Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά
|
|
- ÊἙρμῆς Σκλαβούνος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου γνώσεων των μαθητών επανορθωτικής διδασκαλίας προαπαιτούμενων γνώσεων Ανάδυση άτυπων και τυπικών γνώσεων, πεποιθήσεων, στάσεων των μαθητών σχετικά με την νέα έννοια. Ανακάλυψη νέας έννοιας/ γνώσης από τους μαθητές. Εφαρμογή, εμπέδωση, νέας γνώσης. Επισημοποίηση νέας γνώσης από τον δάσκαλο. Γενίκευση. Εμπέδωση, επέκταση νέας γνώσης, από τους μαθητές Τελική αξιολόγηση Έλεγχος προαπαιτούμενων γνώσεων μαθητών Βιβλίο δασκάλου Χρόνος: 10 λεπτά ανεπαρκή ικανοποιητικά Εισαγωγή στις δραστηριότητες του βιβλίου μαθητή Ερώτηση αφόρμησης Δραστηριότητα ανακάλυψη Βιωματική διαδικασία. σχετικές με την καινούργια έννοια. Βιβλίο ή τετράδιο μαθητή Συμπέρασμα Βιβλίο, τετράδιο μαθητή χωρίς βιβλίο: (δουλειά στον πίνακα) - Παιχνίδι - Πρόβλημα - Κατασκευή Συζήτηση στην τάξη χωρίς το βιβλίο. Οδάσκαλος ακούει, δεν παρεμβαίνει. Ομαδική εργασία. Ο δάσκαλος παρατηρεί, δεν παρεμβαίνει, συντονίζει τη διαδικασία Οι μαθητές δουλεύουν ατομικά ή ομαδικά, διατυπώνουν εικασίες και εκφράζουν επιχειρήματα. Ο δάσκαλος παρωθεί τους μαθητές για αποσαφήνιση της σκέψης τους Οι μαθητές δίνουν κατάλληλα παραδείγματα. και προτείνουν εφαρμογές της νέας γνώσης. Ομαδικές ή ατομικές εργασίες. Διαφοροποίηση εργασιών Σημείωση: Ο δάσκαλος καθ όλη την μαθησιακή διαδικασία παρατηρεί, αξιολογεί και οργανώνει κατάλληλα το χρόνο και τις δραστηριότητές (διαμορφωτική αξιολόγηση) 62
2 προκειμένου οι μαθητές να κατακτήσουν τους στόχους του μαθήματος. Η διδασκαλία επομένως μπορεί να απαιτήσει από το διδάσκοντα τροποποίηση του χρόνου. 63
3 2. - Προτεινόμενη δομή σχεδίου μαθήματος (2 διδακτικών ωρών) ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ 1 η διδακτική ώρα Έλεγχος προαπαιτούμενων γνώσεων μαθητών Βιβλίο δασκάλου Χρόνος: 10 λεπτά ανεπαρκή ικανοποιητικά επανορθωτικής διδασκαλίας προαπαιτούμενων γνώσεων Εισαγωγή στις δραστηριότητες του βιβλίου μαθητή Ερώτηση αφόρμησης Δραστηριότητα ανακάλυψη Βιωματική διαδικασία. σχετικές με την καινούργια έννοια. Βιβλίο ή τετράδιο μαθητή Βιβλίο, τετράδιο μαθητή 64
4 2.2 - ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ 2 η διδακτική ώρα Έλεγχος προαπαιτούμενων γνώσεων μαθητών Βιβλίο δασκάλου, Βιβλίο ή τετράδιο μαθητή Χρόνος: 10 λεπτά ανεπαρκή ικανοποιητικά επανορθωτικής διδασκαλίας προαπαιτούμενων γνώσεων Εισαγωγή στις δραστηριότητες του βιβλίου ή του τετραδίου του μαθητή Εργασία Δραστηριότητας ανακάλυψης Βιβλίο ή τετραδίου μαθητή σχετικές με την καινούργια έννοια. Βιβλίο ή τετράδιο μαθητή Συμπέρασμα Βιβλίο, τετράδιο μαθητή Χρόνος 10 λεπτά Σημειώσεις: 1. Τα στάδια απαιτούν τις ίδιες ενέργειες από τους μαθητές και τον δάσκαλο όπως περιγράφονται στο σχέδιο μαθήματος 1 διδακτικής ώρας 2. Ανάλογα με το μάθημα, περιγράφεται στο βιβλίο του δασκάλου πότε γίνεται η επισημοποίηση της νέας γνώσης (συμπέρασμα) καθώς υπάρχουν μαθήματα όπου το συμπέρασμα δίνεται την 2 η διδακτική ώρα ή υπάρχει εκτός του τελικού συμπεράσματος και ένα άλλο συμπέρασμα (μερική επισημοποίηση της νέας γνώσης) 3. Ο δάσκαλος τροποποιεί το χρόνο και τις δραστηριότητες ανάλογα με το δυναμικό της τάξης του με σκοπό στο τέλος του μαθήματος να έχουν κατακτήσει όλοι οι μαθητές τους διδακτικούς στόχους ανάλογα με τις ιδιαίτερες ανάγκες και δυνατότητές τους. 65
5 του τετραδίου του μαθητή Εργασία Δραστηριότητας ανακάλυψης Εργασία 2 του Β.Μ. Μπορεί να είναι εναλλακτική διδακτική προσέγγιση. Μπορεί το πρόβλημα να γίνει βιωματικά και να προσαρμοστεί στο πλήθος των παιδιών της τάξης. Μπορούν επίσης τα παιδιά να χρησιμοποιήσουν και εποπτικό υλικό για να αναπαραστήσουν τα δεδομένα του προβλήματος σχετικές με την καινούργια έννοια. Τετράδιο μαθητή Χρόνος 10 λεπτά Από την εργασία δ του Τ.Μ. διαλέγουμε το 50 και ζητάμε να από τα παιδιά να βρουν στρατηγικές για να το χωρίσουν στη μέση π.χ. 50 ή Με τον ίδιο τρόπο κάνουμε στον πίνακα το μισό του 70 Αφήνουμε τα παιδιά να βρουν τα μισά των υπόλοιπων αριθμών. Κάθε παιδί λύνει την άσκηση μόνο του. Τετράδιο μαθητή Εργασία ε του Τ.Μ. Τα παιδιά μπορούν να λύσουν την άσκηση με εποπτικό υλικό αν θέλουν π.χ. κυβάκια 4. Προτεινόμενη δομή σχεδίου μαθήματος (2 διδακτικών ωρών) : ένα παράδειγμα από την Ε τάξη [κεφ12] ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ 1 η διδακτική ώρα Βιβλίο δασκάλου Χρόνος: 15 λεπτά Έλεγχος προαπαιτούμενων γνώσεων μαθητών 68
6 Τα παιδιά χωρίζονται σε ομάδες των 2 ή των 4 και έχουν ψεύτικα ευρώ ή το σπαστό μέτρο μπροστά τους. Ζητάμε να γράψουν σε μια κόλλα Α4 ή στο πρόχειρό τους και να ρουν: 1)Αν ο Βασίλης βάζει 5,35 ευρώ κάθε εβδομάδα στον κουμπαρά του, μετά από 10 εβδομάδες τι ποσό θα έχει αποταμιεύσει; 2) Η Ελένη με τις φίλες της φτιάχνει ένα διακοσμητικό κορδόνι για την παράσταση του σχολείου. Με 38 χάντρες φτιάχνει κορδόνι μήκους 0,40 μ Πόσο μήκος θα έχει το κορδόνι που φτιάχνουν αν χρησιμοποιήσουν 100 φορές, 38 χάντρες όμοιες με τις πρώτες που χρησιμοποίησαν; Επαληθεύουν τις εκτιμήσεις τους με νοερούς υπολογισμούς και με το εποπτικό υλικό. Συζητάμε στην τάξη για τα αποτελέσματα π.χ. 5,35Χ10=53,5 ευρώ: Κάθε ψηφίο του αριθμού 5,35 έγινε μεγαλύτερο 10 φορές γιατί η μονάδα έγινε δεκάδα, τα δέκατα έγιναν μονάδες κ.λ.π.). ανεπαρκή ικανοποιητικά επανορθωτικής διδασκαλίας προαπαιτούμενων γνώσεων Εισαγωγή στις δραστηριότητες του βιβλίου μαθητή Ερώτηση αφόρμησης Μετά τη δραστηριότητα ελέγχου τα παιδιά διαβάζουν την ερώτηση αφόρμησης και απαντούν με δικά τους παραδείγματα. Δραστηριότητα ανακάλυψη Βιωματική διαδικασία. Εργάζονται σε ομάδες των 2 ή των 4. Διηγούνται με δικά τους λόγια την αγορά Μπορεί να δραματοποιηθεί η δραστηριότητα ανακάλυψη. Εκτιμούν το ποσό που πρέπει να πληρώσει ο παππούς και συμπληρώνουν Σ ή Λ στην εκτίμηση του ψαρά. Εργάζονται στην εύρεση του γινομένου 12,5Χ0,80 χρησιμοποιώντας την επιμεριστική ιδιότητα του πολλαπλασιασμού ως προς την πρόσθεση και με την αφαίρεση. Τα παιδιά εργάζονται στο βιβλίο τους χωρίς να τους εξηγήσουμε πώς θα τοποθετήσουμε την υποδιαστολή στο τελικό αποτέλεσμα. Δείχνουμε στον πίνακα με την βοήθεια των παιδιών τον κάθετο πολλαπλασιασμό (χωρίς να εξηγήσουμε πώς βάζουμε την υποδιαστολή). Παρακινούμε τα παιδιά να παρατηρήσουν πόσα είναι τα δεκαδικά ψηφία των αριθμών που πολλαπλασιάζουμε και πόσα δεκαδικά ψηφία έχει το αποτέλεσμα. Τα παιδιά διαβάζουν τον Σαίτα. Κάνουν ένα ακόμη παράδειγμα κάθετου πολλαπλασιασμού στον πίνακα. 69
7 Τετράδιο μαθητή Χρόνος 10 λεπτά σχετικές με την καινούργια έννοια. Εργασία β του Τ.Μ. Συζητάμε στην τάξη για την εκτίμηση που κάνουμε πάντα πριν από έναν υπολογισμό. Η εκτίμηση πάντα μας βοηθάει να ξέρουμε τι να περιμένουμε (την τάξη μεγέθους του αριθμού). Ελέγχουμε πρώτα το αποτέλεσμα των πολλαπλασιασμών. Είναι αναμενόμενα; Το πρώτο θα έπρεπε να είναι μικρότερο από 2,5 γιατί παίρνουμε το 2,5 λιγότερο από 1 φορά (δηλ. το αποτέλεσμα δεν είναι όσο 1Χ2,5) Στην δεύτερη περίπτωση το αποτέλεσμα θα πρέπει να είναι κοντά στο 0,135 γιατί παίρνουμε το 0,135 1 φορά και κάτι. Άρα αρχίζουμε να ελέγχουμε τον τρόπο που έγιναν οι κάθετοι πολλαπλασιασμοί. Τα απιδιά εργάζονται ατομικά στο βιβλίο τους (κάνουν τους κάθετους πολλαπλασιασμούς) και στη συνέχεια δείχνουν στον πίνακα πού βρήκαν το λάθος. Εργασία δ του Τ.Μ. Τα παιδιά εργάζονται με ή χωρίς ψεύτικα ευρώ ανάλογα αν έχουν ευχέρεια στους νοερούς υπολογισμούς με τους δεκαδικούς. Αρχικά εκτιμούν και στη συνέχεια βρίσκουν με κάθετη πράξη το ακριβές αποτέλεσμα. Κάποια παιδιά μπορούν να εργαστούν νοερά (με το μισό και το διπλάσιο) και να βρουν αμέσως το ακριβές αποτέλεσμα ως εξής: 1 κιλό κοστίζει 3,40 ευρώ. Άρα μισό κιλό κοστίζει 1,70 ευρώ 2 κιλά κοστίζουν 6,80 ευρώ (3,40+3,40) Άρα 4 κιλά κοστίζουν 13,40 και 8 κιλά κοστίζουν 26,80ευρώ 10 κιλά = 8κιλά +2 κιλά ή 26,80 + 6,80= 33,60 ευρώ 9,5 κιλά = 10 κιλά μισό κιλό ή 33,60-1,70=31,90 ευρώ Αναδεικνύουμε όλες τις στρατηγικές που βρίσκουν τα παιδιά (π.χ. 3,40Χ10 μισό κιλό) και συζητάμε πώς μπορούμε να επαληθεύσουμε έναν κάθετο πολλαπλασιασμό ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ 2 η διδακτική ώρα Βιβλίο δασκάλου Χρόνος: 10 λεπτά Έλεγχος προαπαιτούμενων γνώσεων μαθητών Δίνουμε στα παιδιά να εργαστούν ατομικά, 3 κάθετους πολλαπλασιασμούς με δεκαδικούς αριθμούς που Α) ο ένας δεν είναι λυμένος μέχρι τέλους (καλούνται να τον συμπληρώσουν) Β) οι άλλοι 2 είναι λάθος λυμένοι Ζητάμε από τα παιδιά να γράψουν αρχικά πόσο περιμένουν να είναι το σωστό αποτέλεσμα και στη συνέχεια να ασχοληθούν με τους κάθετους πολλαπλασιασμούς. Παρατηρούμε αν τα παιδιά έχουν άνεση να εκτιμήσουν το αποτέλεσμα, αν μπορούν να κάνουν σωστά τον πολλαπλασιασμό ανεξάρτητα με πόσα δεκαδικά ψηφία υπάρχουν στους αριθμούς, αν βάζουν σωστά την υποδιαστολή. 70
8 Συνήθως τα παιδιά μπερδεύονται αν έχουμε αριθμούς με μηδενικά στα δεκαδικά ψηφία π.χ. 0,045 Χ 1,006, 3,40Χ0,04 κ.λ.π. ανεπαρκή ικανοποιητικά επανορθωτικής διδασκαλίας προαπαιτούμενων γνώσεων Εισαγωγή στις δραστηριότητες του βιβλίου ή του τετραδίου του μαθητή Δραστηριότητας Ανακάλυψης Εργασία 1 του Β.Μ. Τα παιδιά εργάζονται εύκολα με τον πολλαπλασιασμό του 10 (γνωστή διαδικασία σε μετρήσεις και παραδείγματα που μπορούν να επαληθεύσουν με εποπτικό υλικό). Ωστόσο οι πολλαπλασιασμοί με το 100 και το 1000 μπορεί να τα δυσκολέψει. Ζητάμε να μας εξηγήσουν πώς σκέφτηκαν.αν έχουν εξοικειωθεί με αυτούς τους πολλαπλασιασμούς στους ακέραιους μπορούν να οδηγηθούν στο σωστό αποτέλεσμα (μεγαλώνει αντίστοιχα 100 φορές η αξία κάθε ψηφίου, δεκαδικού ή ακεραίου). Επαληθεύουν τα αποτελέσματα με την αριθμομηχανή. Δεν καταλήγουμε σε συμπέρασμα. Συνεχίζουν να εργάζονται με τους πολλαπλασιασμούς Χ20, Χ200, Χ2000. Ένας πολλαπλασιασμός Χ20 είναι ίδιος με τον πολλαπλασιασμό Χ10 και στη συνέχεια Χ2. Τα παιδιά έχουν ασκηθεί σε ανάλογες στρατηγικές στους ακεραίους (1 η ενότητα του βιβλίου). Επαληθεύουν με την αριθμομηχανή τσέπης. Μετά τις παρατηρήσεις των παιδιών τα αφήνουμε να εργαστούν στην εργασία 2 του Β,Μ. Στην εργασία 2 του Β.Μ. τα παιδιά δεν φτάνει να βρουν με νοερούς, ήμεκάθετο πολλαπλασιασμό το αποτέλεσμα αλλά και να εξηγήσουν με ιδιότητες του πολλαπλασιασμού το αποτέλεσμα π.χ. 7,5 Χ 2= (7Χ2)+ (0,50Χ2) ή (8-0,5)Χ2 7,5 Χ 20= 7,5 Χ 2Χ 10 δηλαδή το προηγούμενο αποτέλεσμα επί 10 ή (7Χ20)+(0,5Χ20) ή 20Χ(8-0.5)=20Χ8-(20Χ0,50) ή (10Χ7,5)Χ2 7,5 Χ 0,2= (7,5Χ2)Χ0,1 που σημαίνει 15Χ0,1 ή 15Χ1/10 ή 15/10 ή 1,5 7,5 Χ 0,02= (7,5Χ2)Χ0,01 που σημαίνει 15Χ0,01 ή 15Χ1/100 ή 15/100 ή 0,15 Αν τα παιδιά παρατηρήσουν τα αποτελέσματα των πολλαπλασιασμών με 2-20, και 0,2 0,20 και προσπαθήσουν να βγάλουν συμπέρασμα, δεν τους διδάσκουμε την τεχνική Χ0,1 ήχ0,01 αλλά απλά επιβεβαιώνουμε το γεγονός ότι ο αριθμός μικραίνει κατά 1 ή 2 δεκαδικά ψηφία αντίστοιχα και τους δίνουμε την ευκαιρία να δουν τι συμβαίνει και με άλλα παραδείγματα π.χ. 30Χ0,3 300Χ0,30 3Χ0,03 Επαληθεύουν με κάθετη πράξη ή την αριθμομηχανή 71
9 Συμπέρασμα Βγάζουν συμπέρασμα με δικά τους λόγια. Διαβάζουν το συμπέρασμα του βιβλίο. Δίνουν κι άλλα παραδείγματα. Τετράδιο μαθητή Εργασία α του Τ.Μ. Τα παιδιά εργάζονται ατομικά Συζητάμε στην τάξη την αρχική τους εκτίμηση καθώς και τα αποτελέσματα που βρήκαν. γ, ε του Τ.Μ. Τα παιδιά εργάζονται ατομικά ή σε ομάδες. Παρουσιάζουν τις στρατηγικές τους στην τάξη και τις δείχνουν στον πίνακα. Ζητάμε να επαληθεύσουν τους υπολογισμούς τους με άλλο τρόπο. Εργασία στ του Τ.Μ. Τα παιδιά εργάζονται ατομικά. Σκοπός της εργασίας είναι να μπορούν να σταθούν κριτικά στο αποτέλεσμα. Δεν χρειάζεται να κάνουν πράξεις Ο 72
Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά
Καργιωτάκης Γιώργος, Μπελίτσου Νατάσσα Προτεινόμενη δομή σχεδίου μαθήματος για τα Μαθηματικά στις τάξεις Β, Δ και Ε (μιας διδακτικής ώρας). ΣΤΟΧΟΣ ΒΗΜΑΤΑ ΥΛΙΚΟ- ΧΡΟΝΟΣ ΕΝΕΡΓΕΙΕΣ Αρχική αξιολόγηση επιπέδου
Διαβάστε περισσότεραΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ-Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ: ΣΤΡΑΤΗΓΙΚΕΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΡΙΘΜΩΝ-19 ο ΚΕΦΑΛΑΙΟ ΣΧΟΛΕΙΟ: 2 ο ΠΕΙΡΑΜΑΤΙΚΟ ΦΛΩΡΙΝΑΣ
Διαβάστε περισσότεραΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της
Διαβάστε περισσότεραΜαθηματικά Ε Δημοτικού
Μαθηματικά Ε Δημοτικού Πέτρος Κλιάπης 2014 Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση
Διαβάστε περισσότεραΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ - ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα
Διαβάστε περισσότεραΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗς
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗς ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Προβλήματα με πρόσθεση και αφαίρεση κλασμάτων (Κεφάλαιο 23 ο ) Σχολείο: 2 ο
Διαβάστε περισσότεραΜαθηματικά Γ Δημοτικού. Πέτρος Κλιάπης
Μαθηματικά Γ Δημοτικού Πέτρος Κλιάπης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση της προϋπάρχουσας
Διαβάστε περισσότεραΜαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007
Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση
Διαβάστε περισσότεραΜαθηματικά Β Δημοτικού. Πέτρος Κλιάπης
Μαθηματικά Β Δημοτικού Πέτρος Κλιάπης Ο μαθητής σε μια σύγχρονη τάξη μαθηματικών: Δεν αντιμετωπίζεται ως αποδέκτης μαθηματικών πληροφοριών, αλλά κατασκευάζει δυναμικά τη μαθηματική γνώση μέσα από κατάλληλα
Διαβάστε περισσότεραΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης
ΝΕΑ ΦΙΛΟΣΟΦΙΑ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Παρασχίδης Κυριαζής Σχολικός Σύμβουλος 3 ης Περιφέρειας ν. Ξάνθης ΠΑΛΙΕΣ ΚΑΙ ΝΕΕΣ ΑΝΤΙΛΗΨΕΙΣ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΛΙΕΣ ΑΝΤΙΛΗΨΕΙΣ
Διαβάστε περισσότεραΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:
Διαβάστε περισσότεραΠΑΝΑΓΙΩΤΗΣ ΓΑΛΑΝΗΣ Σελίδα 1 10/6/2006 Σχολικός Σύμβουλος ΜΑΘΗΜΑΤΙΚΑ Β ΔΗΜΟΤΙΚΟΥ
ΠΑΝΑΓΙΩΤΗΣ ΓΑΛΑΝΗΣ Σελίδα 1 10/6/2006 Σχολικός Σύμβουλος ΜΑΘΗΜΑΤΙΚΑ Β ΔΗΜΟΤΙΚΟΥ Σχέδιο μαθήματος (Διδακτική προσέγγιση με βάση το διδακτικό πακέτο των Μαθηματικών της Β τάξης Δημοτικού) Παναγιώτης Κ. Γαλάνης:
Διαβάστε περισσότεραΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ
ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα
Διαβάστε περισσότεραΜαθηματικά Δ Δημοτικού. Πέτρος Κλιάπης 12η περιφέρεια Θεσ/νικης
Μαθηματικά Δ Δημοτικού Πέτρος Κλιάπης 12η περιφέρεια Θεσ/νικης Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α. Β ΦΑΣΗ ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΟΜΗΝΙΑ ΔΙΔΑΣΚΑΛΙΑΣ: 13/1/2009 ΣΧΟΛΕΙΟ: 2ο Πειραματικό Δημοτικό Σχολείο
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΦΛΩΡΙΝΑΣ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙ.ΜΕ.Π.Α Β ΦΑΣΗ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Φοιτητής: Παύλου Νικόλαος, Α.Ε.Μ: 2245, Ε Εξάμηνο Σχολείο: 1 ο Πειραματικό
Διαβάστε περισσότερα5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών
Διαβάστε περισσότεραΜια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
Διαβάστε περισσότεραΔιδασκαλία και Αξιολόγηση στα Μαθηματικά
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Διδασκαλία και Αξιολόγηση στα Μαθηματικά ΣΤ Τάξη Αντώνιος Μπούρας Διδακτικό πακέτο των Μαθηματικών της ΣΤ Τάξης Τα νέα Αναλυτικά και ιαθεματικά
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΣχολείο Δεύτερης Ευκαιρίας. Ιωαννίνων. Αριθμητικός Γραμματισμός. Εισηγήτρια : Σεντελέ Καίτη
Σχολείο Δεύτερης Ευκαιρίας Ιωαννίνων Αριθμητικός Γραμματισμός Εισηγήτρια : Σεντελέ Καίτη ΘΕΜΑ ΕΙΣΗΓΗΣΗΣ «Προγραμματισμός-Οργάνωση και υλοποίηση μιας διδακτικής ενότητας στον Αριθμητικό Γραμματισμό» ΠΡΟΣΘΕΣΗ
Διαβάστε περισσότεραΤμήμα Τεχνολόγων Γεωπόνων - Φλώρινα
Τμήμα Τεχνολόγων Γεωπόνων - Φλώρινα Μάθημα: Μαθηματικά Διάλεξη 1 η : Εισαγωγή-Επανάληψη βασικών εννοιών (1 ο, 2 ο, 3 ο Κεφάλαιο) 11-10-2017, 18-10-2017 Διδάσκουσα: Αριστούλα Κοντογιάννη ΩΡΕΣ ΔΙΔΑΣΚΑΛΙΑΣ
Διαβάστε περισσότεραΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Σέργιος Σεργίου Λάμπρος Στεφάνου ΤΕΧΝΙΚΕΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗΣ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ 16 ο Συνέδριο Ε.Ο.Κ. 8-19 Οκτωβρίου 2016 Αξιοποίηση των Δεικτών Επάρκειας Ομαδική Εργασία Διαφοροποιημένη διδασκαλία
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Διαβάστε περισσότεραΑρβανιτίδης Θεόδωρος, - Μαθηματικά Ε
Δεκαδικά κλάσματα Δεκαδικοί αριθμοί Μάθημα 7 ο Σε κάθε κλάσμα έχουμε : όροι του κλάσματος : αριθμητής παρονομαστής πόσα ίσα μέρη της ακέραιης μονάδας πήρα πόσα ίσα μέρη χώρισα την ακέραιη μονάδα Η κλασματική
Διαβάστε περισσότεραΣχολή Πολιτικών Μηχανικών
Μάθημα ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι του μαθήματος είναι σαφείς 492 4 3,81 1,8 1 5 Η ύλη που καλύφθηκε ανταποκρίνεται στους στόχους
Διαβάστε περισσότεραΧρήστος Μαναριώτης Σχολικός Σύμβουλος 4 ης Περιφέρειας Ν. Αχαϊας Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ
Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Η καλλιέργεια της ικανότητας για γραπτή έκφραση πρέπει να αρχίζει από την πρώτη τάξη. Ο γραπτός λόγος χρειάζεται ως μέσο έκφρασης. Βέβαια,
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Υπεύθυνος καθηγητής Χαράλαμπος Λεμονίδης Μέντορας Γεώργιος Γεωργιόπουλος ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗΣ Θέμα Διδασκαλίας Πρόσθεση
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην
ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ. Και οι απαντήσεις τους
ΜΑΘΗΜΑΤΙΚΑ ΕΡΩΤΗΜΑΤΑ Και οι απαντήσεις τους Ποια είναι η διαφορά ανάμεσα στο «παλιό» και στο «σύγχρονο» μάθημα των Μαθηματικών; Στο μάθημα παλαιού τύπου η γνώση παρουσιάζεται στο μαθητή από τον διδάσκοντα
Διαβάστε περισσότεραTHE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S
Διαβάστε περισσότεραΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
Διαβάστε περισσότεραΣχέδιο παρουσίασης των διδασκαλιών ή των project
Σχέδιο παρουσίασης των διδασκαλιών ή των project Σην παρουσίαση των διδασκαλιών ή των project μπορούμε να ακολουθήσουμε την φόρμα που παρουσιάζεται παρακάτω. Μια παρουσίαση σύντομη και μια λεπτομερής.
Διαβάστε περισσότερα3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ
1 3.2 3.3 3.4 ΠΡΑΞΕΙΣ ΜΕ ΕΚΑ ΙΚΟΥΣ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΚΟΜΠΙΟΥΤΕΡΑΚΙ ΤΥΠΟΠΟΙΗΜΕΝΗ ΜΟΡΦΗ ΑΡΙΘΜΩΝ ΘΕΩΡΙΑ 1. Πρόσθεση αφαίρεση δεκαδικών Γίνονται όπως και στους φυσικούς αριθµούς. Προσθέτουµε ή αφαιρούµε τα ψηφία
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ. Γρήγορα τεστ. Μαθηματικά ΣT Δημοτικού ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ
ΓΙΑΝΝΗΣ ΖΑΧΑΡΟΠΟΥΛΟΣ Γρήγορα τεστ Μαθηματικά ΣT Δημοτικού 1 ΕΚΔΟΣΕΙΣ ΠΑΠΑΔΟΠΟΥΛΟΣ ΓΡΗΓΟΡΑ ΤΕΣΤ ΜΑΘΗΜΑΤΙΚΩΝ - ΣΤ Δημοτικού No 1 Γιάννης Ζαχαρόπουλος Διόρθωση: Αντωνία Κιλεσσοπούλου 201, Εκδόσεις Κυριάκος
Διαβάστε περισσότεραΑΣΤΙΚΑ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΚΟΥΤΣΟΓΙΑΝΝΗΣ ΔΗΜΗΤΡΙΟΣ, ΝΙΚΟΛΑΟΣ
Ακ. έτος 212-213 Εαρινό εξάμηνο Page 1 of 16 Ακ. έτος 212-213 Εαρινό εξάμηνο ΕΝΟΤΗΤΑ: Χαρακτηριστικά φοιτητή Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Παρακολουθώ τακτικά
Διαβάστε περισσότεραΣχέδιο Μαθήματος - "Ευθεία Απόδειξη"
Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας
Διαβάστε περισσότεραΣχολή Πολιτικών Μηχανικών. Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Χειμερινό εξαμήνο του ακ. έτους
Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Χειμερινό εξαμήνο του ακ. έτους 214-215 Μάθημα ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι
Διαβάστε περισσότεραΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
Διαβάστε περισσότεραΔιδάσκων / Διδάσκουσα του μαθήματος
Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Εαρινό εξαμήνο του ακ. έτους 12-13 ΕΝΟΤΗΤΑ: Διδάσκων / Διδάσκουσα του μαθήματος Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη
Διαβάστε περισσότεραΜαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης
Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)
Διαβάστε περισσότεραΤο βιβλίο της Μ. Autism Resource CD v Resource Code RC115
Το βιβλίο της Μ Γεια σας με λένε Μ. Είμαι 9 χρονών και μένω στο με τους γονείς μου και τα 2 αδέρφια μου, τον Γιάννη που είναι 10 και τον Βασίλη που είναι 3. Έχω κι ένα σκυλάκι που το λένε Κάντι και είναι
Διαβάστε περισσότεραΟδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ. 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ ) Πηγή πληροφόρησης: e-selides
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη ΜΑΘΗΜΑΤΙΚΑ Δ ΤΑΞΗ 3 η ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΩΝ (κεφ. 15 20) Πηγή πληροφόρησης: e-selides Έμαθα ότι: Κεφάλαιο 15 «Θυμάμαι τους δεκαδικούς αριθμούς» Όταν θέλω να
Διαβάστε περισσότεραΕκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Διαβάστε περισσότεραΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα
ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ- ΣΤΡΑΤΗΓΙΚΕΣ Ε.Κολέζα Οι νοεροί υπολογισμοί απαιτούν ικανότητα οπτικοποίησης: να μπορείς να φανταστείς κάτι και να δουλέψεις με το νου.. Είναι ένα είδος νοητικού πειράματος, η νοερή
Διαβάστε περισσότεραΚεφάλαιο 9. Έλεγχοι υποθέσεων
Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές
Διαβάστε περισσότεραΣχολή Πολιτικών Μηχανικών ΣΤΟΧΑΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΟΥΣ ΥΔΑΤΙΚΟΥΣ ΠΟΡΟΥΣ ΚΟΥΤΣΟΓΙΑΝΝΗΣ ΔΗΜΗΤΡΙΟΣ, ΝΙΚΟΛΑΟΣ. Ακ. έτος Χειμερινό εξάμηνο
Ακ. έτος 14-15 Χειμερινό εξάμηνο Page 1 of 16 Ακ. έτος 14-15 Χειμερινό εξάμηνο ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι του μαθήματος είναι
Διαβάστε περισσότεραΓΥΜΝΑΣΙΟ «ΒΕΡΓΙΝΑ» ΛΑΡΝΑΚΑΣ
ΓΥΜΝΑΣΙΟ «ΒΕΡΓΙΝΑ» ΛΑΡΝΑΚΑΣ ΠΛΗΡΟΦΟΡΗΣΗ ΓΟΝΕΩΝ ΓΙΑ ΤΟΝ ΤΡΟΠΟ ΜΕΛΕΤΗΣ ΤΩΝ ΜΑΘΗΤΩΝ Α, Β και Γ ΓΥΜΝΑΣΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΤΑΡΤΗ 28/11/2012 ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΔΑΣΚΟΝΤΕΣ ΣΤΗΝ Α, Β και Γ ΓΥΜΝΑΣΙΟΥ Παπαφιλίππου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο. Στο εργαστήρι πληροφορικής. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 7 ο εκαδικά κλάσµατα δεκαδικοί αριθµοί Στο εργαστήρι πληροφορικής Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να διαβάζουµε, να γράφουµε και να συγκρίνουµε δεκαδικούς
Διαβάστε περισσότεραΣχολή Πολιτικών Μηχανικών
Συγκεντρωτικά αποτελέσματα προπτυχιακών μαθημάτων για το Εαρινό εξάμηνο του ακ. έτους 15-16 Μάθημα ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ. ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών
ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ ΝΟΕΡΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΛΟΓΑΡΕΖΩ ΜΕ ΤO TΖΙΜΙΔΙ Μ Εισαγωγή ΚΕΦΑΛΑΙΟ 1: Γενικά θεωρητικά θέματα των νοερών υπολογισμών 1.1.: Η θέση των νοερών υπολογισμών στο σύγχρονο διδακτικό
Διαβάστε περισσότεραΛΧ1004 Μαθηματικά για Οικονομολόγους
ΛΧ1004 Μαθηματικά για Οικονομολόγους Μάθημα 1 ου Εξαμήνου 2Θ+2Φ(ΑΠ) Ι. Δημοτίκαλης, Επίκουρος Καθηγητής 1 ΤΕΙ ΚΡΗΤΗΣ-ΤΜΗΜΑ Λ&Χ: jdim@staff.teicrete.gr ΠΡΟΤΕΙΝΟΜΕΝΟ ΒΙΒΛΙΟ ΕΦΑΡΜΟΓΕΣ ΜΑΘΗΜΑΤΙΚΟΥ ΛΟΓΙΣΜΟΥ
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
Διαβάστε περισσότεραΑ.2.1 Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ
ΚΕΦΑΛΑΙΟ Ο ΚΛΑΣΜΑΤΑ Α.. Η ΕΝΝΟΙΑ ΤΟΥ ΚΛΑΣΜΑΤΟΣ ΜΕΘΟΔΟΛΟΓΙΑ ΣΥΓΚΡΙΣΗ ΚΛΑΣΜΑΤΟΣ ΜΕ ΤΟ Αν ο αριθμητής ενός κλάσματος είναι μεγαλύτερος από τον παρανομαστή, τότε το κλάσμα είναι μεγαλύτερο από το. Αν ο αριθμητής
Διαβάστε περισσότεραΠράξεις με πραγματικούς αριθμούς (επαναλήψεις - συμπληρώσεις )
ΜΑΘΗΜΑΤΙΚΑ α x +β
Διαβάστε περισσότεραΤΑΞΗ: ΣΤ. Προτείνεται να μην αξιοποιηθούν διδακτικά από το Βιβλίο Μαθητή τα παρακάτω: 1 ο σελ. 7, 4 η άσκηση, σελ. 8, 2 ο πρόβλημα
ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά ΣΤ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά ΣΤ Δημοτικού, 2015, β τεύχος Τετράδιο
Διαβάστε περισσότερα«ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ «ΕΦΑΡΜΟΣΜΕΝΗ ΔΙΔΑΚΤΙΚΗ ΜΑΘΗΜΑΤΙΚΩΝ» ΠΡΑΚΤΙΚΕΣ Β ΦΑΣΗΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Διδάσκουσες:
Διαβάστε περισσότεραΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ:
ΤΑΞΗ Α ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Βιβλίο μαθητή, Μαθηματικά Α Δημοτικού, 2015, β τεύχος Τετράδιο εργασιών, Μαθηματικά Α Δημοτικού, 2015, α τεύχος Τετράδιο
Διαβάστε περισσότερα6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ
6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5.1. Οι γνώσεις υποψηφίων δασκάλων για την υπολογιστική εκτίμηση Σε μια έρευνα των Lemonidis
Διαβάστε περισσότεραΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ
3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 415 ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΜΑΘΗΣΙΑΚΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΜΕ ΤΗ ΧΡΗΣΗ Η ΧΩΡΙΣ ΤΗ ΧΡΗΣΗ Η/Υ ΓΙΑ ΤΗ ΔΙΔΑΣΚΑΛΙΑ ΚΛΑΣΜΑΤΩΝ Μεταφετζής Γιώργος Δάσκαλος, 1ο ΔΣ Βόλου gmetafetz@in.gr
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ο. Στην ιχθυόσκαλα. Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους:
ΚΕΦΑΛΑΙΟ 2 ο Υπενθύµιση - Οι αριθµοί µέχρι το 1..000..000 Στην ιχθυόσκαλα Στο κεφάλαιο αυτό, θα προσπαθήσουµε να επιτύχουµε τους εξής στόχους: Να εκτιµάς το αποτέλεσµα πριν κάνεις την αριθµητική πράξη.
Διαβάστε περισσότερα(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία.
(ΣΥΜΠΕΡΑΣΜΑΤΑ) Δεν μπορώ να βρω το ζητούμενο ενός προβλήματος αν δεν μου δίνονται όλα τα απαραίτητα στοιχεία. Περίμετρος ενός σχήματος είναι το άθροισμα των πλευρών του το οποίο εκφράζεται με τη μονάδα
Διαβάστε περισσότεραΔιαχειρίζομαι αριθμούς έως το 10.000
Α Περίοδος Διαχειρίζομαι αριθμούς έως το 10.000 Στο μάθημα αυτό θα ασχοληθούμε με την εκτίμηση υπολογισμών, δηλαδή με την εύρεση ενός αποτελέσματος στο «περίπου» ή «κατ εκτίμηση» ή «πάνω-κάτω» ή «χοντρά-χοντρά»,
Διαβάστε περισσότεραΜαθηματικά της Φύσης και της Ζωής
Μαθηματικά της Φύσης και της Ζωής Τάξη: ΣΤ Η γάτα και το ποντίκι 1. Ένα ποντίκι βρίσκεται πάνω σε έναν τοίχο ύψους 2 μέτρων και κάτω στο έδαφος, περιμένοντας το, βρίσκεται μια γάτα. Κατά τη διάρκεια της
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ. Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς
ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ ΒΙΒΛΙΟ ΜΑΘΗΤΗ Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς 8 Η πρόσθεση και η αφαίρεση στους φυσικούς αριθμούς 8 Πρόσθεση είναι η πράξη με την οποία ενώνουμε δύο ή περισσότερους
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ Πίνακας περιεχομένων Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ... 2 Κεφάλαιο 2 ο - ΤΑ ΚΛΑΣΜΑΤΑ... 6 Κεφάλαιο 3 ο - ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ... 10 ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΣ 1 Κεφάλαιο 1 - ΟΙ ΦΥΣΙΚΟΙ ΑΡΙΘΜΟΙ
Διαβάστε περισσότεραΜέγιστη τιμή Οι στόχοι του μαθήματος είναι σαφείς ,18 0, ,5 4,31 0, ,29 0, ,82 1, ,71 1,27 1 5
ΑΣΤΙΚΑ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ Μάθημα Ακ. έτος 214-215 Εαρινό εξάμηνο ΕΝΟΤΗΤΑ: Μάθημα Ερώτηση Πλήθος απαντήσεων Διάμεσος Μέσος Όρος Τυπική απόκλιση Ελάχιστη Μέγιστη Οι στόχοι του μαθήματος είναι σαφείς Η ύλη που
Διαβάστε περισσότεραΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ»
ΕΠΙΜΟΡΦΩΤΙΚΗ ΗΜΕΡΙΔΑ «Η ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΣΥΜΦΩΝΑ ΜΕ ΤΑ ΝΕΑ ΠΡΟΓΡΑΜΜΑΤΑ ΣΠΟΥΔΩΝ» ΕΙΣΗΓΗΣΗ: «Πρακτικές αξιολόγησης κατά τη διδασκαλία των Μαθηματικών» Γιάννης Χριστάκης Σχολικός Σύμβουλος 3ης Περιφέρειας
Διαβάστε περισσότεραΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 7 Ο ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 1. Όταν μπροστα" (αριστερα") απο" ε"ναν αριθμο" γραφει" το συ"μβολο + το"τε ο αριθμο"ς
Διαβάστε περισσότεραΕπαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ
Οδύσσεια Τα απίθανα... τριτάκια! Tετάρτη τάξη Επαναληπτικές Ασκήσεις Μαθηματικών Γ τάξη - 5 η Ενότητα Κεφ. 33 38 Πηγή: e-selides ΜΑΘΗΜΑΤΙΚΑ - Κεφ. 33 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΜΕ ΤΟ,,.000. Κάνω τους
Διαβάστε περισσότεραΠεριληπτικά, τα βήματα που ακολουθούμε γενικά είναι τα εξής:
Αυτό που πρέπει να θυμόμαστε, για να μη στεναχωριόμαστε, είναι πως τόσο στις εξισώσεις, όσο και στις ανισώσεις 1ου βαθμού, που θέλουμε να λύσουμε, ακολουθούμε ακριβώς τα ίδια βήματα! Εκεί που πρεπει να
Διαβάστε περισσότεραΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ
ΜΑΘΗΜΑΤΙΚΑ (Γ ΤΑΞΗ) ΟΝΟΜΑ:. (ΕΙΣΑΓΩΓΗ ΣΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΣΤΟΥΣ ΔΕΚΑΔΙΚΟΥΣ ΑΡΙΘΜΟΥΣ) ΤΑ ΔΕΚΑΔΙΚΑ ΚΛΑΣΜΑΤΑ ΚΑΙ ΟΙ ΔΕΚΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΛΑΤΕ ΝΑ ΣΚΕΦΤΟΥΜΕ ΜΑΖΙ: Υπάρχουν άραγε αριθμοί ανάμεσα στο 0 και
Διαβάστε περισσότεραΠορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας ανακά
Θεωρητικό πλαίσιο Μαθηµατικά Β Γιώργος Αλβανόπουλος Σχολικός 1 Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΙΙ ΘΕΜΑ: «Αριθμοί στην καθημερινή ζωή» Βόκα Δέσποινα & Δούρου
Διαβάστε περισσότεραΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΔΑΣΚΑΛΙΑΣ ΤΩΝ ΑΡΝΗΤΙΚΩΝ ΑΡΙΘΜΩΝ
ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ- ΠΡΑΞΕΙΣ ΑΥΤΩΝ 1.1 ΕΙΣΑΓΩΓΗ Ασχολήθηκα 30 χρόνια με τη διδασκαλία των Μαθηματικών του Γυμνασίου, τόσο στην Μέση Εκπαίδευση όσο και σε Φροντιστήρια. Η μέθοδος που χρησιμοποιούσα για τη
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 9 ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4
ΠΡΟΣΘΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 3 ΚΑΙ 4 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( ) ενός συνόλου ή μιας επιφάνειας, χρησιμοποιώντας αντικείμενα, εικόνες
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 10 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ
ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΚΑΙ ΔΙΑΙΡΕΣΗ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Υπολογισμοί και Εκτίμηση Αρ3.12 Εκτιμούν και υπολογίζουν το άθροισμα, τη διαφορά, το γινόμενο και το πηλίκο αριθμών μέχρι το 100 000 και επαληθεύουν
Διαβάστε περισσότεραΗ προβληματική κατάσταση Χρήστος Πανούτσος
Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες
Διαβάστε περισσότεραΜαθηματικά για Διδασκαλία III
Μαθηματικά για Διδασκαλία III Μαριάννα Τζεκάκη Απαραίτητα στον εκπαιδευτικό Μαθηματικό περιεχόμενο γνώση Ζητήματα των στόχων της διδασκαλίας των μαθηματικών μάθησης και του σχετικού μαθηματικού περιεχομένου
Διαβάστε περισσότεραΓιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης. Παρουσίαση. Τίτλος Το παιχνίδι της προπαίδειας.
Παρουσίαση Γιάννης Αγιοργιωτάκης Μαθηματικός στο Σ.Δ.Ε. Αλεξανδρούπολης Τίτλος Το παιχνίδι της προπαίδειας. Σκοποί και Στόχοι 1. Να απομνημονεύσουν οι εκπαιδευόμενοι τον Πυθαγόρειο πίνακα του πολλαπλασιασμού..
Διαβάστε περισσότεραΕπίλυση προβλημάτων. Κεφάλαιο 6 ο
ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΟ ΝΕΟ ΒΙΒΛΙΟ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ Ε ΤΑΞΗΣ Θεόδωρος Γούπος, Κριτής Αξιολογητής, Σχολικός Σύμβουλος Κωνσταντίνος Βρυώνης, Κριτής Αξιολογητής, Εκπαιδευτικός Κεφάλαιο 6 ο Επίλυση προβλημάτων
Διαβάστε περισσότεραGutenberg
Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,
Διαβάστε περισσότεραΒοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
Διαβάστε περισσότεραΦυσικές Επιστήμες. Επιμόρφωση εκπαιδευτικών στα νέα βιβλία των Φ.Ε. για την Ε Δημοτικού. Πέτρος Κλιάπης. Πέτρος Κλιάπης 12η Περιφέρεια Θεσσαλονίκης
Φυσικές Επιστήμες Επιμόρφωση εκπαιδευτικών στα νέα βιβλία των Φ.Ε. για την Ε Δημοτικού. Πέτρος Κλιάπης ΒΑΣΙΚΕΣ ΠΑΡΑΔΟΧΕΣ «Το νέο βιβλίο είναι χειρότερο από το παλιό όχι επειδή διαφέρει ως προς το περιεχόμενο
Διαβάστε περισσότεραΓράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων
Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα
Διαβάστε περισσότεραΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την
1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν
Διαβάστε περισσότεραΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών
ΤΟ ΔΗΜΟΚΡΑΤΙΚΟ ΣΧΟΛΕΙΟ ΣΤΗΝ ΠΡΑΞΗ ΜΕΣΑ ΑΠο ΤΗΝ ΕΜΠΕΔΩΣΗ Ο ΡΟΛΟΣ ΤΟΥ ΔΙΕΥΘΥΝΤΗ Δρ Μάριος Στυλιανίδης, ΕΔΕ ΚB Παγκύπριο Συνέδριο Διευθυντών 15 Μαΐου 2012 Τι είναι Εμπέδωση; ΠΡΙΝ Εξατομίκευση Θεραπευτική
Διαβάστε περισσότερα11. Ποιες είναι οι άμεσες συνέπειες της διαίρεσης;
10. Τι ονομάζουμε Ευκλείδεια διαίρεση και τέλεια διαίρεση; Όταν δοθούν δύο φυσικοί αριθμοί Δ και δ, τότε υπάρχουν δύο άλλοι φυσικοί αριθμοί π και υ, έτσι ώστε να ισχύει: Δ = δ π + υ. Ο αριθμός Δ λέγεται
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 2 ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ
ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΜΕΧΡΙ ΤΟ 100 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ2.9 Αναγνωρίζουν και ονομάζουν τους όρους: άθροισμα, διαφορά, γινόμενο, πηλίκο, αφαιρέτης, αφαιρετέος, προσθετέος, διαιρέτης,
Διαβάστε περισσότεραΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες
ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης
Διαβάστε περισσότεραΜελέτη Περιβάλλοντος και Συνεργατική οργάνωση του μαθήματος
Μελέτη Περιβάλλοντος και Συνεργατική οργάνωση του μαθήματος ΗΜελέτη Περιβάλλοντος Είναι κατ εξοχήν διαθεματικό αντικείμενο, διότι αποτελεί ενιαίο και ενοποιημένο τομέα μάθησης, στον οποίο συνυφαίνονται
Διαβάστε περισσότερατα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Διαβάστε περισσότεραΔραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού
Δραστηριότητες & Υλικό για τα Μαθηματικά του Δημοτικού Πέτρος Κλιάπης kliapis@sch.gr 1 Ο Ρόλος του εκπαιδευτικού Αξιολογεί την αρχική μαθηματική κατάσταση κάθε παιδιού, ομαδοποιεί τα παιδιά σύμφωνα με
Διαβάστε περισσότεραοι αναλυτικές λύσεις όλων των ασκήσεων και προβλημάτων του σχολικού βιβλίου
Αγαπητοί γονείς Το βιβλίο αυτό είναι γραμμένο σύμφωνα με την ύλη του σχολικού βιβλίου «Μαθηματικά Β Δημοτικού». Είναι δομημένο σε αντίστοιχα κεφάλαια με επαναληπτικά μαθήματα και λειτουργεί παράλληλα αλλά
Διαβάστε περισσότεραΔιδασκαλία θεμάτων Φυσικών Επιστημών
Διδασκαλία θεμάτων Φυσικών Επιστημών Στους ειδικούς σκοπούς του μαθήματος αναφέρεται ότι θα πρέπει : «.οι μαθητές να είναι ικανοί, όχι μόνο να παρατηρούν τα φυσικά και χημικά φαινόμενα. και να καταγράφουν
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
Διαβάστε περισσότερα