Κωλέττη Ελένη, Εκπαιδευτικός ΠΕ70. Ψωμά Βασιλική, Εκπαιδευτικός ΠΕ70

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κωλέττη Ελένη, Εκπαιδευτικός ΠΕ70. Ψωμά Βασιλική, Εκπαιδευτικός ΠΕ70"

Transcript

1 Ρεαλιστική θεώρηση των μαθηματικών στο Δημοτικό Σχολείο: Η σημασία της οργάνωσης και της αναπαράστασης μιας προβληματικής κατάστασης για τη διατύπωση μαθηματικών συλλογισμών και τη δημιουργία μοντέλου επίλυσής της. Κωλέττη Ελένη, Εκπαιδευτικός ΠΕ70 Ψωμά Βασιλική, Εκπαιδευτικός ΠΕ70 Περίληψη: Η παρούσα εισήγηση αφορά στη διδακτική των μαθηματικών και αποτελείται από δυο διακριτά μέρη. Το πρώτο μέρος αποτελεί το θεωρητικό πλαίσιο, ενώ το δεύτερο μέρος το πρακτικό και εστιάζεται στη μαθηματική σκέψη, στην κατανόηση και στη δημιουργία δημιουργικού μαθησιακού περιβάλλοντος, που αναμφίβολα την προάγουν. Το πρακτικό μέρος αφορά σε μια δραστηριότητα, η οποία απαιτεί μοντελοποίηση και βασίζεται σε ένα ρεαλιστικό πρόβλημα για τη Στ τάξη του Δημοτικού. Εντάσσεται στην ενότητα «Μετρήσεις-Μοτίβα» και πληροί τα εξής τέσσερα στοιχεία: (1) Συνδέεται άμεσα με την πραγματικότητα. (2) Έχει άμεση σχέση με το κοινωνικό περιβάλλον των μαθητών. (3) Είναι βατή και ευχάριστη. (4) Περιέχει από τη φύση της όλες τις προς πραγμάτευση μαθηματικές έννοιες. Τα προβλήματα τα οποία κεντρίζουν το ενδιαφέρον των μαθητών και βρίσκουν εφαρμογή στην πραγματικότητα δίνουν ευκαιρία για παρατήρηση και πειραματισμό, ενεργοποιούν τη σκέψη και συμβάλλουν καθοριστικά στη μάθηση. Η σύγχρονη εποχή απαιτεί τη διερεύνηση του τρόπου που σκεφτόμαστε και αλλαγή στον τρόπο που μαθαίνουμε, για να οδηγηθούμε σε αλλαγή του τρόπου που ενεργούμε. Λέξεις-κλειδιά: μοτίβο, ρεαλιστικά μαθηματικά, μαθηματικοποίηση, μοντελοποίηση 1.Εισαγωγή Η προοδευτική μαθηματικοποίηση και μοντελοποίηση των ρεαλιστικών μαθηματικών καταστάσεων, αποτελούν βασική διαδικασία της επανατοποθέτησης των πραγματικών-ρεαλιστικών μαθηματικών προβλημάτων στον αφηρημένο κόσμο των μαθηματικών. Η σκέψη και η κατανόηση είναι άρρηκτα συνδεδεμένες, διότι η μια επηρεάζει και επηρεάζεται από την άλλη. Η μαθηματική σκέψη ενός ατόμου δεν είναι ανεξάρτητη από το ίδιο το άτομο, απεναντίας η στάση του απέναντι στα μαθηματικά, είναι δυνατό να επηρεαστεί από τη διδακτική μεθοδολογία, η οποία τον έφερε σε επαφή με τα μαθηματικά του σχολείου. 2. Ρεαλιστικά μαθηματικά Σύμφωνα με τα σύγχρονα δεδομένα της διδακτικής μεθοδολογίας ( των μαθηματικών του δημοτικού) ιδιαίτερη έμφαση οφείλεται να δίδεται στη δραστηριότητα της μαθηματικοποίησης (mathematization) (αναφορά του Λεμονίδη, 2003,στο Freudenthal,1968), η οποία χαρακτηρίζεται από πέντε αξιώματα (αναφορά του Λεμονίδη, Streefland, 1990): Η μάθηση είναι μια (ανα)κατασκευαστική δραστηριότητα, που προκαλείται από την πραγματικότητα. Η μάθηση είναι μακροχρόνια διαδικασία, που κινείται από το συγκεκριμένο στο αφηρημένο. ISSN

2 Η μάθηση υποβοηθείται από το συλλογισμό στη διαδικασία σκέψης των ίδιων των ατόμων και των άλλων. Η μάθηση είναι πάντοτε ενσωματωμένη σε ένα κοινωνικό-πολιτισμικό πλαίσιο. Η μάθηση είναι η κατασκευή της γνώσης και των δεξιοτήτων σε μια δομημένη οντότητα. Το μοντέλο διδασκαλίας των ρεαλιστικών μαθηματικών που έθεσε τις βάσεις για ριζική αναθεώρηση των στόχων, του αναλυτικού προγράμματος, των βιβλίων, των διδακτικών μεθόδων, της θέσης και του ρόλου των μαθητών και του εκπαιδευτικού, βασίστηκε: στις θεωρίες μάθησης και τα μοντέλα διδασκαλίας όπως ο εποικοδομητικός και η αποκαλυπτική-διερευνητική μάθηση, λαμβάνοντας υπόψη ότι η μάθηση είναι μια γνωστική διαδικασία κοινωνικά προσδιορισμένη (Vygotsky,1962) που πραγματοποιείται σε αυθεντικές καταστάσεις και οικοδομείται ενεργητικά μέσω μιας προσαρμοστικής διαδικασίας.συγκεκριμένα βασίστηκε: Στην οικοδόμηση της γνώσης πάνω στα άτυπα μοντέλα των μαθητών. Στην καθοδηγούμενη προσωπική ανακάλυψη από τους μαθητές των μαθηματικών εννοιών και δομών. Στην ομαδική διδασκαλία με αλληλεπίδραση στην τάξη. Στον καθοδηγητή εκπαιδευτικό που διαθέτει ποικίλες εναλλακτικές στρατηγικές στο ρεπερτόριό του. Tα ρεαλιστικά μαθηματικά επομένως, είναι μια θεωρία διδασκαλίας και μάθησης αλλά παράλληλα σύμφωνα με τον Freudenthal τα μαθηματικά είναι μια ανθρώπινη δραστηριότητα άρα πρέπει: (1) Να συνδέονται με την πραγματικότητα. (2) Να έχουν σχέση με την κοινωνία. (3) Να είναι βατά στους μαθητές ώστε : Να οδηγηθούν σταδιακά στην ανάπτυξη της ικανότητας λύσης ενός προβλήματος, καθώς η διαδικασία επίλυσης είναι αυτή που κατεξοχήν προάγει τη λογική και μεθοδική σκέψη. Να καλλιεργήσουν τις δεξιότητες διερεύνησης και δημιουργικότητας καθώς επίσης και τις στρατηγικές επίλυσης ενός προβλήματος. Να οδηγηθούν στην ανάλυση και ερμηνεία προβληματικών καταστάσεων, προτείνοντας, ελέγχοντας και βελτιώνοντας διάφορες λύσεις. Να αναπτύξουν την ικανότητα αξιολόγησης και βελτίωσης των λύσεων. 3. Μαθηματικοί στόχοι Στο νέο Α.Π.Σ των μαθηματικών του δημοτικού εισάγεται για πρώτη φορά, ως διδακτέα ενότητα σε όλες τις τάξεις, το μοτίβο. Τα μοτίβα αποτελούν προαλγεβρικές έννοιες οι οποίες βοηθούν τους μαθητές να αναγνωρίζουν τη σειρά των γεγονότων και να οργανώνουν τις καταστάσεις γύρω τους. Τα μοτίβα μπορούν να είναι γεωμετρικά και να αναφέρονται σε ακολουθίες γεωμετρικών σχεδίων, αριθμητικά και να αναφέρονται σε ακολουθίες αριθμών ή λεκτικά (επαναλαμβανόμενες λέξεις σε τραγούδια ή ποιήματα). Σύμφωνα με το Α.Π.Σ η διδασκαλία της ενότητας αυτής εντάσσεται, σε όλες τις τάξεις, στο κεφάλαιο των μετρήσεων. Οι συγγραφικές όμως ομάδες των σχολικών βιβλίων έχουν εντάξει δραστηριότητες με μοτίβα και σε άλλες ενότητες. ISSN

3 Σύμφωνα με το βιβλίο του μαθητή της Στ τάξης: Το στοιχείο που επαναλαμβάνεται και δημιουργεί ένα σχέδιο ονομάζεται γεωμετρικό μοτίβο. Για να δημιουργήσουμε ή να επεκτείνουμε ένα σχέδιο με επαναλαμβανόμενα μέρη, αρκεί να γνωρίζουμε το μοτίβο και τον τρόπο με τον οποίο αυτό επαναλαμβάνεται ( Μαθηματικά Στ Δημοτικού, σελ. 128) Εκτός από τα επαναλαμβανόμενα πρότυπα υπάρχουν και πρότυπα που εμπεριέχουν μια σταδιακή εξέλιξη. Τα πρότυπα αυτά δεν είναι άλλα από τις γνωστές μας αριθμητικές ακολουθίες (τα αριθμητικά και τα σύνθετα μοτίβα, έτσι όπως ορίζονται στο σχολικό βιβλίο της Στ τάξης ανήκουν σε αυτή την κατηγορία των προτύπων). Πολλά και ενδιαφέροντα πρότυπα μπορούμε να σχηματίσουμε μόνο με τους αριθμούς. Αριθμητικά πρότυπα όπως το 3, 6, 9,., μας είναι γνωστά, δεδομένου ότι είναι μεταξύ των προτύπων που μαθαίνουμε ως νέοι μαθητές. Όταν τα μικρά παιδιά αρχίζουν να μετρούν, μετρούν τους αριθμούς 1-1, έπειτα 2-2, 5-5, και τέλος Στην απαρίθμηση των αριθμών υπάρχει μια σειρά, μια τάξη, είτε οι αριθμοί μετρούνται προς τα πάνω, είτε προς τα κάτω. Αυτά τα αριθμητικά πρότυπα δίνουν στα μικρά παιδιά μια φυσική στρατηγική για να καταλάβουν την πρόσθεση. Όταν ο μικρός μαθητής εξετάζει ένα πρότυπο όπως το 2, 4, 6,..., αναρωτιέται, ποιον αριθμό πρέπει να προσθέσει για να φτάσει στον επόμενο αριθμό και στον επόμενο και στον επόμενο. Καθώς οι μαθητές μεγαλώνουν, η ενασχόληση με τα πρότυπα τους ωθεί από τα αθροίσματα στα γινόμενα. Όταν ο μικρός μαθητής αναρωτιέται για το ποιος είναι ο 50ος αριθμός στο παραπάνω πρότυπο, ξέρει να πολλαπλασιάζει 2 φορές το 50. Σε μια σειρά αριθμών που υπάρχει μια σχέση σταθερή και επαναλαμβανόμενη ανάμεσα στους αριθμούς, ο κανόνας που ορίζει τη σχέση αυτή και μας δείχνει πως δημιουργήθηκε η σειρά των αριθμών λέγεται αριθμητικό μοτίβο. (π.χ. 5, 10, 15, 20, 25, α, α + 5 ) ( Μαθηματικά Στ Δημοτικού, σελ. 130). Ένα σχέδιο που ακολουθεί ταυτόχρονα γεωμετρικό και αριθμητικό μοτίβο, λέγεται σύνθετο μοτίβο. Σε ένα τέτοιο σχέδιο ενώ διακρίνουμε εύκολα το γεωμετρικό μοτίβο. Για να διακρίνουμε το αριθμητικό χρειάζεται να καταγράψουμε τα δεδομένα σε έναν πίνακα (Μαθηματικά Στ Δημοτικού, σελ. 132.) Τα μοτίβα όπως αναφέρεται στο βιβλίο του εκπαιδευτικού της Στ τάξης, σελ 124, είναι περισσότερο μια διαδικασία ανακάλυψης παρά μια μαθηματική έννοια που θα διδαχθεί το παιδί. Είναι ο δρόμος που θα οδηγήσει τη σκέψη του στην άλγεβρα. Η προσπάθεια ανάπτυξης της αλγεβρικής σκέψης από τις πρώτες βαθμίδες της εκπαίδευσης, με την εξερεύνηση των προτύπων σε «ρεαλιστικά προβλήματα» και η προσπάθεια κατανόηση των σχέσεων και των λειτουργιών των προτύπων αυτών, οδηγεί σε διαδικασίες «συμβολικής αναπαράστασης» Μοτίβα έχει συναντήσει σε όλες τις προηγούμενες τάξεις, αλλά τώρα που διαθέτουν την απαιτούμενη ωριμότητα, θα τα μελετήσουν προσπαθώντας να ανακαλύψουν τον κανόνα με τον οποίο έχουν δημιουργηθεί και να τον εκφράσουν όπως μπορούν. 3.2.Προαπαιτούμενες γνώσεις και δεξιότητες Συγκεκριμένα οι μαθητές έχουν διδαχθεί: Να περιγράφουν και να αναπτύσσουν μοτίβα από το περιβάλλον τους (π.χ., τα πέταλα ενός λουλουδιού, απεικονίσεις σε έργα λαϊκής τέχνης,στα πλακάκια του σπιτιού τους,κηρήθρες μελισσών κ.λ.π.) ISSN

4 Να αναγνωρίζουν γεωμετρικά μοτίβα ως μέρος ενός σύνθετου σχεδίου και επαναλαμβάνοντας το μοτίβο να επεκτείνουν το αρχικό σχέδιο. Να κατανοούν ότι τα μοτίβα περιγράφουν μια κανονική ή προβλέψιμη αλλαγή και να συνεχίζουν την ακολουθία, αλλά και να δημιουργούν αριθμητικά και γεωμετρικά μοτίβα, χρησιμοποιώντας διάφορα μέσα. Να αναγνωρίζουν και να περιγράφουν διάφορα μοτίβα που συναντούν στους πίνακες πολλαπλασιασμού. Να επεκτείνουν αριθμητικά και γεωμετρικά μοτίβα και τα ταξινομούν σε αύξοντα, φθίνοντα ή επαναλαμβανόμενα. Για παράδειγμα: 3, 30, 300, 3000,... (αύξων αριθμητικό μοτίβο) 480, 240, 120, (φθίνων αριθμητικό μοτίβο) (επαναλαμβανόμενο γεωμετρικό μοτίβο) Να βρίσκουν στοιχεία που λείπουν σε αριθμητικά ή γεωμετρικά μοτίβα. Για παράδειγμα: 4, 8, 12,..., 20,..., 28 ή Να αναγνωρίζουν λάθη σε δοσμένους πίνακες, γραφικές παραστάσεις και μοτίβα και να εξηγούν γιατί ένας δοσμένος αριθμός είναι ή δεν είναι ο επόμενος αριθμός σε ένα μοτίβο (π.χ., 5, 7, 9, 12, 13...). Κύριος διδακτικός στόχος Να βελτιώσουν και να επεκτείνουν οι μαθητές τις γνώσεις τους ώστε να αναγνωρίζουν σύνθετα μοτίβα. Να χρησιμοποιούν και να κατασκευάζουν πίνακες προκειμένου να περιγράψουν και να αναπαραστήσουν δοσμένο αριθμητικό μοτίβο. Να κατανοήσουν ότι η διαδικασία καταγραφής των δεδομένων ενός σύνθετου μοτίβου σε πίνακα, βοηθά την ανακάλυψη του αριθμητικού μοτίβου και την κατανόησή του. Να διακρίνουν αν υπάρχει μοτίβο σε ένα πρόβλημα και να το χρησιμοποιούν για τη λύση. Να εκφράζουν σε αλγεβρική μορφή καταστάσεις με πολλαπλασιαστική δομή (π.χ., οι ρόδες πέντε αυτοκινήτων μπορούν να εκφραστεί ως 5χ4, συνεπώς οι ρόδες ν αυτοκινήτων μπορούν να εκφραστούν ως νχ4). Να περιγράφουν λεκτικά ή γραπτά μοτίβα που συναντούν σε πίνακες και γραφικές παραστάσεις και να επεξηγούν τη σχέση που υπάρχει ανάμεσα σε δύο διαδοχικούς αριθμούς του μοτίβου χρησιμοποιώντας το κατάλληλο λεξιλόγιο (περισσότερα, λιγότερα, διπλάσιο κτλ). Να ερμηνεύουν και να γράφουν έναν αλγεβρικό κανόνα για μια πράξη σύμφωνα με δοσμένο πίνακα (π.χ. Y= x+3) και να εκφράζουν δοσμένο πρόβλημα με εξίσωση στην οποία χρησιμοποιείται μια μεταβλητή (π.χ., γράμμα) ή ένα σύμβολο (π.χ., ) για να αναπαραστήσει ένα άγνωστο αριθμό. Να παράγουν νέες τιμές σε νέα στήλη σε δοσμένο πίνακα όταν τους δίνονται οι τιμές σε μια στήλη και ο κανόνας μοτίβου. Να εξηγούν τον κανόνα σε ένα δοσμένο αριθμητικό μοτίβο και να τον χρησιμοποιούν για να κάνουν γενικεύσεις και προβλέψεις για τα στοιχεία που ακολουθούν (επαγωγική σκέψη). 4. Πρακτική εφαρμογή O Δημήτρης στις 31 Οκτωβρίου 2009, που ήταν Σάββατο, βρέθηκε με τους γονείς του στην πλατεία Συντάγματος.Εκεί το ταχυδρομικό ταμιευτήριο με αφορμή την ISSN

5 παγκόσμια ημέρα αποταμίευσης είχε διοργανώσει μια εκδήλωση με πολλές εκπλήξεις για τους μικρούς του φίλους. Αφού διασκέδασε με τους ξυλοπόδαρους και τους κλόουν έμαθε για την αποταμίευση και τη σημασία της και του έκαναν δώρο έναν κουμπαρά. Σκέφτηκε να ξεκινήσει και ο ίδιος να αποταμιεύει ένα μέρος από το χαρτζιλίκι του. Κάθε μέρα έπαιρνε ένα ευρώ από τους γονείς του και δύο ευρώ από τους παππούδες του. Αποφάσισε λοιπόν να αποταμιεύει κάθε μέρα τα δύο ευρώ. Η απόφασή του βρήκε σύμφωνους τους γονείς του και ο πατέρας του, του έριξε τα τρί πρώτα ευρώ που είχε εκείνη τη στιγμή στην τσέπη του. Αν ο Δημήτρης ξεκίνησε να κάνει αποταμίευση από την αμέσως επόμενη μέρα πόσα χρήματα θα έχει συγκεντρώσει σε μία εβδομάδα ; Οι μαθητές με βάση τη συνιστώσα της οριζόντιας μαθηματικοποίησης που ορίζει ο Τreffers υποβοηθούνται να μεταφράσουν το πραγματικό πρόβλημα σε μαθηματικό. Έτσι μέσω συγκεκριμένων ενεργειών (π.χ. Αναπαράσταση του προβλήματος προσπαθούν να εντοπίσουν τις μαθηματικές έννοιες που βρίσκονται στο πλαίσιο του προβλήματος και να μεταβούν σταδιακά από τον κόσμο της ζωής στον κόσμο των συμβόλων. Στο επόμενο βήμα περνούν στην κατακόρυφη μαθηματικοποίηση κατά την οποία το (πραγματικό) πρόβλημα «μεταφράζεται» σε μαθηματικό και επεξεργάζεται με μαθηματικά εργαλεία (π.χ. Αναπαράσταση σχέσεων με τύπους, απόδειξη σχέσεων, χρήση γνωστών μοντέλων κ.λ.π.). Παρατηρούν και ανακαλύπτουν κανονικότητες, καθώς επίσης και την κρυμμένη τυπική μαθηματική δομή. Δηλαδή κινούνται στο χώρο των συμβόλων και γίνεται προσπάθεια να μυηθούν από το συγκεκριμένο στο αφηρημένο. Οι μαθητές της Στ τάξης μπορούν και πρέπει αρχίσουν να εξασκούνται ώστε να γενικεύουν τα πρότυπα με λέξεις ή με σύμβολα. Όταν τους ζητηθεί για παράδειγμα να προβλέψουν τα επόμενα στοιχεία του προτύπου τότε, επειδή είναι δύσκολο να ελέγξουν την πρόβλεψή τους, επεκτείνοντας το πρότυπο και βρίσκοντας όλα τα προηγούμενα στοιχεία, θα πρέπει να προσπαθήσουν να βρουν έναν κανόνα με τον οποίο θα το προσδιορίσουν. Παρατηρώντας τον πίνακα με τον οποίο έχει περιγραφεί το πρότυπο (ο πίνακας αποτελεί μια ακόμη μορφή αναπαράστασης του προτύπου) πρέπει να προσπαθήσουν να ανακαλύψουν, τη σταθερή και επαναλαμβανόμενη σχέση ανάμεσα σε δύο διαδοχικούς αριθμούς του, δηλαδή τον κανόνα που ρυθμίζει τη σχέση που έχει ένας αριθμός με τον επόμενό του και μας δείχνει τον τρόπο με τον οποίο δημιουργήθηκε το πρότυπο (βιβλίο μαθητή Στ τάξης, σελ ). Σ αυτή τη διαδικασία το πιο σημαντικό είναι η συλλογιστική που αναπτύσσεται πίσω από κάθε πρόβλεψη. Ο κανόνας μπορεί στην αρχή να διατυπωθεί λεκτικά, με πολλούς και διαφορετικούς τρόπους. Επομένως οι μαθητές καλούνται να μελετήσουν τη σχέση που συνδέει το ποσό της πρώτης και της δεύτερης μέρας. Προφανώς οι μαθητές θα απαντήσουν ότι κάθε μέρα έχει 2 περισσότερα από την προηγούμενη. Αν συμβολίσουμε το ποσό της 1ης ημέρας με κ, πώς μπορούμε να συμβολίσουμε το ποσό της 2ης ημέρας ; Αναμενόμενη απάντηση: κ+2 Το ποσό της 3ης ημέρας ; ( κ+2)+2 Το ποσό της 4 ης ημέρας ; (κ+2)+2+2 κ.οκ Στη συνέχεια καλούνται να σκεφθούν, πώς αλλιώς θα μπορούσαν να εκφράσουν το άθροισμα 2+2; Αναμενόμενη απάντηση: 2x2 Το άθροισμα 2+2+2; Αναμενόμενη απάντηση: 3x2 Οργανώνοντας καλύτερα τα αποτελέσματα οι μαθητές καλούνται να φτιάξουν ένα πίνακα. Υποβοηθούνται να καταλήξουν σε κάτι παρόμοιο. ISSN

6 1 η ημέρα 3+0 κ+0 κ+(0x2) 2 η ημέρα 3+2 κ+2 κ+(1x2) 3 η ημέρα κ+2+2 κ+(2x2) 4 η ημέρα κ κ+(3x2) 5 η ημέρα κ κ+(4x2) 6 η ημέρα κ κ+(5x2) Πίνακας 1. Μοντελοποίηση Στη συνέχεια οι μαθητές τους ζητείται να παρατηρήσουν τι παραμένει σταθερό και τι αλλάζει. Αναμενόμενη απάντηση: Σταθερό παραμένει το ποσό της πρώτης μέρας δηλαδή το 3 και το 2 ως παράγοντας. Αλλάζει όμως το πλήθος των παραγόντων του 2, το οποίο αν συνδυαστεί με τη σειρά της κάθε μέρας αντίστοιχα, είναι μειωμένο κατά ένα. Τους τίθεται ο προβληματισμός, μελετώντας προσεκτικά τον πίνακα, αν θα μπορούσαν να βρουν έναν τρόπο ώστε να υπολογίζουν το ποσό οποιασδήποτε ημέρας. Προτρέπονται να ανακαλύψουν τη σχέση που συνδέει τη σειρά της ημέρας με τον πρώτο παράγοντα της παρένθεσης. Εφαρμόζοντας και αναπαριστώντας τις παρατηρήσεις συνεχίζουν τη συμπλήρωση του πίνακα. 1 η ημέρα 3+0 κ+0 κ+(0 x 2) κ+(1-1) x2 2 η ημέρα 3+2 κ+2 κ+(1 x 2) κ+(2-1) x2 3 η ημέρα κ+2+2 κ+( 2x 2) κ+(3-1) x2 4 η ημέρα κ κ+(3 x 2) κ+(4-1) x2 5 η ημέρα κ κ+(4 x 2) κ+(5-1) x2 6 η ημέρα κ+2 κ+(5 x 2) κ+(6-1) x Πίνακας 2. Μοντελοποίηση Συνέχεια οδηγούνται σε ένα επιπλέον βήμα γενίκευσης. Τους ζητείται να αντικαταστήσουν με ένα γράμμα έστω ν τη σειρά της ημέρας και οδηγούνται στον εξής τύπο. κ+(ν-1) x2 (όπου κ το ποσό της πρώτης ημέρας το οποίο παραμένει σταθερό) οπότε στη συγκεκριμένη περίπτωση ο τύπος θα μπορούσε να έχει ως εξής: 3+(ν-1) x2 Δουλεύοντας πάνω στον τύπο επαληθεύουν το αποτέλεσμα για τις μέρες που ήδη γνωρίζουν και να προσπαθούν να προβλέψουν ποιο στοιχείο βρίσκεται σε μια συγκεκριμένη θέση για ημέρες που δε βρίσκονται στον πίνακα που ήδη έχουν σχηματίσει. Στη συνέχεια τίθεται ο εξής προβληματισμός: Κάθε εβδομάδα θα διπλασιάζεται, θα τριπλασιάζεται, θα τετραπλασιάζεται κ.ο.κ το ποσό τους ; Αναμένεται να δώσουν θετική απάντηση και παροτρύνονται να συνεχίσουν την αναπαράσταση του προβλήματος συμπληρώνοντας τον πίνακα που ήδη έχουν ξεκινήσει. Εφαρμόζοντας τον τύπο συμπληρώνουν στον πίνακά τους μία επιπλέον εβδομάδα. 1 η εβδομάδα 2 η εβδομάδα Σάββατο 3 17 Κυριακή 5 19 Δευτέρα 7 21 ISSN

7 Τρίτη 9 23 Τετάρτη Πέμπτη Παρασκευή Πίνακας 3. Μετά τη συμπλήρωση του πίνακα καλούνται να δικαιολογήσουν γιατί το αποτέλεσμα είναι 29 και όχι 30 που πιθανόν ήταν γι αυτούς το αναμενόμενο. Κάποιοι ίσως απαντήσουν ότι αν κάθε μέρα αποταμίευε 2 τότε σε μια εβδομάδα θα είχε 14. Αφού την πρώτη, μέρα αποταμίευσε 1 παραπάνω έχει:(2 x 14)+1=29 Επεξηγώντας με παραδείγματα οδηγούνται στο συμπέρασμα ότι το άθροισμα ενός περιττού με έναν άρτιο αριθμό είναι περιττός αριθμός. Στην ερώτηση αν την 3 η εβδομάδα θα έχει τριπλασιαστεί το ποσό τους, αναμένουμε να μας δώσουν διστακτικά αρνητική απάντηση. Ζητείται να εκφράσουν την εκτίμησή τους βασιζόμενοι στο συλλογισμό που ήδη αναπτύχθηκε. Παροτρύνονται να συνεχίσουν την αναπαράσταση του προβλήματος και για τις επόμενες εβδομάδες. 1 η εβδομάδα 2 η εβδομάδα 3 η Εβδομάδα 4 η Εβδομάδα 5 η εβδομάδα 6 η Εβδομάδα Σάββατο Κυριακή Δευτέρα Τρίτη Τετάρτη Πέμπτη Παρασκευή Πίνακας 4. Με την παρατήρηση του πίνακα διαπιστώνουν ότι τη 2 η εβδομάδα δεν έχουν διπλάσια χρήματα από την 1 η, την 3 η δεν έχουν τριπλάσια από την πρώτη, την 4 η δεν έχουν τετραπλάσια από την πρώτη κ.ο.κ Καλούνται να εκφράσουν τις παρατηρήσεις τους και τους προβληματισμούς τους. Ζητείται να υπολογίσουν τις διαφορές των ποσών της 2 ης εβδομάδας από το αναμενόμενο διπλάσιο, της 3 ης από το αναμενόμενο τριπλάσιο, της 4 ης από το αναμενόμενο τετραπλάσιο κ.ο.κ και να παρατηρήσουν πόσο διαφέρει από την αρχική τους πρόβλεψη. 1 η εβδομάδα 15 2 η εβδομάδα (2 x15)-29=1 Μία μονάδα διαφορά από το διπλάσιο αναμενόμενο αποτέλεσμα 3 η εβδομάδα (3 x15)-43=2 Δύο μονάδες διαφορά από το τριπλάσιο αναμενόμενο αποτέλεσμα 4 η εβδομάδα (4 x15)-57=3 Τρεις μονάδες διαφορά από το τετραπλάσιο ISSN

8 αναμενόμενο αποτέλεσμα 5 η εβδομάδα (5 x15)-71=4 Τέσσερις μονάδες διαφορά από το πενταπλάσιο αναμενόμενο αποτέλεσμα 6 η εβδομάδα (6 x15)-85=5 Πέντε μονάδες διαφορά από το εξαπλάσιο αναμενόμενο αποτέλεσμα Πίνακας 5. Παρατηρώντας τους πίνακες 4 και 5 καλούνται να εκφράσουν με διαφορετικό τρόπο το τελικό ποσό κάθε εβδομάδας και να απαντήσουν στο ερώτημα: Τι παραμένει σταθερό και τι αλλάζει; Αναμενόμενη απάντηση: Σταθερό παραμένει το ποσό της πρώτης εβδομάδας δηλαδή το 15. Μεταβάλλεται όμως η διαφορά η οποία αυξάνει σταδιακά κατά 1 από την αμέσως προηγούμενη εβδομάδα. Κάνουν τις παρατηρήσεις τους και τις οργανώνουν σε έναν πίνακα. Έστω Ε το ποσό της πρώτης εβδομάδας. 1 η εβδομάδα 15 Ε 2 η εβδομάδα (2x15)-1=29 2xΕ-1 3 η εβδομάδα (3x15)-2=43 3xE-2 4 η εβδομάδα (4x15)-3=57 4xE-3 5 η εβδομάδα (5x15)-4=71 5xE-4 6 η εβδομάδα (6x15)-5=85 6xΕ-5 Πίνακας 6. Θέτοντάς τους τα κατάλληλα ερωτήματα υποβοηθούνται να οδηγηθούν σε έναν τύπο σύμφωνα με τον οποίο θα μπορούν να υπολογίσουν το συνολικό ποσό οποιασδήποτε εβδομάδας. Συγκρίνοντας τη σειρά της εβδομάδας, με τον αριθμό που κάθε φορά αφαιρείται, παρατηρούν τι παραμένει σταθερό και τι αλλάζει. Καταλήγουν ότι κάθε φορά ο αριθμός που αφαιρείται είναι κατά ένα μικρότερος από τη σειρά. Έτσι αποτυπώνουν με σύμβολα τις παρατηρήσεις τους και συμπληρώνουν τον πίνακα όπως εργάστηκαν και στην προηγούμενη φάση εξακολουθώντας να συμβολίζουν με ν τη σειρά των εβδομάδων. ΜΟΝΤΕΛΟΠΟΙΗΣΗ 1 η εβδομάδα (1x15)-0=15 1 xε-0 1 x Ε-0 1xΕ-(1-1) 2 η εβδομάδα (2x15)-1=29 2 xε-1 2 x Ε-1 2xΕ-(2-1) 3 η εβδομάδα (3 x15)-2=43 3 xe-2 3 x E-2 3xΕ-(3-1) 4 η εβδομάδα (4 x15)-3=57 4 xe-3 4 x E-3 4xΕ-(4-1) 5 η εβδομάδα (5 x15)-4=71 5 xe-4 5 x E-4 5xΕ-(5-1) 6 η εβδομάδα (6x15)-5=85 6 xε-5 6 x Ε-5 6xΕ-(6-1) Πίνακας 7. Αν συμβολίσουν με ν τη σειρά της εβδομάδας οδηγούνται στον εξής τύπο: ISSN

9 νxε-(ν-1) Ζητάμε να δουλέψουν πάνω στον τύπο και να επαληθεύσουν το αποτέλεσμα για τις εβδομάδες που ήδη γνωρίζουν από τον πίνακα 4, αλλά και για τις επόμενες. Εφαρμογή του τύπου και επαλήθευση: 1 η εβδομάδα: για ν=1 έχουμε: 1χ15-(1-1)=15 2 η εβδομάδα: για ν=2 έχουμε: 2χ15-(2-1)=29 3 η εβδομάδα: για ν=3 έχουμε: 3χ15-(3-1)=43 κ.ο.κ. Στη συνέχεια φτιάχνουν δικά τους μοτίβα. Οι κατασκευές ως γνωστόν ενθουσιάζουν τους μαθητές και επειδή ίσως είναι δύσκολο να φτιάξουν αριθμητικά μοτίβα, προτρέπονται με κυβάκια και να προσπαθήσουν να δημιουργήσουν τα δικά τους σύνθετα μοτίβα. Ταυτόχρονα κοιτώντας το γεωμετρικό σχέδιο, επιχειρούν να ανακαλύψουν τον κανόνα που θα τους επιτρέπει να υπολογίσουν τον αριθμό των κύβων οποιουδήποτε μεγέθους σχήματος. Φτιάχνουν μοτίβα τα οποία παρουσιάζουν στους υπόλοιπους συμμαθητές τους, ενώ σε μεγάλο βαθμό καταλαβαίνουν, πώς πρέπει να αξιοποιούν το γεωμετρικό μοτίβο προκειμένου να ανακαλύπτουν τον κανόνα, που τους επιτρέπει να υπολογίσουν τους κύβους σ' οποιοδήποτε μέγεθος θέλουν. Έτσι οδηγούνται καλύτερα στην κατανόηση των σύνθετων αριθμητικών μοτίβων. Η μάθηση επιτυγχάνεται με την ελεύθερη δράση των μαθητών, είναι ευχάριστη και δημιουργική. 4.Αξιολόγηση 4.1. Σταδιακή ή διαμορφωτική: Διατρέχει όλη τη μαθησιακή διαδικασία, συνδέεται άμεσα με τους διδακτικούς στόχους και αφορά τόσο διαδικασίες όσο και αποτελέσματα. Άτυπα εφαρμόζεται μέσα από τις ερωταπαντήσεις των μαθητών σε όλη τη διάρκεια του μαθήματος. Η τυπική εφαρμογή της γίνεται με τις "ερωτήσεις για αυτοέλεγχο και συζήτηση". Επίσης στη διαμορφωτική αξιολόγηση εντάσσεται (μετά το τέλος των "ερωτήσεων για αυτοέλεγχο και συζήτηση") η επιστροφή στην αρχική φάση του μαθήματος όπου θα διαβαστεί και θα σχολιαστεί: η προβληματική κατάσταση και οι στόχοι. 4.2.Τελική ή συνολική: Επιτυγχάνεται, στο τέλος της ενότητας "Μετρήσεις Μοτίβα", με τα επαναληπτικά μαθήματα και την εφαρμογή όσων διδάχτηκαν δημιουργώντας οι μαθητές δικά τους μοτίβα και ανακαλύπτοντας τις σχέσεις που τα διέπουν. Αντί επιλόγου Τα μαθηματικά είναι μια επιστήμη αντικειμένων που χαρακτηρίζονται από πρότυπα κανονικότητας και μια λογική τάξη. Βρίσκοντας και διερευνώντας αυτή τη κανονικότητα ή την τάξη και κατόπιν κατανοώντας την, είναι το επιστέγασμα αυτού που λέμε "κάνω μαθηματικά". Η διαδικασία "κάνω" μαθηματικά σημαίνει κάτι πολύ περισσότερο από τον ακριβή υπολογισμό ή την αφαίρεση καθώς περιλαμβάνει την παρατήρηση των προτύπων, τη δοκιμή των υποθέσεων και την εκτίμηση των αποτελεσμάτων Βιβλιογραφικές παραπομπές: Αρσένης, Κ. (2004) Πώς απαντούν οι μαθητές του Δημοτικού σε Ρεαλιστικά προβλήματα. Ανακτήθηκε στις 20Φεβρουαρίου 2010, από την ηλεκτρονική διεύθυνση: ISSN

10 Επιμορφωτικό Υλικό Πρωτοβάθμιας Εκπαίδευσης.(2005). Αθήνα: Ινστιτούτο Παιδαγωγικό Κολέζα, Ε. (2000). Γνωσιολογική και Διδακτική προσέγγιση των Στοιχειωδών Μαθηματικών Εννοιών. Αθήνα: Leader Books. Κολέζα, Ε. (2000). Ρεαλιστικά μαθηματικά στην πρωτοβάθμια εκπαίδευση. Αθήνα: Leader Books. Κολέζα, Ε. (2000). Θεωρία και πράξη στη διδασκαλία των μαθηματικών. Αθήνα: Τόπος. ΟΕΔΒ. Μαθηματικά Στ Δημοτικού. ΟΕΔΒ. Βιβλίο Δάσκαλου Στ Δημοτικού. Παπαδάκης, Β.(2006). Προβλήματα μαθηματικών Στ Δημοτικού. Αθήνα: Σαββάλας. Παπαθανασίου, Γ., Παπαθανασίου, Δ. Μαθηματικά στ Δημοτικού. Αθήνα: Μεταίχμιο Πινάτσης, Π., (2006). Σχολικά εγχειρίδια και πλαίσια εφαρμογής ρεαλιστικών μαθηματικών. Εισήγηση στο23ο Πανελλήνιο Συνέδριο Μαθηματικής Παιδειας Νοεμβρίου 2006, Πάτρα. Ανακτήθηκε στις 18 Φεβρουαρίου 2010, από την ηλεκτρονική διεύθυνση: Τάσιος,Θ., Παιδαγωγικά θέματα και Διδακτική. Ανακτήθηκε στις 25 Φεβρουαρίου 2010, από την ηλεκτρονική διεύθυνση:http://users.forthnet.gr/ath/thantas77/edu/project034.html Τσικοπούλου, Σ., (2007). Ο ρόλος των προτύπων(μοτίβων) στη διδασκαλία των Mαθηματικών. Ανακτήθηκε στις 25 Φεβρουαρίου 2010, από την ηλεκτρονική διεύθυνση:http://users.uoa.gr/~spapast/synedrkozan/praktika/06programmata /3026Tsikopoylou.doc ISSN

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20

ΕΝΟΤΗΤΑ 12 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΠΡΑΞΕΙΣ ΜΕΧΡΙ ΤΟ 20 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ 1.6 Συνθέτουν και αναλύουν αριθμούς μέχρι το 100 με βάση την αξία θέσης ψηφίου, χρησιμοποιώντας αντικείμενα, εικόνες, και σύμβολα. Αρ

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ

Διαβάστε περισσότερα

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών

Γενική οργάνωση σεναρίου. 1. Προαπαιτούμενες γνώσεις και πρότερες γνώσεις των μαθητών Παράρτημα 1: Τεχνική έκθεση τεκμηρίωσης σεναρίου Το εκπαιδευτικό σενάριο που θα σχεδιαστεί πρέπει να συνοδεύεται από μια τεχνική έκθεση τεκμηρίωσής του. Η τεχνική αυτή έκθεση (με τη μορφή του παρακάτω

Διαβάστε περισσότερα

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.

Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:

Διαβάστε περισσότερα

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ

ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΜΑΘΗΣΗ ΜΕΣΩ ΣΧΕΔΙΑΣΜΟΥ 1 ΑΠΌ ΤΗ «ΦΙΛΟΣΟΦΙΑ»ΤΟΥ ΠΡΟΓΡΆΜΜΑΤΟΣ ΣΠΟΥΔΏΝ ΣΤΗΝ ΕΦΑΡΜΟΓΉ ΤΗΣ ΣΤΗΝ ΤΆΞΗ Ε.ΚΟΛΈΖΑ ΠΕΡΙΕΧΟΜΕΝΟ ΕΙΣΗΓΗΣΗΣ 1. Τι αλλαγές επιχειρούν τα νέα ΠΣ; 2 2. Γιατί το πέρασμα στην πράξη (θα)

Διαβάστε περισσότερα

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.

«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. «Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,

Διαβάστε περισσότερα

Τα σχέδια μαθήματος 1 Εισαγωγή

Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες

ΕΙΣΑΓΩΓΗ. Βασικές έννοιες ΕΙΣΑΓΩΓΗ Βασικές έννοιες Σε ένα ερωτηματολόγιο έχουμε ένα σύνολο ερωτήσεων. Μπορούμε να πούμε ότι σε κάθε ερώτηση αντιστοιχεί μία μεταβλητή. Αν θεωρήσουμε μια ερώτηση, τα άτομα δίνουν κάποιες απαντήσεις

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ 2011 ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ Τα σύγχρονα

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το

Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το Παράδειγμα 1 Γράψε ένα δεκαδικό αριθμό μεταξύ του 2 και του 3 που δεν περιέχει το 5 που περιέχει το 7 και που βρίσκεται όσο πιο κοντά γίνεται με το 5/2 1 Παράδειγμα 2: Γράψε ένα κλάσμα που χρησιμοποιεί

Διαβάστε περισσότερα

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2

3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας. «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 3ο Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ «Το Φως» Παναγιωτάκης Χαράλαμπος 1, Βενιώτη Ανθή 2 1 Καθηγητής, Φυσικός, 2 ο Γενικό Λύκειο Αγ. Νικολάου Κρήτης xaralpan@gmail.com 2 Καθηγήτρια, Φυσικός,

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο

Διαβάστε περισσότερα

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού.

Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. Εκπαιδευτικό σενάριο διδασκαλίας και μάθησης με την αξιοποίηση εκπαιδευτικού λογισμικού. 1.ΣΥΝΟΠΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΤΟΥ ΣΕΝΑΡΙΟΥ Συγγραφέας: Μποζονέλου Κωνσταντίνα 1.1.Τίτλος διδακτικού σεναρίου Οι τέσσερις

Διαβάστε περισσότερα

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης

ΕΠΑ 331 Διδακτική των Μαθηματικών. Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης ΕΠΑ 331 Διδακτική των Μαθηματικών Παρουσίαση «Γεωμετρία» ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1 ΤΑ ΕΠΙΠΕΔΑ Van Hiele Επίπεδο 0. Επίπεδο Σφαιρικής ή ολικής αντίληψης 1. Αναγνωρίζουν

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα

Διαβάστε περισσότερα

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ ΤΗΣ Α ΚΑΙ Γ ΤΑΞΗΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Λεμονίδης Χ. (2007). Ο εκσυγχρονισμός των μαθηματικών περιεχομένων στα νέα βιβλία της Α και Γ τάξης του Δημοτικού Σχολείου. Γέφυρες, 31:24-31. Ο ΕΚΣΥΓΧΡΟΝΙΣΜΟΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΡΙΕΧΟΜΕΝΩΝ ΣΤΑ ΝΕΑ ΒΙΒΛΙΑ

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ

ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ

ΕΝΟΤΗΤΑ 11 ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΠΕΝΤΑΨΗΦΙΟΙ ΚΑΙ ΕΞΑΨΗΦΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΑΞΕΙΣ ΑΚΕΡΑΙΩΝ ΑΡΙΘΜΩΝ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών ΑΡ2.5 Αναπαριστούν, συγκρίνουν και σειροθετούν ομώνυμα κλάσματα

Διαβάστε περισσότερα

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος

Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Σχόλια και υποδείξεις για το Σχέδιο Μαθήματος Ακολούθως αναπτύσσονται ορισμένα διευκρινιστικά σχόλια για το Σχέδιο Μαθήματος. Αφετηρία για τον ακόλουθο σχολιασμό υπήρξαν οι σχετικές υποδείξεις που μας

Διαβάστε περισσότερα

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ

ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Τρίγωνα - Είδη τριγώνων ως προς τις γωνίες και τις πλευρές - Ύψη τριγώνου Κανέλλα Κούτση ΚΣΕ 7ο

Διαβάστε περισσότερα

Σχέδιο παρουσίασης των διδασκαλιών ή των project

Σχέδιο παρουσίασης των διδασκαλιών ή των project Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Α ΕΙΣΗΓΗΣΕΙΣ ΓΙΑ ΠΡΟΩΘΗΣΗ ΤΟΥ 1 ΟΥ ΥΠΟ ΕΜΦΑΣΗ ΣΤΟΧΟΥ «ΒΕΛΤΙΩΣΗ ΤΩΝ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ» ΤΗΣ ΣΧΟΛΙΚΗΣ ΧΡΟΝΙΑΣ 2014 2015

ΠΑΡΑΡΤΗΜΑ Α ΕΙΣΗΓΗΣΕΙΣ ΓΙΑ ΠΡΟΩΘΗΣΗ ΤΟΥ 1 ΟΥ ΥΠΟ ΕΜΦΑΣΗ ΣΤΟΧΟΥ «ΒΕΛΤΙΩΣΗ ΤΩΝ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ» ΤΗΣ ΣΧΟΛΙΚΗΣ ΧΡΟΝΙΑΣ 2014 2015 ΠΑΡΑΡΤΗΜΑ Α ΕΙΣΗΓΗΣΕΙΣ ΓΙΑ ΠΡΟΩΘΗΣΗ ΤΟΥ 1 ΟΥ ΥΠΟ ΕΜΦΑΣΗ ΣΤΟΧΟΥ «ΒΕΛΤΙΩΣΗ ΤΩΝ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ» ΤΗΣ ΣΧΟΛΙΚΗΣ ΧΡΟΝΙΑΣ 2014 2015 Οι εισηγήσεις, που παρουσιάζονται πιο κάτω είναι ενδεικτικές και δεν

Διαβάστε περισσότερα

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20

ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΑΘΗΓΗΤΗΣ Χ. ΛΕΜΟΝΙΔΗΣ ΟΙ ΣΤΡΑΤΗΓΙΚΕΣ ΠΡΟΣΘΕΣΗΣ ΚΑΙ ΑΦΑΙΡΕΣΗΣ ΜΕ ΑΡΙΘΜΟΥΣ ΜΕΧΡΙ ΤΟ 20 Στη διδασκαλία συνήθως τα παιδιά αρχικά διδάσκονται τις

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µικρές τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Η έννοια της ανακύκλωσης» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου

Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου Το ΔΕΠΠΣ- ΑΠΣ των Μαθηματικών του Δημοτικού Σχολείου, τα Νέα Βιβλία των Μαθηματικών του Δημοτικού Σχολείου Πού στηρίζεται η συγκεκριμένη εισήγηση Στο ΔΕΠΠΣ και ΑΠΣ των μαθηματικών του Δημοτικού Σχολείου

Διαβάστε περισσότερα

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:

Περιληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής: Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να

Διαβάστε περισσότερα

Προηγµένες Μαθησιακές Τεχνολογίες ιαδικτύου και Εκπαίδευση από Απόσταση

Προηγµένες Μαθησιακές Τεχνολογίες ιαδικτύου και Εκπαίδευση από Απόσταση ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Π Α Ι Α Γ Ω Γ Ι Κ Ο Τ Μ Η Μ Α Η Μ Ο Τ Ι Κ Η Σ Ε Κ Π Α Ι Ε Υ Σ Η Σ Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Ο Π Ρ Ο Γ Ρ Α Μ Μ Α Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Τ Η Ν Ε Κ Π Α Ι Ε Υ Σ Η Ι ΑΣΚΟΜΕΝΟ ΜΑΘΗΜΑ Προηγµένες

Διαβάστε περισσότερα

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης

Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Οδηγίες για αξιολόγηση στο πλαίσιο ομότιμης συνεργατικής μάθησης Τι είναι το PeLe; Το PeLe είναι ένα διαδικτυακό περιβάλλον που ενθαρρύνει την αξιολόγηση στο πλαίσιο της ομότιμης συνεργατικής μάθησης και

Διαβάστε περισσότερα

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE

ΕΚΠΑΙ ΕΥΤΙΚΕΣ ΡΑΣΤΗΡΙΟΤΗΤΕΣ ΜΕ ΤΟ ΑΒΑΚΙΟ/E-SLATE Θέµα ιερεύνησης: Σχεδιασµός γραµµάτων Μπορώ να φτιάξω το δικό µου επεξεργαστή κειµένου; Στη διερεύνηση αυτή οι µαθητές καλούνται να κατασκευάσουν µια γραµµατοσειρά µε όλα τα κεφαλαία γράµµατα του ελληνικού

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης

5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης 5 Ψυχολόγοι Προτείνουν Τις 5 Πιο Αποτελεσματικές Τεχνικές Μάθησης Μια πολύ ενδιαφέρουσα συζήτηση για τις πιο αποτελεσματικές στρατηγικές και τεχνικές μάθησης για τους μαθητές όλων των ηλικιών ανοίγουν

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αγωγοί και µονωτές» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.

Διαβάστε περισσότερα

Συνδυαστικά Κυκλώματα

Συνδυαστικά Κυκλώματα 3 Συνδυαστικά Κυκλώματα 3.1. ΣΥΝΔΥΑΣΤΙΚΗ Λ ΟΓΙΚΗ Συνδυαστικά κυκλώματα ονομάζονται τα ψηφιακά κυκλώματα των οποίων οι τιμές της εξόδου ή των εξόδων τους διαμορφώνονται αποκλειστικά, οποιαδήποτε στιγμή,

Διαβάστε περισσότερα

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ

ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ 1 ΓΕΩΓΡΑΦΙΑ ΜΕ ΤΟ GOOGLE EARTH: Η ΕΥΡΩΠΗ ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ Κώστας Κύρος ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Ανοίξτε το λογισμικό Google Earth και προσπαθήστε να εντοπίσετε τη θέση της Ευρώπης στη Γη. Κατόπιν για να

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή

Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Σενάριο Διδασκαλίας του Εσωτερικού του Ηλεκτρονικού Υπολογιστή Αθανάσιος Βράντζας 1 vrantzas@sch.gr 1 Καθηγητής Πληροφορικής Περίληψη Στην εργασία αυτή θα επιχειρηθεί να παρουσιαστεί η διδασκαλία του εσωτερικού

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες

Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Επαναλαμβάνοντας το Ισόπλευρο Τρίγωνο με Δύο Κώδικες Λουμπαρδιά Αγγελική 1, Ναστάκου Μαρία 2 1 Καθηγήτρια Μαθηματικών, 2 o Γενικό Λύκειο Τρίπολης loumpardia@sch.gr 2 Διευθύντρια, ΙΕΚ Σπάρτης marynasta@sch.gr

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου

Οδηγός Εκπαιδευτικού για το Πρόγραμμα Σπουδών του Νηπιαγωγείου ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) 2011 Οδηγός

Διαβάστε περισσότερα

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική)

«ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) ΝΤΑΗ ΕΙΡΗΝΗ ΤΜΗΜΑ: Π.Τ.Δ.Ε, ΠΑΤΡΑΣ 2012-13 ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ Ε.ΚΟΛΕΖΑ «ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ» ΤΑΞΗ: ΣΤ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ :Συλλογή και επεξεργασία δεδομένων (Στατιστική) [1] Στόχοι της ενότητας(οι μαθητές

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες)

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗΝ ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΕΙ ΙΚΟ ΜΕΡΟΣ: ΚΛΑ ΟΣ ΠΕ60/70 (78 ώρες) 1. 9 Εκπαιδευτική χρήση βασικών εργαλείων πληροφορικής, πολυµεσικών εργαλείων και του διαδικτύου

Διαβάστε περισσότερα

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού

Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Θέµατα αξιολόγησης εκπαιδευτικού λογισµικού Όνοµα: Τάσος Αναστάσιος Επώνυµο: Μικρόπουλος Τίτλος: Αναπληρωτής Καθηγητής, Εργαστήριο Εφαρµογών Εικονικής Πραγµατικότητας στην Εκπαίδευση, Πανεπιστήµιο Ιωαννίνων

Διαβάστε περισσότερα

ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟ ΒΙΒΛΙΟ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΗΜΗΤΡΗΣ ΧΑΣΑΠΗΣ Επιμέλεια 7 o Διήμερο Διαλόγου για τη Διδασκαλία των Μαθηματικών 15 & 16 Μαρτίου 2008 Ομάδα Έρευνας της Μαθηματικής Εκπαίδευσης ΘΕΣΣΑΛΟΝΙΚΗ i ΤΟ

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών

1 Διαθεματικό Ενιαίο Πλαίσιο Προγράμματος Σπουδών Μαθηματικών 1.Τίτλος: «Ολυμπιακοί αγώνες» 2.Εμπλεκόμενες γνωστικές περιοχές: Το σενάριο απευθύνεται σε μαθητές της Ε τάξης. Στο συγκεκριμένο σενάριο εμπλέκονται οι γνωστικές περιοχές των Μαθηματικών (Γεωμετρία), της

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΜΑΘΗΜΑ ΔΙ.ΜΕ.ΠΑ. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΔΑΣΚΩΝ ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Θέμα Εργασίας ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η

Διαβάστε περισσότερα

Το πρόβλημα στα Μαθηματικά

Το πρόβλημα στα Μαθηματικά Το πρόβλημα στα Μαθηματικά από το ΣΔΕ Γιαννιτσών Δημήτρης Πολυτίδης (Μαθηματικός) Στα Μαθηματικά το πρόβλημα θα πρέπει να είναι μια κατάσταση η επίλυση της οποίας, από το μαθητή, δεν είναι αυτόματη και

Διαβάστε περισσότερα

Νέες τάσεις στη διδακτική των Μαθηματικών

Νέες τάσεις στη διδακτική των Μαθηματικών Νέες τάσεις στη διδακτική των Μαθηματικών Μέχρι πριν λίγα χρόνια ηαντίληψη που επικρατούσε ήταν ότι ημαθηματική γνώση είναι ένα αγαθό που έχει παραχθεί και καλούνται οι μαθητές να το καταναλώσουν αποστηθίζοντάς

Διαβάστε περισσότερα

ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΕΤΡΟΣ ΟΙΚΟΝΟΜΟΥ ΣΥΓΧΡΟΝΗ Ι ΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ Απευθύνεται: Σε κάθε εκπαιδευτικό που ενδιαφέρεται να βελτιώσει και να εκσυγχρονίσει τη διδασκαλία του/της. Στους/ις υποψήφιους/ες

Διαβάστε περισσότερα

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ

Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση. Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Θεωρητικές και μεθοδολογικές προσεγγίσεις στη μελέτη της περιοδικότητας: Μια συστημική προσέγγιση Δέσποινα Πόταρη, Τμήμα Μαθηματικών, ΕΚΠΑ Δομή της παρουσίασης Δυσκολίες μαθητών γύρω από την έννοια της

Διαβάστε περισσότερα

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ

ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014. Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση

Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014. Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση Συνέδριο Μαθηματικών ΠΠΣ Πνευματικό Κέντρο Δήμου Αθηναίων 11-12 / 4 / 2014 Δημήτρης Μπίρμπας ΠΠΛ Αγίων Αναργύρων Σοφία Παππά ΠΠΛ Ζάννειο Πειραιά Μαθηματικά και ζητήματα πραγματικότητας διάκριση και σύνδεση

Διαβάστε περισσότερα

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ

Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο ΕΙΣΑΓΩΓΗ Η διδασκαλία της λογικής και της απόδειξης στο Λύκειο Μαθηματικών Δυτικής Θεσσαλονίκης gthom@otenet.gr ΕΙΣΑΓΩΓΗ Έχουν γίνει αρκετές απόπειρες στο παρελθόν για τη διδασκαλία στοιχείων της μαθηματικής λογικής

Διαβάστε περισσότερα

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης

ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ. Μιχάλης Αργύρης ΛΟΓΟΙ ΚΑΙ ΑΝΑΛΟΓΙΕΣ ΟΔΗΓΟΣ ΟΡΓΑΝΩΣΗΣ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ Μιχάλης Αργύρης 1 Λόγοι και αναλογίες Περίληψη Οι μαθητές έχουν στη διάθεσή τους μια υπολογιστική οντότητα, ένα καγκουρό του οποίου το μέγεθος μπορούν

Διαβάστε περισσότερα

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας

Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Dr. Anthony Montgomery Επίκουρος Καθηγητής Εκπαιδευτικής & Κοινωνικής Πολιτικής antmont@uom.gr Θεμελιώδεις Αρχές Επιστήμης και Μέθοδοι Έρευνας Αυτό το μάθημα

Διαβάστε περισσότερα

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι

ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ ΦΥΣΙΚΗ. Γνωστικό αντικείμενο. Ταυτότητα. Α Λυκείου. Επίπεδο. Στόχος. Σχεδιασμός. Διδασκαλία. Πηγές και πόροι ΨΗΦΙΑΚΑ ΣΕΝΑΡΙΑ Γνωστικό αντικείμενο Επίπεδο ΦΥΣΙΚΗ Α Λυκείου Ταυτότητα Στόχος Περιγραφή Προτεινόμενο ή υλοποιημένο Λογισμικό Λέξεις κλειδιά Δημιουργοί α) Γνώσεις για τον κόσμο: Οι δυνάμεις εμφανίζονται

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση Εργαστηριακή εισήγηση «Διδακτικό Σενάριο: Προσεγγίζοντας Κωνικές Τομές με τη βοήθεια της Μεσοκαθέτου στο Δυναμικό Περιβάλλον του Geometer s Sketchpad» Σάββας Πιπίνος 1, Σταύρος Κοκκαλίδης 2, Χρήστος Ηρακλείδης

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ

ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ ΔΙΔΑΚΤΙΚΕΣ ΜΕΘΟΔΟΙ ΠΑΛΙΕΣ ΜΕΘΟΔΟΙ ΔΙΔΑΣΚΑΛΙΑΣ Κέντρο και άξονας αυτών των μεθόδων διδασκαλίας είναι ο δάσκαλος. Αυτός είναι η αυθεντία μέσα στην τάξη που καθοδηγεί και προσφέρει. Γι αυτό οι μέθοδοι αυτές

Διαβάστε περισσότερα

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)

Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Εισαγωγή στην έννοια του Αλγορίθμου

Εισαγωγή στην έννοια του Αλγορίθμου Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της

Διαβάστε περισσότερα

Επαγγελματικές κάρτες

Επαγγελματικές κάρτες Επαγγελματικές κάρτες Αφροδίτη Οικονόμου Νηπιαγωγός afoikon@uth.gr Η παρουσίαση αναπτύχθηκε για την πλατφόρμα Ταξίδι στον γραμματισμό Θεματική: Τα επαγγέλματα των γονιών της τάξης μας ΤΙΤΛΟΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ:

Διαβάστε περισσότερα

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών

Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών 2 Πρόσθεση αφαίρεση και πολλαπλασιασμός φυσικών αριθμών Προσθετέοι 18+17=35 α Προσθετέοι + β = γ Άθοι ρ σμα Άθοι ρ σμα 13 + 17 = 17 + 13 Πρόσθεση φυσικών αριθμών Πρόσθεση είναι η πράξη με την οποία από

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ

ΕΡΓΑΣΙΑ ΣΤΗΝ ΑΝΑΠΤΥΞΙΑΚΗ ΕΚΠΑΙΔΕΥΤΙΚΗ ΨΥΧΟΛΟΓΙΑ 1 ΕΡΓΑΣΙΑ ΣΕ ΜΙΑ ΑΠΟ ΤΙΣ 12 ΑΡΧΕΣ ΤΗΣ ΜΑΘΗΣΗΣ ΑΡΧΗ ΤΗΣ ΜΑΘΗΣΗΣ: Ενεργός συμμετοχή (βιωματική μάθηση) ΘΕΜΑ: Παράδοση στο μάθημα των «ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ», για τον τρόπο διαχείρισης των σκληρών δίσκων.

Διαβάστε περισσότερα

PATHWAY. D2.1 The basic features of the inquiry learning and teaching. A short review for the Greek teachers. Author: Christos Ragiadakos

PATHWAY. D2.1 The basic features of the inquiry learning and teaching. A short review for the Greek teachers. Author: Christos Ragiadakos PATHWAY D2.1 The basic features of the inquiry learning and teaching A short review for the Greek teachers Author: Christos Ragiadakos [It will be distributed to the Greek teachers during the Training

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Εισαγωγή Ενεργός συμμετοχή Κοινωνική αλληλεπίδραση Δραστηριότητες που έχουν νόημα Σύνδεση των νέων πληροφοριών με τις προϋπάρχουσες γνώσεις Χρήση στρατηγικών Ανάπτυξη της αυτορρύθμισης και εσωτερική σκέψη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό

Διαβάστε περισσότερα

Διδακτικές ενότητες Στόχος

Διδακτικές ενότητες Στόχος Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας.

Διαβάστε περισσότερα

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος

Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Βασικές Αρχές Ψηφιακής Τεχνολογίας: Πρακτικές ιδέες για τη διδασκαλία ενός θεωρητικού μαθήματος Πάσχου Αικατερίνη 1 katpas@sch.gr 1 Εκπαιδευτικός Πληροφορικής, 2 ο ΕΠΑ.Λ. Καρδίτσας Περίληψη Το μάθημα Βασικές

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ

Σενάριο με το λογισμικό modellus Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σενάριο με το λογισμικό modellus Τίτλος: Πότε δύο τρένα έχουν την ελάχιστη απόσταση μεταξύ τους; Πηγή: http://www.dapontes.gr/index.php?option=com_content&task=view&id=229&itemid=50 ΠΡΟΛΟΓΟΣ Σε μια πρώτη

Διαβάστε περισσότερα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα

Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση. Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ Αξιολόγηση του Εκπαιδευτικού Έργου στην Πρωτοβάθμια Εκπαίδευση Διαδικασία Αυτοαξιολόγησης στη Σχολική Μονάδα Σχέδια Εκθέσεων

Διαβάστε περισσότερα

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού

Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού Ενδιάμεση Έκθεση: Ποσοτικά Ευρήματα Έρευνας απόψεων Σχολικών Συμβούλων για τα Γνωστικά Αντικείμενα του Δημοτικού ΣΚΟΠΟΣ ΤΗΣ ΕΡΕΥΝΑΣ Η παρούσα έρευνα έχει σκοπό τη συλλογή εμπειρικών δεδομένων σχετικά με

Διαβάστε περισσότερα

«Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό»

«Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό» «Αξιοποίηση των Τεχνολογιών της Πληροφορίας και Επικοινωνιών στη διδακτική πράξη» «Μαθαίνοντας τα μέρη του Υπολογιστή στο Δημοτικό» Γίδας Γεώργιος Εκπαιδευτικός Πληροφορικής, 3ο Πιλοτικό Δημοτικό Σχολείο

Διαβάστε περισσότερα

Θέµα ιερεύνησης: Ο καιρός

Θέµα ιερεύνησης: Ο καιρός Θέµα ιερεύνησης: Ο καιρός Αντικείµενο της συγκεκριµένης δραστηριότητας είναι η µεθοδική παρατήρηση των καιρικών συνθηκών για ένα σχετικά µεγάλο χρονικό διάστηµα, η καταγραφή και οργάνωση των παρατηρήσεων

Διαβάστε περισσότερα

Φύση και Μαθηματικά. Η χρυσή τομή φ

Φύση και Μαθηματικά. Η χρυσή τομή φ Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή

Διαβάστε περισσότερα

Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα

Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα Πρόταση διαφοροποιημένης διδασκαλίας στην Γ Δημοτικού (Κλουβάτος, Κ.) (Η πρόταση μπορεί να προσαρμοστεί σε κάθε Γ τάξη Δημοτικού) Μάθημα: Γλώσσα Διδακτική ενότητα: Μαθησιακό περιβάλλον τάξης διαδικασία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΕΡΩΤΗΣΕΙΣ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ 1. α. Τι γνωρίζετε για την Ευκλείδεια διαίρεση; Πότε λέγεται τέλεια; β. Αν σε μια διαίρεση είναι Δ=δ, πόσο είναι το πηλίκο και

Διαβάστε περισσότερα