

Βασικές Αρχές Σχεδιασμού Υλικά Βασικές Αρχές Σχεδιασμού Υλικά Δομική Μηχανική ΙΙΙ Χρ. Ζέρης Σχολή Πολιτικών Μηχανικών, ΕΜΠ Το Ευρωπαϊκό πλαίσιο Μελετών και Εκτέλεσης έργων ΕΝ 10080 Χάλυβας οπλισμού Νοέμ. 2013 Χ. Ζέρης 2 ΕΚΩΣ, ΕΝ1992:

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα