Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στην επιστήµη των υπολογιστών. Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών"

Transcript

1 Εισαγωγή στην επιστήµη των υπολογιστών Υπολογιστές και Δεδοµένα Κεφάλαιο 3ο Αναπαράσταση Αριθµών 1

2 Δεκαδικό και Δυαδικό Σύστηµα Δύο κυρίαρχα συστήµατα στο χώρο των υπολογιστών Δεκαδικό: Η βάση του συστήµατος είναι το 10 αναπτύχθηκε τον 8 ο αιώνα από Άραβες µαθηµατικούς, πρώτη χρήση από αρχαίους Αιγύπτιους, βελτίωση από Βαβυλώνιους Δυαδικό: Η βάση του συστήµατος είναι το 2 Ακολουθεί περιγραφή αυτών των συστηµάτων πριν παρουσιάσουµε πως αναπαρίστανται µέσα σε ένα υπολογιστή 2

3 Δεκαδικό Σύστηµα 3

4 Δυαδικό 4

5 Μετατροπή Για τη µετατροπή ενός αριθµού από το δυαδικό σύστηµα στο δεκαδικό, πολλαπλασιάζουµε κάθε δυαδικό ψηφίο του αριθµού µε το βάρος του και το αποτέλεσµα θα είναι είτε 0 είτε η τιµή του βάρους. Κατόπιν προσθέτουµε τα αποτελέσµατα 5

6 Μετατροπή Μετατρέψτε τον δυαδικό αριθµό στο δεκαδικό σύστηµα Λύση n Γράφουµε τα µπιτ και τα βάρη τους. Πολλαπλασιάζουµε κάθε µπιτ µε το αντίστοιχο βάρος και σηµειώνουµε το αποτέλεσµα. προσθέτουµε τα αποτελέσµατα για να πάρουµε τον δεκαδικό αριθµό. Δυαδικός Βάρη Δεκαδικός 19 6

7 Μετατροπή Για να µετατρέψουµε έναν δεκαδικό αριθµό σε δυαδικό, πρέπει να χρησιµοποιήσουµε συνεχείς διαιρέσεις. Ο αρχικός αριθµός του παραδείγµατος, ο 45, διαιρείται µε το 2. Το υπόλοιπο (1) αποτελεί το πρώτο δυαδικό ψηφίο, Το δεύτερο ψηφίο προσδιορίζεται από τη διαίρεση του πηλίκου (22) µε το 2. Το υπόλοιπο (0) αποτελεί το δεύτερο δυαδικό ψηφίο Το πηλίκο διαιρείται µε το 2 για να βρεθεί η επόµενη θέση. Η διαδικασία συνεχίζεται µέχρι το πηλίκο να γίνει 0. 7

8 Μετατροπή Μετατρέψτε τον δεκαδικό αριθµό 35 στο δυαδικό σύστηµα Λύση n Γράφουµε τον αριθµό στη δεξιά γωνία. Διαιρούµε συνεχώς τον αριθµό µε το 2 και σηµειώνουµε το πηλίκο και το υπόλοιπο. Τα πηλίκα προχωρούν προς τα αριστερά, ενώ το υπόλοιπο σηµειώνεται κάτω από την αντίστοιχη πράξη. Σταµατάµε όταν το πηλίκο γίνει (Δεκαδικός) Δυαδικός

9 Αναπαράσταση Ακεραίων Δεν υπάρχει υπολογιστής που να µπορεί να αποθηκεύσει όλους τους ακέραιους σε αυτό το διάστηµα τιµών -> θα χρειαζόταν άπειρο πλήθος µπιτ, δηλ. άπειρη αποθηκευτική ικανότητα. Για την αποδοτικότερη χρήση της µνήµης των υπολογιστών έχουν αναπτυχθεί δύο µεγάλες κατηγορίες αναπαράστασης ακεραίων: προσηµασµένοι και µη προσηµασµένοι ακέραιοι. 9

10 Μη Προσηµασµένοι Ακέραιοι Ένας µη προσηµασµένος ακέραιος είναι ένας ακέραιος χωρίς πρόσηµο που µπορεί να πάρει τιµές από το 0 µέχρι το θετικό άπειρο Επειδή δεν υπάρχει υπολογιστής που να µπορεί να αναπαραστήσει όλους τους ακέραιους σε αυτό το διάστηµα τιµών, ορίζεται µια σταθερά που ονοµάζεται µέγιστος µη προσηµασµένος ακέραιος και έτσι ένας µη προσηµασµένος ακέραιος µπορεί να πάρει τιµές από το 0 µέχρι αυτή τη σταθερά Ο µέγιστος µη προσηµασµένος ακέραιος εξαρτάται από τον αριθµό Ν των µπιτ που χρησιµοποιεί ο υπολογιστής για την αναπαράσταση ενός µη προσηµασµένου ακέραιου Διάστηµα τιµών: 0 (2 N 1) το Ν αντιπροσωπεύει τον αριθµό των µπιτ που χρησιµοποιούνται 10

11 Μη Προσηµασµένοι Ακέραιοι Αριθµός µπιτ Διάστηµα τιµών Η αποθήκευση µη προσηµασµένων ακέραιων είναι µια απλή διαδικασία: n n Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα. Αν το πλήθος των µπιτ είναι µικρότερο από Ν, τότε προστίθενται µηδενικά στα αριστερά του δυαδικού αριθµού ώστε να υπάρχουν συνολικά Ν µπιτ. 11

12 Aποθήκευση Μη Προσηµασµένων Ακεραίων Η αποθήκευση µη προσηµασµένων ακέραιων είναι µια απλή διαδικασία: n Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα. n Αν το πλήθος των µπιτ είναι µικρότερο από Ν, τότε προστίθενται µηδενικά στα αριστερά του δυαδικού αριθµού ώστε να υπάρχουν συνολικά Ν µπιτ. 12

13 Μη Προσηµασµένοι Ακέραιοι Αποθηκεύστε τον αριθµό 7 σε µια θέση µνήµης 8 µπιτ Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα n 111 n Προσθέτουµε πέντε µηδενικά ώστε να έχουµε ένα σύνολο από Ν (8) µπιτ n n Ο αριθµός κατόπιν αποθηκεύεται στη θέση µνήµης. 13

14 Μη Προσηµασµένοι Ακέραιοι Αποθηκεύστε τον αριθµό 258 σε µια θέση µνήµης 16 µπιτ Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα n n Προσθέτουµε επτά µηδενικά ώστε να έχουµε ένα σύνολο από Ν (16) µπιτ n n Ο αριθµός αποθηκεύεται στη θέση µνήµης 14

15 Μη Προσηµασµένοι Ακέραιοι Αποθήκευση µη προσηµασµένων ακεραίων σε δύο διαφορετικούς υπολογιστές µε δέσµευση 8 και 16 µπιτ αντίστοιχα Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Υπερχείλιση Υπερχείλιση Αν ο ακέραιος προς αποθήκευση είναι µεγαλύτερος από το µέγιστο µη προσηµασµένο τότε έχουµε µια κατάσταση που ονοµάζεται υπερχείλιση 15

16 Μη Προσηµασµένοι Ακέραιοι Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως µη προσηµασµένος ακέραιος Λύση n Εφαρµόζοντας τη διαδικασία µετατροπής από δυαδικό σε δεκαδικό που παρουσιάστηκε προηγουµένως, βρίσκουµε ότι ο αριθµός στο δεκαδικό σύστηµα είναι n 43 16

17 Πλεονεκτήµατα και Εφαρµογές µη Προσηµασµένων Ακεραίων Βελτιώνουν την αποδοτικότητα του αποθηκευτικού χώρου Χρησιµοποιούνται σε εφαρµογές που δεν χρειάζονται αρνητικούς αριθµούς, π.χ. n Καταµέτρηση n Διευθυνσιοδότηση 17

18 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Η αποθήκευση ενός ακεραίου σε µορφή πρόσηµου και µεγέθους (sign and magnitude) απαιτεί ένα µπιτ για την αναπαράσταση του πρόσηµου n n 0 για θετικό αριθµό, 1 για αρνητικό αριθµό Εποµένως, σε µια δέσµευση 8 µπιτ, µόνο τα 7 από αυτά µπορούν να χρησιµοποιηθούν για την αναπαράσταση της απόλυτης τιµής του αριθµού (δηλαδή του αριθµού χωρίς το πρόσηµο). Έτσι, η µέγιστη θετική τιµή είναι το µισό της µη προσηµασµένης τιµής. Διάστηµα τιµών: (2 N-1 1) + (2 N-1 1) 18

19 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Στην αναπαράσταση πρόσηµου και µεγέθους, το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. Αν είναι 0, ο αριθµός είναι θετικός Αν είναι 1, ο αριθµός είναι αρνητικός Υπάρχουν δύο µηδενικά: ένα θετικό και ένα αρνητικό. Η µορφή τους σε µια δέσµευση 8 µπιτ είναι η εξής: +0 -> > Πλήθος µπιτ Διάστηµα τιµών

20 Αποθήκευση Προσηµασµένων Ακεραίων σε Μορφή Πρόσηµου και Μεγέθους Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται. Αν το πλήθος των µπιτ είναι µικρότερο από Ν 1, προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν 1 µπιτ. Αν ο αριθµός είναι θετικός, προστίθεται στα αριστερά ένα µηδενικό (ώστε να έχουµε σύνολο Ν µπιτ). Αν ο αριθµός είναι αρνητικός, προστίθεται στα αριστερά η µονάδα (ώστε και πάλι το σύνολο να είναι Ν µπιτ). 20

21 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση πρόσηµου και µεγέθους. Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό ισοδύναµό του n 111 n Προσθέτουµε τέσσερα 0 ώστε να έχουµε σύνολο Ν 1 (7) µπιτ n n Επειδή ο αριθµός είναι θετικός, προσθέτουµε ένα επιπλέον 0, το οποίο εδώ φαίνεται µε έντονη γραφή. Το αποτέλεσµα είναι

22 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Αποθηκεύστε τον αριθµό -258 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση πρόσηµου και µεγέθους Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα n n Προσθέτουµε έξι 0 ώστε να έχουµε σύνολο Ν-1 (15) µπιτ n n Επειδή ο αριθµός είναι αρνητικός, προσθέτουµε ένα 1, το οποίο φαίνεται µε έντονη γραφή. Το αποτέλεσµα είναι

23 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Αποθήκευση ακεραίων πρόσηµου και µεγέθους σε δύο διαφορετικούς υπολογιστές 23

24 Ερµηνεία δυαδικής αναπαράστασης πρόσηµου και µεγέθους στο δεκαδικό σύστηµα Η διαδικασία είναι απλή. n Αγνοούµε το πρώτο (το τελευταίο αριστερά) µπιτ. n Μετατρέπουµε τα Ν-1 µπιτ από το δυαδικό στο δεκαδικό µε τον τρόπο που δείξαµε στην αρχή του κεφαλαίου. n Προσθέτουµε ένα σύµβολο + ή στον αριθµό, ανάλογα µε το τελευταίο αριστερά µπιτ. 24

25 Ερµηνεία δυαδικής αναπαράστασης πρόσηµου και µεγέθους στο δεκαδικό σύστηµα Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος πρόσηµου και µεγέθους Λύση n Αν αγνοήσουµε το τελευταίο αριστερά µπιτ, το υπόλοιπο είναι n Αυτός ο αριθµός αντιστοιχεί µε στον αριθµό 59 του δεκαδικού συστήµατος. n Το αριστερό µπιτ είναι το 1, άρα ο αριθµός είναι ο

26 Εφαρµογές Αναπαράστασης Προσηµασµένων Ακεραίων σε Μορφή Πρόσηµου και Μεγέθους Δεν χρησιµοποιείται σήµερα για την αποθήκευση προσηµασµένων αριθµών σε υπολογιστή γιατί n n Δυσχεραίνονται οι πράξεις Υπάρχουν δύο µηδέν Πλεονέκτηµα: εύκολη µετατροπή από το δεκαδικό στο δυαδικό, και το αντίστροφο. Έτσι η αναπαράσταση είναι βολική για εφαρµογές στις οποίες δεν είναι απαραίτητες οι πράξεις µε αριθµούς, π.χ. n Η µετατροπή αναλογικών σηµάτων σε ψηφιακά: w αφού ληφθεί δείγµα του αναλογικού σήµατος, του αντιστοιχίζεται ένας θετικός ή αρνητικός αριθµός ο οποίος µετατρέπεται στο δυαδικό σύστηµα και στέλνεται µέσω των καναλιών επικοινωνίας 26

27 Προσηµασµένοι Ακέραιοι σε Μορφή Πρόσηµου και Μεγέθους Συµπεράσµατα Η αναπαράσταση ενός αριθµού στο δυαδικό σύστηµα αποτελεί ζήτηµα σύµβασης Στην αναπαράσταση προσήµου και µεγέθους η σύµβαση είναι ότι n Το τελευταίο αριστερά µπιτ αναπαριστά το πρόσηµο και δεν αποτελεί τµήµα της τιµής 27

28 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Χρησιµοποιούν διαφορετική σύµβαση n Για την αναπαράσταση ενός θετικού αριθµού χρησιµοποιείται η σύµβαση των µη προσηµασµένων ακεραίων n n Για την αναπαράσταση ενός αρνητικού αριθµού χρησιµοποιείται το συµπλήρωµα του θετικού αριθµού. w Π.χ. Το +7 αναπαρίσταται όπως και ένας µη προσηµασµένος ακέραιος, ενώ το 7 αναπαρίσταται ως το συµπλήρωµα του +7. n Το συµπλήρωµα είναι ο αριθµός που προκύπτει αν όλα τα 0 µετατραπούν σε 1 και όλα τα 1 µετατραπούν σε 0 Το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. w Αν είναι 0, ο αριθµός είναι θετικός. w Αν είναι 1, ο αριθµός είναι αρνητικός n Διάστηµα τιµών των ακέραιων συµπληρώµατος ως προς ένα σε έναν υπολογιστή: (2 N-1 1) + (2 N-1 1) w Το Ν αντιπροσωπεύει το πλήθος των µπιτ που έχουν δεσµευτεί για την αναπαράσταση των ακέραιων αυτού του είδους 28

29 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Στην αναπαράσταση συµπληρώµατος ως προς ένα υπάρχουν δύο µηδενικά: ένα θετικό και ένα αρνητικό. Σε µια δέσµευση 8 µπιτ αυτό έχει ως εξής: +0 -> > Πλήθος µπιτ Διάστηµα τιµών

30 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Διαδικασία αποθήκευσης: n Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται. n Προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν µπιτ n Αν ο αριθµός είναι θετικός, δε χρειάζεται άλλη ενέργεια n Αν ο αριθµός είναι αρνητικός, κάθε µπιτ αντικαθίσταται από το συµπλήρωµά του (τα 0 γίνονται 1 και τα 1 γίνονται 0) 30

31 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς ένα Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό ισοδύναµό του n 111 n Προσθέτουµε πέντε 0 ώστε να έχουµε σύνολο Ν (8) µπιτ n n Ο αριθµός είναι θετικός, οπότε δε χρειάζεται καµία άλλη ενέργεια 31

32 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Αποθηκεύστε τον αριθµό 258 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς ένα Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα ( ). n Προσθέτουµε επτά 0 ώστε να έχουµε σύνολο Ν (16) µπιτ ( ). n Ο αριθµός είναι αρνητικός, οπότε αντικαθιστούµε κάθε µπιτ µε το συµπλήρωµά του. Το αποτέλεσµα είναι

33 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Ένα Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ ,760 Υπερχείλιση ,760 Υπερχείλιση Αποθήκευση ακεραίων συµπληρώµατος ως προς ένα σε δύο διαφορετικούς υπολογιστές 33

34 Ερµηνεία δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα Τα βήµατα για την ερµηνεία µιας δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα είναι τα ακόλουθα: n Αν το τελευταίο αριστερά µπιτ είναι 0 (θετικός αριθµός), w Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. w Τοποθετούµε θετικό πρόσηµο (+) µπροστά από τον αριθµό. n Αν το τελευταίο αριστερά µπιτ είναι 1 (αρνητικός αριθµός), w Αντικαθιστούµε τον αριθµό µε το συµπλήρωµά του (αλλάζουµε όλα τα 0 σε 1, και το αντίστροφο). w Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. w Τοποθετούµε µπροστά από τον αριθµό αρνητικό πρόσηµο ( ). 34

35 Ερµηνεία δυαδικής αναπαράστασης συµπληρώµατος ως προς ένα στο δεκαδικό σύστηµα Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς ένα Λύση n Το τελευταίο αριστερά µπιτ είναι το 1, άρα ο αριθµός είναι αρνητικός. n Πρώτα βρίσκουµε το συµπλήρωµά του. n Το αποτέλεσµα είναι , το οποίο στο δεκαδικό είναι ο αριθµός 9. n Εποµένως ο αρχικός αριθµός είναι το 9. 35

36 Εφαρµογές Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Ένα Δεν χρησιµοποιείται για αποθήκευση αριθµών στον Η/Υ Αλλά n δύσκολες πράξεις, δυο απεικονίσεις του 0 n Αποτελεί βάση για την επόµενη απεικόνιση (συµπλήρωµα ως προς δυο) n Έχει χαρακτηριστικά που την καθιστούν ενδιαφέρουσα για εφαρµογές Επικοινωνίας Δεδοµένων, π.χ. ανίχνευση και διόρθωση σφαλµάτων 36

37 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Η αναπαράσταση συµπληρώµατος ως προς ένα έχει δύο µηδέν (+0 και 0), γεγονός που µπορεί να προκαλέσει σύγχυση σε υπολογισµούς Επίσης, στο επόµενο κεφάλαιο θα δούµε ότι αν προσθέσουµε έναν αριθµό µε το συµπλήρωµά του (π.χ. +4 και 4) σε αυτή την αναπαράσταση, παίρνουµε ως αποτέλεσµα αρνητικό µηδέν ( 0) αντί για θετικό (+0) Η αναπαράσταση συµπληρώµατος ως προς δύο λύνει όλα αυτά τα προβλήµατα 37

38 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Το συµπλήρωµα ως προς δύο αποτελεί σήµερα τον πιο συνηθισµένο, τον πιο σηµαντικό, και τον πιο ευρέως χρησιµοποιούµενο τρόπο αναπαράστασης ακεραίων Διάστηµα τιµών: (2 N-1 ) + (2 N-1 1) Πλήθος µπιτ Διάστηµα τιµών

39 Αποθήκευση Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Δύο Απαιτεί τα ακόλουθα βήµατα: n n n n Ο αριθµός µετατρέπεται στο δυαδικό σύστηµα, το πρόσηµο αγνοείται. Αν το πλήθος των µπιτ είναι µικρότερο από Ν, προστίθενται µηδενικά στα αριστερά του αριθµού ώστε να υπάρχει ένα σύνολο από Ν µπιτ. Αν το πρόσηµο είναι θετικό, δε χρειάζεται καµία άλλη ενέργεια. Αν το πρόσηµο είναι αρνητικό, µένουν ως έχουν όλα τα δεξιότερα 0 και το πρώτο 1. Τα υπόλοιπα µπιτ αντικαθίστανται από το συµπλήρωµά τους. Στην αναπαράσταση συµπληρώµατος ως προς δύο, το τελευταίο αριστερά µπιτ καθορίζει το πρόσηµο του αριθµού. Αν είναι 0, ο αριθµός είναι θετικός. Αν είναι 1, ο αριθµός είναι αρνητικός. 39

40 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Αποθηκεύστε τον αριθµό +7 σε µια θέση µνήµης 8 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς δύο Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα (111). n Προσθέτουµε πέντε 0 ώστε να έχουµε σύνολο Ν (8) µπιτ ( ). n Ο αριθµός είναι θετικός, οπότε δε χρειάζεται καµία άλλη ενέργεια 40

41 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Αποθηκεύστε τον αριθµό 40 σε µια θέση µνήµης 16 µπιτ µε την αναπαράσταση συµπληρώµατος ως προς δύο Λύση n Πρώτα µετατρέπουµε τον αριθµό στο δυαδικό σύστηµα (101000). n Προσθέτουµε δέκα 0 ώστε να έχουµε σύνολο Ν (16) µπιτ ( ). n Ο αριθµός είναι αρνητικός, οπότε αφήνουµε τα δεξιότερα 0 µέχρι το πρώτο 1 (και το 1) ως έχουν, και αντικαθιστούµε τα υπόλοιπα µπιτ µε το συµπλήρωµά τους. n Το αποτέλεσµα είναι

42 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Δεκαδικός Δέσµευση 8 µπιτ Δέσµευση 16 µπιτ Υπερχείλιση Υπερχείλιση Παράδειγµα αναπαράστασης συµπληρώµατος ως προς δύο σε δύο υπολογιστές 42

43 Ερµηνεία Δυαδικής Αναπαράστασης Προσηµασµένων Ακεραίων σε Μορφή Συµπληρώµατος ως προς Δύο στο δεκαδικό σύστηµα Ακολουθούνται τα εξής βήµατα: n Αν το τελευταίο αριστερά µπιτ είναι 0 (θετικός αριθµός) w Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. w Τοποθετούµε θετικό πρόσηµο (+) µπροστά από τον αριθµό n Αν το τελευταίο αριστερά µπιτ είναι 1 (αρνητικός αριθµός) w Αφήνουµε τα δεξιότερα µπιτ µέχρι το πρώτο 1 (µαζί µε αυτό) ως έχουν. Αντικαθιστούµε τα υπόλοιπα µπιτ µε το συµπλήρωµά τους. w Μετατρέπουµε ολόκληρο τον αριθµό από το δυαδικό στο δεκαδικό σύστηµα. w Τοποθετούµε µπροστά από τον αριθµό αρνητικό πρόσηµο ( ). 43

44 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Ερµηνεύστε τον αριθµό στο δεκαδικό σύστηµα, έχοντας ως δεδοµένο ότι ο αριθµός έχει αποθηκευτεί ως ακέραιος συµπληρώµατος ως προς δύο Λύση n Το τελευταίο αριστερά µπιτ είναι το 1, άρα ο αριθµός είναι αρνητικός. n Αφήνουµε τα δεξιότερα µπιτ (10) ως έχουν, και βρίσκουµε το συµπλήρωµα των υπολοίπων. n Το αποτέλεσµα είναι n Μετατρέπουµε τον αριθµό στο δεκαδικό σύστηµα n Το αποτέλεσµα είναι το 10. Εποµένως ο αρχικός αριθµός είναι το 10 44

45 Προσηµασµένοι Ακέραιοι σε Μορφή Συµπληρώµατος ως προς Δύο Εφαρµογές n Η αναπαράσταση συµπληρώµατος ως προς δύο αποτελεί τον τυπικό τρόπο αναπαράστασης για την αποθήκευση ακέραιων στους σύγχρονους υπολογιστές n Στο επόµενο κεφάλαιο θα καταλάβετε γιατί, όταν δείτε πόσο απλές είναι οι πράξεις µε αυτή τη µέθοδο 45

46 Ερωτήσεις? 46

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές

Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση. Κεφάλαιο 3. Αριθµητική για υπολογιστές Οργάνωση και Σχεδίαση Υπολογιστών Η ιασύνδεση Υλικού και Λογισµικού, 4 η έκδοση Κεφάλαιο 3 Αριθµητική για υπολογιστές Ασκήσεις Η αρίθµηση των ασκήσεων είναι από την 4 η έκδοση του «Οργάνωση και Σχεδίαση

Διαβάστε περισσότερα

Αριθμητικά Συστήματα Κώδικες

Αριθμητικά Συστήματα Κώδικες Αριθμητικά Συστήματα Κώδικες 1.1 Εισαγωγή Κεφάλαιο 1 Ένα αριθμητικό σύστημα ορίζει ένα σύνολο τιμών που χρησιμοποιούνται για την αναπαράσταση μίας ποσότητας. Ποσοτικοποιώντας τιμές και αντικείμενα και

Διαβάστε περισσότερα

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ

Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers. Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Πραγµατικοί αριθµοί κινητής υποδιαστολής Floating Point Numbers Σ. Τσιτµηδέλης - 2010 ΤΕΙ ΧΑΛΚΙΔΑΣ Εκθετική Παράσταση (Exponential Notation) Οι επόµενες είναι ισοδύναµες παραστάσεις του 1,234 123,400.0

Διαβάστε περισσότερα

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ)

ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) ΑΠΟΤΕΛΕΣΜΑΤΑ ΠΕΠΕΡΑΣΜΕΝΗΣ ΑΚΡΙΒΕΙΑΣ (ΚΒΑΝΤΙΣΜΟΥ) 0. Εισαγωγή Τα αποτελέσµατα πεπερασµένης ακρίβειας οφείλονται στα λάθη που προέρχονται από την παράσταση των αριθµών µε µια πεπερασµένη ακρίβεια. Τα αποτελέσµατα

Διαβάστε περισσότερα

5.1 Θεωρητική εισαγωγή

5.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 5 ΚΩ ΙΚΟΠΟΙΗΣΗ BCD Σκοπός: Η κατανόηση της µετατροπής ενός τύπου δυαδικής πληροφορίας σε άλλον (κωδικοποίηση/αποκωδικοποίηση) µε τη µελέτη της κωδικοποίησης BCD

Διαβάστε περισσότερα

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ

3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ 1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Θα ξεκινήσουµε την παρουσίαση των γραµµικών συστηµάτων µε ένα απλό παράδειγµα από τη Γεωµετρία, το οποίο ϑα µας ϐοηθήσει στην κατανόηση των συστηµάτων αυτών και των συνθηκών

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βασικές Έννοιες Προγραμματισμού. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βασικές Έννοιες Προγραμματισμού Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αριθμητικά συστήματα Υπάρχουν 10 τύποι ανθρώπων: Αυτοί

Διαβάστε περισσότερα

1ο. Η αριθµητική του υπολογιστή

1ο. Η αριθµητική του υπολογιστή 1ο. Η αριθµητική του υπολογιστή 1.1 Τί είναι Αριθµητική Ανάλυση Υπάρχουν πολλά προβλήµατα στη µαθηµατική επιστήµη για τα οποία δεν υπάρχουν αναλυτικές εκφράσεις λύσεων. Στις περιπτώσεις αυτές έχουν αναπτυχθεί

Διαβάστε περισσότερα

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού

ιατύπωση τυπικής µορφής προβληµάτων Γραµµικού Ο αλγόριθµος είναι αλγεβρική διαδικασία η οποία χρησιµοποιείται για την επίλυση προβληµάτων (προτύπων) Γραµµικού Προγραµµατισµού (ΠΓΠ). Ο αλγόριθµος έχει διάφορες παραλλαγές όπως η πινακοποιηµένη µορφή.

Διαβάστε περισσότερα

ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ

ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΟΙ και ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΣΠΟΥ ΑΣΤΗΣ: Ντελή Χασάν Μουσταφά Μουτλού ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ

1. Το σύστημα κινητής υποδιαστολής 2. Αναπαράσταση πραγματικών δυαδικών αριθμών 3. Το πρότυπο 754 της ΙΕΕΕ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΟΙ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ (ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ) Γ Τσιατούχας Παράρτηµα Β ιάρθρωση 1 Το σύστημα κινητής υποδιαστολής 2 Αναπαράσταση πραγματικών δυαδικών αριθμών 3 Το πρότυπο

Διαβάστε περισσότερα

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό

[2] Υπολογιστικά συστήματα: Στρώματα. Τύποι δεδομένων. Μπιτ. επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό Υπολογιστικά συστήματα: Στρώματα 1 ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ επικοινωνία εφαρμογές λειτουργικό σύστημα προγράμματα υλικό δεδομένα Αναπαράσταση δεδομένων 2 Τύποι δεδομένων Τα δεδομένα

Διαβάστε περισσότερα

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης

Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης Περιεχόμενο: Δομή υπολογιστή Συστήματα αρίθμησης ΟΜΗ ΤΟΥ ΥΠΟΛΟΓΙΣΤΗ Ένας υπολογιστής αποτελείται από την Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ), τη µνήµη, τις µονάδες εισόδου/εξόδου και το σύστηµα διασύνδεσης

Διαβάστε περισσότερα

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση

Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση Φυσικοί αριθμοί - Διάταξη φυσικών αριθμών - Στρογγυλοποίηση TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 2 Φυσικοί

Διαβάστε περισσότερα

Η δήλωση πού δηµιουργεί αποθήκευση τών δεδοµένων ονοµαζεται ορισµός τής µεταβλητής.

Η δήλωση πού δηµιουργεί αποθήκευση τών δεδοµένων ονοµαζεται ορισµός τής µεταβλητής. Από το βιβλίο C: Βήµα-Πρός-Βήµα, Κεφάλαιο 3ο Συγγραφείς: Οµάδα Waite, Mitchell Waite και Stephen Prata Εκδότης: Μ. Γκιούρδας Ανατύπωση σε ηλεκτρονική µορφή: Αλέξανδρος Στεφανίδης 3.4 Τύποι εδοµένων τής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα;

µηδενικό πολυώνυµο; Τι ονοµάζουµε βαθµό του πολυωνύµου; Πότε δύο πολυώνυµα είναι ίσα; ΘΕΩΡΙΑ ΠΟΛΥΩΝΥΜΩΝ 1. Τι ονοµάζουµε µονώνυµο Μονώνυµο ονοµάζεται κάθε γινόµενο το οποίο αποτελείται από γνωστούς και αγνώστους (µεταβλητές ) πραγµατικούς αριθµούς. Ο γνωστός πραγµατικός αριθµός ονοµάζεται

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού

Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Σελίδα 1 από Κεφάλαιο 7 Βασικά Θεωρήµατα του ιαφορικού Λογισµού Στο κεφάλαιο αυτό θα ασχοληθούµε µε τα βασικά θεωρήµατα του διαφορικού λογισµού καθώς και µε προβλήµατα που µπορούν να επιλυθούν χρησιµοποιώντας

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ. Κεφάλαιο 3 ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Κεφάλαιο 3 Κεντρική Μονάδα Επεξεργασίας Κεντρική Μονάδα Επεξεργασίας Μονάδα επεξεργασίας δεδομένων Μονάδα ελέγχου Μονάδα επεξεργασίας δεδομένων Δομή Αριθμητικής Λογικής Μονάδας

Διαβάστε περισσότερα

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000

υαδικό Σύστημα 192.168.0.0-11000000.10101000.00000000.00000000 υαδικό Σύστημα Για να μπορέσουμε να καταλάβουμε πως γίνεται το Subnetting, πρέπει πρώτα να γνωρίζουμε καλά το δυαδικό σύστημα, τις Classes των δικτύων και τι ακριβώς γίνεται στην καθεμία. Όπως γνωρίζουμε

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα.

Εισαγωγή και ανάλυση ευαισθησίας προβληµάτων Γραµµικού Προγραµµατισµού. υϊκότητα. Παραδείγµατα. Η ανάλυση ευαισθησίας και η δυϊκότητα είναι σηµαντικά τµήµατα της θεωρίας του γραµµικού προγραµµατισµού και εν γένει του µαθηµατικού προγραµµατισµού, αφού αφορούν την ανάλυση των προτύπων και την εξαγωγή

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 21: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 2009 2010 Γραπτή Εργασία #3 Παράδοση: 28 Μαρτίου 2010 Άσκηση 1 (15 µονάδες) Ένας επεξεργαστής υποστηρίζει τόσο

Διαβάστε περισσότερα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα

Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα 2 κεφάλαιο Aριθμητικά συστήματα και κώδικες Tα ψηφιακά συστήματα είναι κατασκευασμένα από κυκλώματα τα οποία επεξεργάζονται δυαδικά ψηφία 0 και 1, όμως στην πράξη πολύ λίγα πραγματικά προβλήματα βασίζονται

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΛΗ 2: Ψηφιακά Συστήµατα Ακαδηµαϊκό Έτος 24 25 Ηµεροµηνία Εξέτασης 29.6.25 Χρόνος Εξέτασης

Διαβάστε περισσότερα

Σηµειώσεις στις σειρές

Σηµειώσεις στις σειρές . ΟΡΙΣΜΟΙ - ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ Σηµειώσεις στις σειρές Στην Ενότητα αυτή παρουσιάζουµε τις βασικές-απαραίτητες έννοιες για την µελέτη των σειρών πραγµατικών αριθµών και των εφαρµογών τους. Έτσι, δίνονται συστηµατικά

Διαβάστε περισσότερα

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 1

Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 1 Τεχνολογία Υπολογιστικών Συστηµάτων & Λειτουργικά Συστήµατα Κεφάλαιο 1 Κεφάλαιο 1 Κατηγορίες Υπολογιστικών Συστηµάτων Σκοπός του κεφαλαίου αυτού είναι να παρουσιάσει την εξέλιξη των υπολογιστικών συστηµάτων,

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Δραστηριότητα 8 ης εβδομάδας ΟΜΑΔΑΣ Α: Γ. Πολυμέρης, Χ. Ηλιούδη, Ν. Μαλλιαρός και Δ. Θεοτόκης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ για το Δυαδικό Σύστημα Αρίθμησης Περιγραφή Η συγκεκριμένη δραστηριότητα αποτελεί μια πρόταση

Διαβάστε περισσότερα

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές

Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές ΚΕΦΑΛΑΙΟ 1 Συστήµατα Αριθµών, Πληροφορία, και Ψηφιακή Υπολογιστές Σελίδες 3-21, 24-26 ΚΕΦΑΛΑΙΟ 1 Περιεχόµενα 1.1 ΨΗΦΙΑΚΗ ΥΠΟΛΟΓΙΣΤΕΣ 1.2 Αναπαράσταση Αριθµών 1.3 Αριθµητικές Λειτουργίες 1.4 εκαδικοί Κώδικες

Διαβάστε περισσότερα

Εισαγωγή στην επιστήµη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών

Εισαγωγή στην επιστήµη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών Εισαγωγή στην επιστήµη των υπολογιστών Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών Εισαγωγή Θα δούµε την οργάνωση ενός υπολογιστή Στον επόµενο µάθηµα θα δούµε πως συνδέονται πολλοί Η/Υ για να σχηµατίσουν

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt2014/nt2014.html https://sites.google.com/site/maths4edu/home/14

Διαβάστε περισσότερα

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε

Παραδείγµατα : Έστω ότι θέλουµε να παραστήσουµε γραφικά την εξίσωση 6χ-ψ=3. Λύση 6χ-ψ=3 ψ=6χ-3. Άρα η εξίσωση παριστάνει ευθεία. Για να τη χαράξουµε Άλγεβρα υκείου επιµ.: άτσιος ηµήτρης ΣΣΤΗΜΤ ΜΜΩΝ ΞΣΩΣΩΝ Μ ΝΩΣΤΣ ΣΩΣ ΝΝΣ ρισµός: Μια εξίσωση της µορφής αχ+βψ=γ ονοµάζεται γραµµική εξίσωση µε δυο αγνώστους. ύση της εξίσωσης αυτής ονοµάζεται κάθε διατεταγµένο

Διαβάστε περισσότερα

1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ

1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ 1 1.2 ΠΡΟΣΘΕΣΗ ΑΦΑΙΡΕΣΗ ΚΑΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΦΥΣΙΚΩΝ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση : Είναι µία πράξη, µε την οποία όταν µας δώσουν δύο φυσικούς αριθµούς α και β βρίσκουµε έναν τρίτο αριθµό γ που τον συµβολίζουµε

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ.

Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Μεθοδολογία Επίλυσης Προβλημάτων ============================================================================ Π. Κυράνας - Κ. Σάλαρης Πολλές φορές μας δίνεται να λύσουμε ένα πρόβλημα που από την πρώτη

Διαβάστε περισσότερα

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή

Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή Γενικά Στοιχεία Ηλεκτρονικού Υπολογιστή 1. Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι μια συσκευή, μεγάλη ή μικρή, που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με τα παρακάτω

Διαβάστε περισσότερα

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44.

11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44. ΤΕΧΝΙΚΕΣ ΚΑΤΑΜΕΤΡΗΣΗΣ Η καταµετρηση ενος συνολου µε πεπερασµενα στοιχεια ειναι ισως η πιο παλια µαθηµατικη ασχολια του ανθρωπου. Θα µαθουµε πως, δεδοµενης της περιγραφης ενος συνολου, να µπορουµε να ϐρουµε

Διαβάστε περισσότερα

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ.

Γνωστό: P (M) = 2 M = τρόποι επιλογής υποσυνόλου του M. Π.χ. M = {A, B, C} π. 1. Π.χ. Παραδείγματα Απαρίθμησης Γνωστό: P (M 2 M τρόποι επιλογής υποσυνόλου του M Τεχνικές Απαρίθμησης Πχ M {A, B, C} P (M 2 3 8 #(Υποσυνόλων με 2 στοιχεία ( 3 2 3 #(Διατεταγμένων υποσυνόλων με 2 στοιχεία 3 2

Διαβάστε περισσότερα

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ

ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ ΜΕΡΟΣ ΙΙ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ 36 ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΔΙΑΚΡΙΤΩΝ ΕΝΑΛΛΑΚΤΙΚΩΝ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΣΥΝΘΕΣΗΣ ΔΙΕΡΓΑΣΙΩΝ Πολλές από τις αποφάσεις

Διαβάστε περισσότερα

ΠΡΟΧΕΙΡΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C. Χρήστος Αρβανίτης

ΠΡΟΧΕΙΡΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C. Χρήστος Αρβανίτης ΠΡΟΧΕΙΡΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΗΝ ΓΛΩΣΣΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ C Χρήστος Αρβανίτης 1 Εισαγωγή Στις σηµειώσεις αυτές καταγράφεται το περιεχόµενο των διαλέξεων που δόθηκαν κατα το ακαδ. έτος 2008 στο Πανεπιστήµιο Κρήτης

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών. Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υλικό Υπολογιστών Κεφάλαιο 5ο Οργάνωση υπολογιστών 1 Οργάνωση υπολογιστών ΚΜΕ Κύρια Μνήμη Υποσύστημα εισόδου/εξόδου 2 Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ) R1 R2 ΑΛΜ

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282

Συνεχή Κλάσματα. Εμμανουήλ Καπνόπουλος Α.Μ 282 Συνεχή Κλάσματα Εμμανουήλ Καπνόπουλος Α.Μ 282 5 Νοεμβρίου 204 Ορισμός και ιδιότητες: Ορισμός: Έστω a 0, a, a 2,...a n ανεξάρτητες μεταβλητές, n N σχηματίζουν την ακολουθία {[a 0, a,..., a n ] : n N} όπου

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια

Εισαγωγή στην επιστήμη της Πληροφορικής και των. Aσφάλεια Εισαγωγή στην επιστήμη της Πληροφορικής και των Τηλεπικοινωνιών Aσφάλεια Περιεχόμενα Πλευρές Ασφάλειας Ιδιωτικό Απόρρητο Μέθοδος Μυστικού Κλειδιού (Συμμετρική Κρυπτογράφηση) Μέθοδος Δημόσιου Κλειδιού (Ασύμμετρη

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ

ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ-ΜΟΝΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΑ- ΒΑΣΙΚΕΣΤΑΥΤΟΤΗΤΕΣ 9 40 4 ΒΑΣΙΚΕΣ ΤΑΥΤΟΤΗΤΕΣ 4 4 ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ. Να βρείτε την αριθµητική τιµή των παραστάσεων. i) α -α 6α, ii) 4α, για α iii) αβ α β (αβ),

Διαβάστε περισσότερα

8.1 Θεωρητική εισαγωγή

8.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 8 ΣΤΟΙΧΕΙΑ ΜΝΗΜΗΣ ΚΑΤΑΧΩΡΗΤΕΣ Σκοπός: Η µελέτη της λειτουργίας των καταχωρητών. Θα υλοποιηθεί ένας απλός στατικός καταχωρητής 4-bit µε Flip-Flop τύπου D και θα µελετηθεί

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος...9 ΚΕΦ. 1. ΑΡΙΘΜΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ - ΚΩΔΙΚΕΣ 1.1 Εισαγωγή...11 1.2 Τα κύρια αριθμητικά Συστήματα...12 1.3 Μετατροπή αριθμών μεταξύ των αριθμητικών συστημάτων...13 1.3.1 Μετατροπή ακέραιων

Διαβάστε περισσότερα

6.1 Θεωρητική εισαγωγή

6.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6 ΑΠΟΚΩ ΙΚΟΠΟΙΗΤΕΣ ΚΑΙ ΠΟΛΥΠΛΕΚΤΕΣ Σκοπός: Η κατανόηση της λειτουργίας των κυκλωµάτων ψηφιακής πολυπλεξίας και αποκωδικοποίησης και η εξοικείωση µε τους ολοκληρωµένους

Διαβάστε περισσότερα

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης)

Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) TEI Σερρών Τμήμα Πληροφορικής και Επικοινωνιών Δίκτυα Υπολογιστών ΙΙ (Ασκήσεις Πράξης) Subnetting-VLSM-Troubleshooting IP Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών anpol@teiser.gr

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Θεµατική Ενότητα ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Ακαδηµαϊκό Έτος 2006 2007 Γραπτή Εργασία #2 Ηµεροµηνία Παράδοσης 28-0 - 2007 ΠΛΗ 2: Ψηφιακά Συστήµατα ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ Άσκηση : [5 µονάδες] Έχετε στη

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΣΧΕ ΙΑΣΜΟΣ ΕΠΙΦΑΝΕΙΑΣ Με το σχεδιασµό επιφάνειας (Custom επιφάνεια) µπορούµε να σχεδιάσουµε επιφάνειες και αντικείµενα που δεν υπάρχουν στους καταλόγους του 1992. Τι µπορούµε να κάνουµε µε το σχεδιασµό

Διαβάστε περισσότερα

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Πρόσθεση, αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Στους πραγματικούς αριθμούς ορίστηκαν οι

Διαβάστε περισσότερα

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια

Κλάσµατα ΜΑΘΗΜΑ 1 Ο. Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια 1 ΜΑΘΗΜΑ 1 Ο Κλάσµατα Πεινάσαµε; Τι λέτε; Να παραγγείλουµε καµιά πίτσα; Ήρθε κιόλας η παραγγελία! Λαχταριστή πίτσα κοµµένη σε 8 ίσα κοµµάτια Όπως φαίνεται όµως ο Σάκης έφαγε 1 κοµµάτι από τα 8 Το κοµµάτι

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

7.1 Θεωρητική εισαγωγή

7.1 Θεωρητική εισαγωγή ΨΗΦΙΑΚΑ ΚΥΚΛΩΜΑΤΑ - ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 7 ΑΚΟΛΟΥΘΙΑΚΑ ΚΥΚΛΩΜΑΤΑ ΜΑΝ ΑΛΩΤΕΣ FLIP FLOP Σκοπός: Η κατανόηση της λειτουργίας των βασικών ακολουθιακών κυκλωµάτων. Θα µελετηθούν συγκεκριµένα: ο µανδαλωτής (latch)

Διαβάστε περισσότερα

4.2 Μέθοδος Απαλοιφής του Gauss

4.2 Μέθοδος Απαλοιφής του Gauss 4.2 Μέθοδος Απαλοιφής του Gauss Θεωρούµε το γραµµικό σύστηµα α 11χ 1 + α 12χ 2 +... + α 1νχ ν = β 1 α 21χ 1 + α 22χ2 +... + α 2νχ ν = β 2... α ν1χ 1 + α ν2χ 2 +... + α ννχ ν = β ν Το οποίο µπορεί να γραφεί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών

Τμήμα Οικιακής Οικονομίας και Οικολογίας. Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Οργάνωση υπολογιστών ΚΜΕ Κύρια Μνήμη Υποσύστημα εισόδου/εξόδου Κεντρική Μονάδα Επεξεργασίας (ΚΜΕ) R1 R2 ΑΛΜ R3 I Καταχωρητές PC Κεντρική Μονάδα Επεξεργασίας Αριθμητική και λογική μονάδα

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ

ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ ΙΑΧΡΟΝΙΚΗ ΑΞΙΑ ΤΟΥ ΧΡΗΜΑΤΟΣ Παράδειγµα 1 Να βρεθεί ο τόκος κεφαλαίου 100.000 ευρώ, το οποίο τοκίστηκε µε ετήσιο επιτόκιο 12% για 2 χρόνια. Απάντηση: Ο τόκος ανέρχεται σε I = (100.000 0,12 2=) 24.000 ευρώ

Διαβάστε περισσότερα

Περιεχόµενα. I Βασικές Γνώσεις 1

Περιεχόµενα. I Βασικές Γνώσεις 1 Περιεχόµενα I Βασικές Γνώσεις 1 1 Μοντελοποίηση Προγραµµάτων 3 1.1 Ψευδογλώσσα....................... 6 1.2 Διαγράµµατα Ροής..................... 6 1.3 Παραδείγµατα σε Ψευδογλώσσα και Διαγράµµατα Ροής.

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α 1. Ένα ψυγείο την περίοδο των εκπτώσεων πωλείται µε έκπτωση 18% αντί του ποσού των 779. Να βρείτε πόση ήταν η αξία του ψυγείου πριν τις εκπτώσεις. Αν x ήταν η αξία του ψυγείου

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 3 η ΕΚΑ Α ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ η ΕΚ. Έστω οι παραστάσεις = 4 4 + 5, Β = 5 (8 + 0) : (7 5) και Γ = 6 : 5 4 Να υπολογίσετε την τιµή των παραστάσεων ν = 5, Β = 6 και Γ = να βρείτε : i) Το ελάχιστο κοινό πολλαπλάσιο των,

Διαβάστε περισσότερα

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση

Υπενθύμιση Δ τάξης. Παιχνίδια στην κατασκήνωση ΚΕΦΑΛΑΙΟ 1ο Υπενθύμιση Δ τάξης Παιχνίδια στην κατασκήνωση Συγκρίνω δυο αριθμούς για να βρω αν είναι ίσοι ή άνισοι. Στην περίπτωση που είναι άνισοι μπορώ να βρω ποιος είναι μεγαλύτερος (ή μικρότερος). Ανάμεσα

Διαβάστε περισσότερα

Ενότητα 1. Εισαγωγή στις βασικές έννοιες των ικτύων ΗΥ

Ενότητα 1. Εισαγωγή στις βασικές έννοιες των ικτύων ΗΥ Ενότητα 1 Εισαγωγή στις βασικές έννοιες των ικτύων ΗΥ Εύρος Ζώνης και Ταχύτητα Μετάδοσης Η ταχύτητα µετάδοσης [εύρος ζώνης (banwidth)] των δεδοµένων αποτελεί ένα δείκτη επίδοσης των δικτύων και συνήθως

Διαβάστε περισσότερα

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το

ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ. Όταν το χ τότε το. στο,µπορούµε να θεωρήσουµε ότι το ΕΝΝΟΙΑ ΤΟΥ ΟΡΙΟΥ Όταν στα µαθηµατικά λέµε ότι το τείνει στο και συµβολίζεται, εννοούµε ότι οι τιµές προσεγγίζουν την τιµή, είτε µε από τιµές µικρότερες του δηλ από αριστερά του, είτε από τιµές µεγαλύτερες

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------

----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ----------Εισαγωγή στη Χρήση του SPSS for Windows ------------- Σελίδα: 0------------ ΚΕΦΑΛΑΙΟ 8 ο 8.1 Συντελεστές συσχέτισης: 8.1.1 Συσχέτιση Pearson, και ρ του Spearman 8.1.2 Υπολογισµός του συντελεστή

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. Γενικά περί ψηφιακών συστηµάτων Το ψηφιακό σήµα Αριθµητικά συστήµατα υαδικοί κώδικες Ολοκληρωµένα κυκλώµατα Εργαστηριακή υποδοµή

1. ΕΙΣΑΓΩΓΗ. Γενικά περί ψηφιακών συστηµάτων Το ψηφιακό σήµα Αριθµητικά συστήµατα υαδικοί κώδικες Ολοκληρωµένα κυκλώµατα Εργαστηριακή υποδοµή ΕΙΣΑΓΩΓΗ 1. ΕΙΣΑΓΩΓΗ Γενικά περί ψηφιακών συστηµάτων Το ψηφιακό σήµα Αριθµητικά συστήµατα υαδικοί κώδικες Ολοκληρωµένα κυκλώµατα Εργαστηριακή υποδοµή Λογική Σχεδίαση - Εργαστήριο 1.1. ΤΑ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17

ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ. Κεφάλαιο 17 ΕΝ ΕΙΚΤΙΚΑ ΠΑΡΑ ΕΙΓΜΑΤΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ 1 ο Παράδειγµα (διάρκεια: 15 λεπτά) Κεφάλαιο 17 Α. ΣΤΟΙΧΕΙΑ ΤΟΥ ΜΑΘΗΤΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ:... ΤΑΞΗ:... ΤΜΗΜΑ:... ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... Β.

Διαβάστε περισσότερα

Βασικές Έννοιες Πληροφορικής

Βασικές Έννοιες Πληροφορικής Βασικές Έννοιες Πληροφορικής 1. Τι είναι ο Ηλεκτρονικός Υπολογιστής Ο Ηλεκτρονικός Υπολογιστής είναι οποιαδήποτε συσκευή μεγάλη ή μικρή που επεξεργάζεται δεδομένα και εκτελεί την εργασία του σύμφωνα με

Διαβάστε περισσότερα

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1

Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1. Μιγαδικοί αριθμοί. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 ΤΕΤΥ Εφαρμοσμένα Μαθηματικά Μιγαδική Ανάλυση Α 1 Μιγαδική ανάλυση Μέρος Α Πρόχειρες σημειώσεις 1 Μιγαδικοί αριθμοί Τι είναι και πώς τους αναπαριστούμε Οι μιγαδικοί αριθμοί είναι μια επέκταση του συνόλου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ

1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ 1 1.1 ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ ΙΑΤΑΞΗ ΣΤΡΟΓΓΥΛΟΠΟΙΗΣΗ ΘΕΩΡΙΑ 1. Φυσικοί αριθµοί : Είναι οι αριθµοί 0, 1, 2, 3,, 10000, 10001,.50000 2. Προηγούµενος επόµενος : Κάθε φυσικός αριθµός εκτός από το 0 έχει έναν προηγούµενο

Διαβάστε περισσότερα

Περιεχόµενα. Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα. Εισαγωγή

Περιεχόµενα. Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα. Εισαγωγή Επικοινωνίες εδοµένων: Τρόποι Μετάδοσης και Πρωτόκολλα Περιεχόµενα Εισαγωγή Επικοινωνία εδοµένων Αναλογική vs. Ψηφιακή Μετάδοση ιαµόρφωση σήµατος Κανάλια επικοινωνίας Κατεύθυνση και ρυθµοί µετάδοσης Ασύγχρονη

Διαβάστε περισσότερα

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών Κεφάλαιο 8 Ο είκτης Συσχέτισης 1 Η έννοια της Αλληλεξάρτησης Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών ηλαδή, µας ενδιαφέρει να

Διαβάστε περισσότερα

7.8 Σύστηµα ονοµάτων περιοχών (Domain Name System, DNS)

7.8 Σύστηµα ονοµάτων περιοχών (Domain Name System, DNS) 7.8 ύστηµα ονοµάτων περιοχών (Domain Name System, DNS) Ερωτήσεις 1. Γιατί χρησιµοποιούµε συµβολικά ονόµατα αντί για τις διευθύνσεις; 2. ε τι αναφέρονται το όνοµα και η διεύθυνση ενός υπολογιστή; Πώς και

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Μηχανές Πεπερασµένων Καταστάσεων

Μηχανές Πεπερασµένων Καταστάσεων Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58

Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων. Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων Τηλ. 26410741964196 E-mail fkoutel@cc.uoi.gr ΜΑΘΗΜΑΤΙΚΑ Ι ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Μαθηµατικά Ι Ακαδ. Έτος 2009-10 1/58 Γραµµική άλγεβρα...... είναι τοµέας

Διαβάστε περισσότερα

ιαχείριση Πληροφοριών στο ιαδίκτυο

ιαχείριση Πληροφοριών στο ιαδίκτυο ιαχείριση Πληροφοριών στο ιαδίκτυο Εργαστήριο (Φυλλάδιο 8) ΤΕΙ Καβάλας - Σχολή ιοίκησης & Οικονοµίας Τµήµα ιαχείρισης Πληροφοριών ιδάσκων: Μαρδύρης Βασίλειος, ιπλ. Ηλ. Μηχανικός & Μηχ. Υπολογιστών, MSc

Διαβάστε περισσότερα

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0

Κεφάλαιο 3 Πίνακες. χρησιµοποιώντας µόνο την ακόλουθη διάταξη αριθµών 1 1 2 1 2 5 1 0 Σελίδα από 53 Κεφάλαιο 3 Πίνακες Περιεχόµενα 3 Ορισµοί Επεξεργασµένα Παραδείγµατα Ασκήσεις 3 3 Πράξεις µε Πίνακες Πρόσθεση Πινάκων Πολλαπλασιασµός Πίνακα µε Αριθµό Πολλαπλασιασµός Πινάκων ιωνυµικό Ανάπτυγµα

Διαβάστε περισσότερα

Κεφάλαιο 5ο: Εντολές Επανάληψης

Κεφάλαιο 5ο: Εντολές Επανάληψης Χρήστος Τσαγγάρης ΕΕ ΙΠ Τµήµατος Μαθηµατικών, Πανεπιστηµίου Αιγαίου Κεφάλαιο 5ο: Εντολές Επανάληψης Η διαδικασία της επανάληψης είναι ιδιαίτερη συχνή, αφού πλήθος προβληµάτων µπορούν να επιλυθούν µε κατάλληλες

Διαβάστε περισσότερα

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων

ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών ΗΥ220: Εργαστήριο ψηφιακών κυκλωμάτων Γιώργος Δημητρακόπουλος Μονάδες επεξεργασίας δεδομένων και ο έλεγχος τους Δόμηση σύνθετων κυκλωμάτων 1. Γενική περιγραφή

Διαβάστε περισσότερα

Σηµειώσεις Γραµµικής Άλγεβρας

Σηµειώσεις Γραµµικής Άλγεβρας Σηµειώσεις Γραµµικής Άλγεβρας Κεφάλαιο Συστήµατα Γραµµικών Εξισώσεων και Πίνακες Εισαγωγή στα Συστήµατα Γραµµικών Εξισώσεων Η µελέτη των συστηµάτων γραµµικών εξισώσεων και των λύσεών τους είναι ένα από

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Θέµα 1 ο Α. Να απαντήσετε τις παρακάτω ερωτήσεις τύπου Σωστό Λάθος (Σ Λ) 1. Σκοπός της συγχώνευσης 2 ή περισσοτέρων ταξινοµηµένων πινάκων είναι η δηµιουργία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ. Γνωρίζω τον υπολογιστή ως ενιαίο σύστημα

ΕΝΟΤΗΤΑ. Γνωρίζω τον υπολογιστή ως ενιαίο σύστημα ΕΝΟΤΗΤΑ Γνωρίζω τον υπολογιστή ως ενιαίο σύστημα . Κεφάλαιο 1 Ψηφιακός Κόσµος Εισαγωγή Τι εννοούμε με τον όρο «ψηφιακός»; Ψηφιακό είναι ένα σύστημα που παίρνει τιμές από μια ομάδα συγκεκριμένων τιμών.

Διαβάστε περισσότερα

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης

Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών. Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Επιστημονική Ευθύνη Νικόλαος Ανδρεδάκης, Ομότιμος Καθηγητής Παν. Αθηνών Συγγραφή Παναγιώτης Μαμαλής, Θέμις Καψή, Ευάγγελος Τόλης, Στέλιος Μιχαήλογλου, Γιάννης Πρίντεζης Το παρόν εκπαιδευτικό υλικό παράχθηκε

Διαβάστε περισσότερα

Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers)

Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers) Κεφάλαιο 3 Αριθμητική Υπολογιστών (Arithmetic for Computers) 1 Αριθμοί και Υπολογιστές Μια λέξη μηχανής (computer word) αποτελείται από ένα αριθμό δυαδικών ψηφίων (bits) η λέξη αναπαρίσταται ως ένας δυαδικός

Διαβάστε περισσότερα

Στατιστική. Βασικές έννοιες

Στατιστική. Βασικές έννοιες Στατιστική Βασικές έννοιες Τι είναι Στατιστική; ή μήπως είναι: Στατιστική είναι ο κλάδος των εφαρμοσμένων επιστημών, η οποία βασίζεται σ ένα σύνολο αρχών και μεθοδολογιών που έχουν σκοπό: Το σχεδιασμό

Διαβάστε περισσότερα