Energy Levels of Light Nuclei A = 20

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Energy Levels of Light Nuclei A = 20"

Transcript

1 Revised 20 Manuscript 19 June 2008 Energy Levels of Light Nuclei A = 20 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania Abstract: An evaluation of A = was published in Nuclear Physics A392 (1983), p. 1. This version of A = 20 differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Reference key numbers have been changed to the NNDC/TUNL format. (References closed May 1, 1982) The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-AC02-76-ER02785]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

2 Nucl. Phys. A392 (1983) 1 A = 20 Table of Contents for A = 20 Below is a list of links for items found within the PDF document. Figures from this evaluation have been scanned in and are available on this website or via the link below. A. Nuclides: 20 n, 20 B, 20 C, 20 N, 20 O, 20 F, 20 Ne, 20 Na, 20 Mg, 20 Al B. Tables of Recommended Level Energies: Table 20.1: Energy levels of 20 O Table 20.3: Energy levels of 20 F Table 20.17: Energy levels of 20 Ne Table 20.36: Energy levels of 20 Na C. References D. Figures: 20 O, 20 N, 20 Ne, 20 Na, Isobar diagram E. Erratum to this Publication: PS or PDF

3 20 n (Not illustrated) 20 n has not been observed. See (1978SA1E; theor.). 20 B (Not illustrated) 20 B has not been observed. The mass excess is predicted to be MeV (1974TH01). 20 B is then unstable with respect to breakup into 19 B + n by 0.9 MeV [see 19 B]. See also (1978AJ03). 20 C (Not illustrated) 20 C has been observed in the fragmentation of 213 MeV/nucleon 48 Ca by Be: it is particle stable (1981ST23). Assuming the mass excess of 20 C to be 37.3 MeV [see (1978AJ03)], 20 C is then stable with respect to 19 C + n and 18 C + 2n by 3.2 and 3.75 MeV, respectively [see 18 C and 19 C]. See also (1978AJ03) and (1978NA07, 1981KI04; theor.). 20 N (Not illustrated) 20 N is particle stable: see (1972AJ02). Assuming that the atomic mass excess is 22.0 MeV, 20 N is then stable with respect to 19 N + n by 1.94 MeV (see 19 N). See also (1978AJ03). 20 O (Figs. 9 and 13) GENERAL: (See also (1978AJ03).) Model calculations: (1977GR16). Special states: (1977GR16). Astrophysical questions: (1978WO1E). Other topics: (1977GR16, 1978RA1J, 1979BE1H) O(β ) 20 F Q m =

4 Table 20.1: Energy levels of 20 O E x (MeV ± kev) J π ; T τ Decay Reactions ; 2 τ 1/2 = ± 0.1 sec β 1, 2, 3, ± τ m = 10.5 ± 0.4 psec γ 2, 3, 4 g = ± ± (γ) 2, 3, ± γ 2, ± γ 2, ± (γ) ± 6 (γ) ± (γ) ± (γ) ± (γ) ± 3 (3 ) (γ) ± 8 (2) (γ) ± 8 5 (γ) ± ± , ± 6 (5 ) 2, ± ± ± 21 (0 + ) ± ± , 3 4

5 20 O decays to 20 F*(1.06) [J π = 1 + ] with a half-life of ± 0.05 sec (weighted mean of (1970MA42, 1974AL09)), log f t = 3.75 ± Upper limits for the branching to other states of 20 F are shown in Table 20.2 of (1978AJ03) and in Table IV of (1974AL09). See also (1981KA32; theor.) O(t, p) 20 O Q m = Observed proton groups are displayed in Table The first excited state, 20 O*(1.67) has τ m = 10.7 ± 0.4 psec (1980RU01) [M 2 E2 = 1.76 ± 0.07 W.u.], 9.8 ± 0.7 psec (1977HE12); g = ± [(1980RU01) and see (1978AJ03)]. 20 O*(4.07) decays to 20 O*(0, 1.67) with branchings of 26 ± 4 and 74 ± 4%. The p-γ angular correlations lead to J = 2; the strength of the transition favors π = +[δ(e2/m1) = 0.18 ± 0.08 for the transition]. 20 O*(4.46) and 20 O*(5.39) decay primarily via 20 O*(1.67); the direct ground-state decay is < 4% for the first and < 7% for the second of these states. The angular correlations are essentially isotropic, favoring J π = 0 +. The transition 20 O*( ) is not observed: the upper limit is 8% (1981YO03) O(α, 2p) 20 O Q m = At E α = 65 MeV the population of 20 O*(0, 1.67, 3.57) and of states at 7.78, 8.78 and 10.2 [±0.1] MeV are reported (1978JA10). See also (1978BI1N). 4. (For other reactions leading to 20 O see (1978AJ03).) 18 O( 18 O, 16 O) 20 O Q m = Angular distributions have been measured to 20 O*(0, 1.67) at E( 18 O) = 24 to 36 MeV (1977KA21) and to 20 O*(0, 1.67, 3.57, 4.07, 4.46) (1979KU01). A FRDWBA analysis shows L = 0 for the transitions to 20 O*(0, 4.46) but underestimates the absolute cross sections by an order of magnitude (1979KU01). 5

6 Table 20.2: Energy levels of 20 O from 18 O(t, p) 20 O a E x (kev) L J π ± 3 b ± ± ± 5 c ± ± ± ± 6 c ± ± 3 (3) (3 ) 6555 ± 8 (2) 7252 ± ± ± ± 6 (5) (5 ) 8554 ± ± ± 21 (0) (0 + ) 9770 ± 8 d ± a (1979LA18): E t = 15 MeV. See also Table 20.3 in (1978AJ03) and (1979FO17, 1979PI01). b E γ leads to E x = ± 0.15 kev (1973WA19). c 6p-2h structure: see (1979LA1B, 1979LA18). d This strong state suggests that (fp) 2 excitations are important (1979LA18). 6

7 GENERAL: (See also (1978AJ03).) 20 F (Figs. 10 and 13) Shell model: (1978MA2H, 1981EL1D, 1982KI02). Electromagnetic transitions: (1976MC1G). Special states: (1978MA2H, 1981EL1D, 1982KI02). Complex reactions involving 20 F: (1978SH18, 1982FR03). Astrophysical questions: (1978WO1E). Muon and pion capture and reactions: (1979KN1G, 1980TR1A). Other topics: (1977GR16, 1978MA2H, 1978RA1J, 1979BE1H, 1981EL1D, 1982KI02, 1982QUZY). Ground state of 20 F: (1976MC1G). µ = (2) nm (1978LEZA); Q = (13) b (1978LEZA) F(β ) 20 Ne Q m = The half-life of 20 F is ± 0.02 sec: see (1978AJ03). See also (1975SA1D, 1978CA02). 20 F decays principally to 20 Ne*(1.63): see 20 Ne, reaction C( 9 Be, p) 20 F Q m = At E( 9 Be) = 12 to 27 MeV angular distributions are reported (1979JA22, 1981JA09: p 0, p ). See also (1978AJ03) C( 7 Li, 7 Li) 13 C E b = See (1976PO02, 1978DR07) and 13 C in (1981AJ01). For fusion cross sections see (1981DE1H, 1981DE2K) C( 9 Be, d) 20 F Q m = At E( 13 C) = 27.9 MeV angular distributions are reported by (1980BO21: d 0, d ). 7

8 Table 20.3: Energy levels of 20 F a E x (MeV ± kev) J π ; T τ Decay Reactions ; 1 τ 1/2 = 11.0 ± 0.02 sec β 1, 2, 4, 6, 7, 13, 14, 21, 22, 25, 26, 27, 28, ± τ m = 0.39 ± 0.03 psec γ 2, 4, 6, 7, 12, 13, 14, 22, 23, 26, ± ± 6 psec γ 2, 4, 5, 6, 7, 12, 13, 14, 22, 26, ± ± 0.2 psec γ 2, 4, 6, 7, 12, 13, 14, 22, 26, ± ± 13 fsec γ 2, 4, 6, 7, 13, 14, 22, 24, 25, 26, ± ± 0.3 psec γ 6, 7, 12, 13, 14, 22, 25, 26, ± fsec γ 5, 6, 12, 13, 22, ± ± 20 fsec γ 7, 13, 14, 22, 25, 26, ± 0.4 (3 ) γ 6, 7, 12, 13, 14, 22, ± ± 16 fsec γ 6, 7, 13, 14, 22, 23, 26, ± 0.4 (3 + ) < 12 fsec γ 6, 7, 13, 14, 22, 26, ± 1.5 (3 ) γ 6, 7, 13, 22, ± ± 40 fsec γ 6, 7, 13, 14, 22, ± 1.5 (4 ) γ 5, 6, ± γ 6, 7, 13, 22, ± ± 11 fsec γ 13, 14, 22, ± ± 15 fsec γ 6, 7, 13, 14, ± 0.3 (1, 2, 3) + 60 fsec γ 6, 7, 13, 14, 22, ± 0.4 (1, 2, 3) + γ 6, 7, 13, 14, 22, ± 1.9 (2, 3 + ) γ 6, 7, 13, 22, ± γ 6, 7, 13, 14, 22, ± 0.4 (1) + γ 6, 7, 13, 14, 22, ± 2.7 (γ) 6, 7, 22, ± 2.6 (γ) 6, 7, 22, ± 0.5 (1, 2, 3) + γ 6, 7, 14, 22, ± 2.0 (0, 1) + (γ) 6, 7, 22, ± ( ) (γ) 6, 7, 22, ± 2.0 (6 +, 4 ) (γ) 6, 7, 22, 28 8

9 Table 20.3: Energy levels of 20 F a (continued) E x (MeV ± kev) J π ; T τ Decay Reactions ± 1.8 (γ) 6, 7, 22, ± 2.9 (γ) 6, 7, 22, ± 2.0 (5 +, 6 +, 4 ) (γ) 6, 7, 22, ± 2.0 (5 +, 6 +, 4 ) (γ) 6, 7, 22, ± 2.8 (γ) 22, ± 2.8 (γ) 22, ± 3.1 (0, 1, 2) (γ) 7, 22, ± 3.1 (γ) 7, 22, ± 4 (γ) 7, 22, ± 2.8 (0, 1, 2) (γ) 7, 22, ± 3 (1, 0) + (γ) 22, ± 3 (γ) 7, 22, ± 4 (1, 2, 3) + (γ) 7, 22, ± 0.6 γ 7, 14, 22, ± 3.8 (γ) 22, ± 3.2 (γ) 22, ± 3 (1, 2, 3) + (γ) 7, ± 2.0 (0, 1, 2) γ 7, 14, 22, ± 1.5 (γ) 7, 22, ± 3 (γ) 7, 22, ± 2 γ 14, 22, ± 2.5 (1, 2, 3) + (γ) 7, 22, ± 2.5 (2, 1 + ) (γ) 7, 22, ± 0.3 (1, 2 ) γ 7, 14, 22, ± 0.3 (2 ) γ 7, 14, 22, ± 0.4 γ 7, 14, 22, ± 6 (γ) 7, ± 6 (γ) 7, ± 7 (γ) ± 5 (γ) ± 5 (γ) ± 6 (γ) ± 12 (γ) 28 9

10 Table 20.3: Energy levels of 20 F a (continued) E x (MeV ± kev) J π ; T τ Decay Reactions ± 9 (γ) ± 5 (γ) ± ; 2 γ 13, ± 5 (γ) ± ± γ, n 14, ± 0.6 (3, 4) < 0.08 γ, n 14, ± ± 0.10 γ, n 14, 15, ± ± 0.8 γ, n 14, 15, ± γ, n 14, n ± ± 2 γ, n 14, 16, 28 (6.858 ± 8) 1 γ, n ± ± ± 1 γ, n 14, 16 ( ± 1.2) 0 (2.4 ± 0.6) γ, n 14, (1 + ) 24 n ± 2 2 (+) 8 ± 1 γ, n 14, 15, (1) 33 γ, n 14, (1) 19 n 15, (2 + ) 10 γ, n 14, 15, (2) 80 γ, n 14, (2 + ) 65 γ, n 14, 15, n 15, 16 ( ± 12) 1 (50 ± 10) γ, n ± ± 2 γ, n ± ; γ, n 14, 15, n n n n 15, n n 15, 16 10

11 Table 20.3: Energy levels of 20 F a (continued) E x (MeV ± kev) J π ; T τ Decay Reactions n n n 15, n n 15 (9.886 ± 10) n n 16 (9.929 ± 10) n 15 (9.981 ± 10) n ± n, α 15, 26, ± 50 n, α ± 10 0, n, α 15, ± n, α 15, ± 10 1, 2 70 n 15, ± 10 0, n, α 15, n 16 ( ± 10) 30 n 15 ( ± 10) < 25 n 15 ( ± 10) < 25 n 15, 16 ( ± 10) n ± 50 n, α n, α ± 100 n, α n, α n, α n, α n, α 16, n, α 20 a See also Tables 20.4 and

12 Table 20.4: Radiative transitions in 20 F a E i (MeV) J π i E f (MeV) Branching (%) δ ± ± ± c b 1.06 c c b 1.82 c ± c c (3 ) 0 16 ± ± ± ± ± c ± ± c (3 + ) 0 58 ± 4 0 ± (100) ± ± ± ± ± ± d (4 ) ± ± c (1 + ) 0.98 > ± ± ± ± ± (1, 2, 3)

13 Table 20.4: Radiative transitions in 20 F a (continued) E i (MeV) J π i E f (MeV) Branching (%) δ 3.68 (1, 2, 3) observed ± ± (1) ± 7 e ± 7 a For references see Table 20.5 in (1978AJ03). b Pure E1. c For upper limits for transitions to other states of 20 F see Table 20.5 in (1978AJ03). d (1978LE19). e For the decays of higher states see Table 20.5 in (1978AJ03), and Tables 20.8 and 20.9 here C( 11 B, α) 20 F Q m = The upper of the two states at 2.97 MeV has an excitation energy of 2968 ± 1.5 kev and γ branching ratios of 61 ± 4 and 39 ± 4%, respectively, to 20 F*(1.97, 0.82) [J π = (3 ), 4 + ]: this is consistent with J π = (4 ) for 20 F*(2.968) (1978LE19) N( 7 Li, p) 20 F Q m = The 20 F states observed in this reaction at E( 7 Li) = 16 MeV are displayed in Table The cross sections for forming states of known J π are proportional to 2J f + 1 with slopes which are different for the even- and the odd-parity states. Extrapolation of these relationships to states of unknown J π leads to the assignments shown in Table 20.6 (1977FO11) O( 7 Li, 3 He) 20 F Q m = Angular distributions have been measured at E( 7 Li) = 24 MeV for the 3 He groups corresponding to the states shown in Table It is suggested that the states at E x = 4.20, 4.52, 4.58 and 5.41 MeV have high spin and (sd) 4 configurations (1978FO14). 13

14 Table 20.5: Lifetime measurements of some 20 F states a 20 F* (MeV) τ m ± 0.03 psec ± 6 psec ± 0.20 psec a 1.8 ± 0.3 psec b 2.0 ± 0.2 psec c ± 13 fsec ± 0.20 psec a 1.9 ± 0.3 psec b 1.6 ± 0.3 psec c fsec ± 20 fsec ± 0.4 psec ± 16 fsec 2.19 < 12 fsec ± 40 fsec ± 11 fsec ± 15 fsec ± 30 fsec a For references see Table 20.6 in (1978AJ03). b (1980KO1H; abstract) and R.L. Kozub (private communication). c Best value. 14

15 Table 20.6: States of 20 F from 14 N( 7 Li, p) and 16 O( 7 Li, 3 He) E x (kev) a E x (kev) b J π a,b ± ± ± ± ± ± ± ± ± ± ± 4 c ± 2 c (2 ) 1969 ± ± 3 (3 ) 2040 ± ± ± ± ± ± 2 (3 ) 2962 ± 3 c 2968 ± ± ± ± 3 c 3491 ± 4 c ± 5 d 3593 ± ± 2.8 d 3680 ± ± ± 2 (2, 3 + ) e 3967 ± ± ± 4 d 4082 ± ± 3 c 4205 ± 3 c 4274 ± 3 c 4285 ± 5 c 4366 ± ± 12 0 ( ) 4508 ± ± 3 (6 +, 4 ) e ± 2.6 c 4583 ± 3 c 4736 ± ± 3 (5 +, 6 +, 4 ) 4768 ± ± 4 (5 +, 6 +, 4 ) ± 2.9 c 4901 ± 4 c 5057 ± 7 c 5144 ± ± 7 15

16 Table 20.6: States of 20 F from 14 N( 7 Li, p) and 16 O( 7 Li, 3 He) (continued) E x (kev) a E x (kev) b J π a,b 5326 ± 3 c 5414 ± ± 4 c 5554 ± 9 c 5608 ± ± 5 c 5951 ± ± 4 c 6199 ± 10 c a (1977FO11): E( 7 Li) = 16 MeV. Some E x values have been rounded off. b (1978FO14): E( 7 Li) = 24 MeV. c Unresolved. d Possible doublet. e If single state. 8. (Additional reactions on which no new work is reported are listed in (1978AJ03).) 17 O(t, p) 19 O Q m = E b = See 19 O O( 13 C, 10 B) 20 F Q m = See (1979GO17). 10. (a) 18 O(d, n) 19 F Q m = E b = (b) 18 O(d, p) 19 O Q m = Vector analyzing power measurements [reaction (b)] have been carried out at E d = 10 MeV (1979ST21; p 0, p 2, p 3, p 4 ) and at 14 MeV: see (1978AJ03). See also (1981NE1B; theor.). See also 19 O. For reaction (a) see 19 F. 16

17 Table 20.7: States in 20 F for 18 O( 3 He, p) 19 F a (1970RO06) E x (kev) L b J π c (1974CR04) ± ± ± ± ± 5.3 g ± ± ± ± 3.1 g ± 1.6 d ± ± 1.7 d (2 ) ± ± 2.8 g (3 ) ± ± ± ± 2.8 (3 + ) ± ± 3.9 g ± ± 3.5 see b ± 3.8 (0 + 2) a (1 + ) ± ± g (0 + ) ± ± 2.7 see b ± ± 4.9 see b ± 3.1 e 3760 ± 10 g ± a ± ± 3 f 0 + ; T = 2 f a For a complete listing of references see reaction 13 and Table 20.8 in (1978AJ03). b E( 3 He) = 18 MeV (1974CR04): predominant L-values. c From L-values, γ-ray polarization data and branching ratio and lifetime measurements: see also Tables 20.4 and d E x = ± 2.1 and ± 2.2 kev (1967QU01). e E x = 3765 ± 6 kev, based on E x = 657 ± 1 kev (1973PR01). f Decays principally (> 90%) to 20 F*(1.06): the γ-rays are isotopic [Γ γ = 3.6 ± 0.6 ev, based on the analog decay in 20 Ne]. 20 F*(6.52) is the 0 +, T = 2 analog of the ground states of 20 O and 20 Mg (1976MI01, 1977BA50). g Weakly populated. 17

18 O(d, d) 18 O E b = VAP measurements involving the elastic group have been carried out at E d = 10 MeV (1979ST21) and at 14.8 MeV: see (1978AJ03). 12. (a) 18 O(d, 3 He) 17 N Q m = E b = (b) 18 O(d, α) 16 N Q m = VAP measurements are reported at E d = 52 MeV for reaction (a) (1981MA14: to 17 N*(0, 1.37, 1.85, 2.53, 5.51, 6.99) and (b) (1982MA25: to 16 N*(0, 0.30, 3.36, 3.96, 4.32, 6.17). TAP measurements are reported to reaction (b) at E d = 8.5 to 11.3 MeV (1978BA43). For excitation functions see (1972AJ02). See also 16 N, 17 N in (1982AJ01) and (1979SE04) O(t, n) 20 F Q m = See (1978AJ03) O( 3 He, p) 20 F Q m = States of 20 F observed in this reaction are displayed in Table For a complete listing of the references see (1978AJ03) F(n, γ) 20 F Q m = The thermal capture cross section is 9.8 ± 0.7 mb (1974SH1E). A number of resonances have been observed: see Table See also (1981MUZQ). The primary γ-rays resulting from capture at thermal energies ( 20 F*(6.60); J π = 0 +, 1 + ) and at E n = 27, 44 and 49 kev ( 20 F*(6.63, 6.643, 6.647); J π = 2, (3, 4) and 1 ) have been studied by several groups: see (1972AJ02) and Table 20.9 here. It appears that the thermal capture [ 20 F*(6.60)] is dominated by two intense transitions (probably E1) to 20 F*(5.94, 6.02) [thus J π = 1, 2 ]. If the ground-state transition is mainly M1, these two E1 transitions are (in terms of W.u.) about 150 times stronger than the M1 transition (1968SP01). It appears also that at 20 F*(6.63, 6.64, 6.65) [J π = 2, (3, 4) and 1 ] the E1 transitions to the ground state are very weak, even though other E1 transitions in the decay of these two states have approximately normal strengths (1967BE36, 1974KE18). The strongest transitions from the 27 kev resonance appear to be M1. On the basis of the J π of the final states involved in 18

19 Table 20.8: Resonances in 19 F(n, γ) 20 F a E n (kev) J π b Γ γ (ev) Γ c.m. (kev) E x in 20 F (MeV) ± ± ± ± 0.1 (3, 4) c < ± ± ± ± ± 1.8 d 13.5 ± ± 0.9 e ± ± ± (270 ± 8) (6.858) 386 ± ± ± (490.5 ± 1) 0 ( 10 ± 3) (2.4 ± 0.6) (7.0670) 595 ± ± ± (1295 ± 12) (50 ± 10) (7.831) 1460 ± ± 3 14 ± ± a For complete references see Table 20.9 in (1978AJ03). b Assumed: (1973MA14). c gγ n = ± 0.02 ev (1973MA14). d May be two resonances. e gγ n = 0.35 ± 0.1 ev (1973MA14). 19

20 Final state Table 20.9: Primary capture transitions in 19 F(n, γ) 20 F a I γ b from 20 F* (MeV) 20 F*(6.60) c 20 F*(6.63) 20 F*(6.64) 20 F*(6.65) ± ± 1 42 ± ± ± ± ± ± ± ± 1 59 ± ± ± 1 14 ± ± ± a For complete references see Table in (1978AJ03). See also Tables 20.4 and 20.8 here. b In units of photons/100 captures. c I γ < 5 not shown: see Table in (1978AJ03). Transitions from thermal energy capture. 20

21 Table 20.10: γ) 20 F a States of 20 F involved in 19 F(n, E x (kev) ± ± 0.3 b ± ± ± ± 0.3 b 3967 ± 2 c ± ± ± ± ± ± ± ± ± ± 2 c ± ± ± ± ± ± ± 0.3 d a (1968SP01). b ± 0.3 and ± 0.4 kev (1972OP01). c (1969HA04). d ± 0.6 kev (1969HA04). the decay of the 44 kev resonance J = 3 or 4, assuming dipole transitions (1974KE18). Branching ratios for other 20 F states involved in this reaction are shown in Table Table displays excitation energies for 20 F states involved in cascade and in primary γ- transitions F(n, n) 19 F E b = The scattering amplitude (bound) a = ± fm, σ free = ± b (1979KO26). See also (1981MUZQ). The total cross section has been measured for E n = 0.5 to 29.1 MeV: see (1978AJ03). Observed resonances are displayed in Table See also 19 F F(n, n ) 19 F* E b =

22 Observed resonances in the excitation functions involving 19 F*(0.11, 1.5 [u]) are displayed in Table See also (1978CO18, 1980CO1U) and (1978AJ03) F(n, 2n) 18 F Q m = E b = Cross sections have been measured for E n = 10 to 37 MeV [see (1978AJ03)] and at E n = MeV (1978RY02) and MeV (1978CO18, 1980CO1U). See also (1979HA60) F(n, p) 19 O Q m = E b = The differential cross section at 92 for production of the 96 kev γ-ray has been studied by (1976MO13: E n = 4.0 to 18.6 MeV): the cross section increases sharply at E n = 6 MeV and then gradually decreases beyond E n = 12 MeV. Cross sections have also been measured for E n = 12.6 to 21 MeV: see (1972AJ02) and the summary in (1976GAYV). See also (1978SM1E, 1979BR08, 1979HA60). 19. (a) 19 F(n, d) 18 O Q m = E b = (b) 19 F(n, t) 17 O Q m = For reaction (a) see (1978CO18, 1980CO1U). For reaction (b) see (1978QA01). For both see also (1978AJ03) F(n, α) 16 N Q m = E b = Reported resonances are shown in Table 20.13: see graph in (1976GAYV). See also (1978SM1E, 1979BR08) F(p, π + ) 20 F Q m = Cross sections at 5.3 and 10.4 MeV above threshold are reported by (1979MA39) F(d, p) 20 F Q m =

23 Table 20.11: Resonances in 19 F(n, n) 19 F a E n (kev) Γ lab (kev) J π 20 F* (MeV) ± ± ± b (1 + ) b (2 + ) b (1) (1) (7.355) b (2 + ) (2) (2 + ) ± 10 (9.886) 3505 ± 10 (9.929) 3560 ± 10 (9.981) 3605 ± ± , ± ± , ± , ± ± 10 < ± 10 < (4935) (11.287) a For references see Table in (1978AJ03). b Γ γ = 3.3 ± 1.0, 6.3 ± 1.2, 2.4 ± 0.8 and 1.5 ± 0.5 ev for 20 F*(7.08, 7.17, 7.31, 7.41) (1973MU14). 23

24 Table 20.12: States of 20 F from resonances in 19 F(n, n γ) 19 F E n (kev) Γ lab (kev) Resonance in E x in 20 F γ 0.11 a γ 1.5 b (MeV) 240 r r r r r r r r c r r r r r r r r r r r r r r r r r r r r r r = resonant. a Resonances in yield of 0.11 MeV γ-rays at θ = 92 : values for E n read by reviewer from differential cross section tables (1976MO13). b Resonances in yields of 19 F with E x 1.5 MeV: see (1973MA14). c Appears to be unresolved. 24

25 Table 20.13: Resonances in 19 F(n, α) 16 N a E n (MeV ± kev) E x (MeV) ± ± ± ± ± b ± ± b ± 100 b a For references see Table in (1978AJ03). b Not resolved. States of 20 F observed in this reaction are displayed in Table Angular distributions have been measured at E d = 0.6 to 16 MeV [see (1978AJ03)] and at 12 MeV (1977MO16). See (1978AJ03) for a discussion of the earlier work. See also (1980HU1J, 1980HU1D) F( 13 C, 12 C) 20 F Q m = See (1978AJ03) O(β ) 20 F Q m = See 20 O. 25

26 Table 20.14: States in 20 F from 19 F(d, p) 20 F a E x (kev) b c l n J π (2J + 1)S c n, l, j c d 5/ ± d 5/ ± 0.3 d g 9/ ± 0.3 d p 1/ ± s 1/ ± 0.2 d p 3/ ± 10 d (5 + ) g 9/ ± 0.7 d p 3/ ± 10 d (3 ) f 7/ ± d 5/ ± d 5/ ± 1.6 d f 7/ ± d 3/ ± 1.3 d d 5/ ± e 2s 1/ ± e 2s 1/ ± π = d 3/ ± π = d 5/ ± 2.7 d c ± π = d 5/ ± π = s 1/ ± 2.7 d d 3/ ± ± π = d 5/ ± (0, 1) s 1/ ± 2.0 f ± 3.0 f ± p 3/2 1 (0 2) ± 2.9 (< 0.05) (1f 7/2 ) 26

27 Table 20.14: States in 20 F from 19 F(d, p) 20 F a (continued) E x (kev) b c l n J π (2J + 1)S c n, l, j c ± 2.9 2, 3 f ± 2.7 2, 3 f ± 2.8 f ± 2.8 f ± 1.5 f ± 3 2 (1, 2, 3) d 5/ ± 3.5 f ± 3 1, p 3/ ± 3 0 (1, 0) s 1/ ± 3 2 or (1, 2, 3) + or d 5/ ± 4 2 (1, 2, 3) d 5/ ± 2.5 f ± ± ± 3 2 (1, 2, 3) d 5/ ± (0, 1, 2) p 3/ ± 1.5 f ± 3 d ± 6.0 d ± 3 2 (1, 2, 3) d 5/ ± or (2, 1 + ) f ± 3 1(+3) (1, 2 ) p 3/ ± (2 ) p 3/ ± f 7/2 a For complete references see Table in (1978AJ03). b Best values from data for proton groups and γ-rays taken from data shown in the (1978AJ03) table and in (1977MO16). c See (1974FO21, 1977MO16): E d = 12 MeV; assumed in analysis. d Weak groups. e At E d = 16 MeV. f See (1977MO16). 27

28 Table 20.15: Analog states of A = 20 observed in 21 Ne(d, 3 He) 20 F and 21 Ne(d, t) 20 Ne a 20 F* J π 20 Ne* l C 2 S (MeV) b (MeV ± kev) 20 F 20 Ne b ± ± ± ± (3 + ) l = l = 1 l = l = 1 sums: a (1974MI13): E d = 26 MeV: DWBA analysis of angular distributions. See Table for T = 0 states in 20 Ne observed in the (d, t) reaction. b E x are nominal Ne(π, γ) 20 F Q m = The branching ratio to 20 F*(1.06) [J π = 1 + ] is compared to the analogous M1 decay width 20 Ne*(11.24) [J π = 1 + ] 20 Ne g.s.. The M1 amplitude contains (47±16)% spin flip, in agreement with shell-model calculations. The population of 20 F*(0, 1.31, 1.84) [J π = 2 +, 2, 2 ] is also reported (1981MA04). See also (1979TR1B, 1982RI1B) Ne(d, 3 He) 20 F Q m = The 20 F states observed at E d = 26 MeV in this reaction and analog [T = 1] states observed in 20 Ne in the (d, t) reaction are displayed in Table The spectroscopic factors of analog states are consistent to within 20% for states excited by a single l-transfer (1974MI13) Ne(p, 3 He) 20 F Q m =

29 Table 20.16: States of 20 F from 22 Ne(d, α) 20 F a E x (kev) E x (kev) E x (kev) E x (kev) 655 ± ± ± ± ± ± ± ± ± ± ± 4 b 6300 ± ± ± ± ± ± ± 4 b 5451 ± 5 b 6370 ± ± 7 b 4279 ± 4 b 5557 ± ± ± ± ± ± ± ± ± ± ± ± 4 b 5710 ± ± ± ± ± ± 5 b 2967 ± ± ± ± 5 b 3174 ± ± 4 b 5940 ± ± ± 4 b 5048 ± 4 b 6040 ± 4 b 6860 ± ± ± ± ± 8 a (1976FO16): E d = 10 MeV. b Unresolved. At E p = 43.7 to 45.0 MeV analog states have been studied in 20 F and 20 Ne [the latter via 22 Ne(p, t) 20 Ne]. Angular distributions for the 3 He ions and the tritons corresponding to the first T = 2 states (J π = 0 + ) [ 20 Ne*( ± 0.025) and 20 F*(6.513 ± 0.033)] have been compared. There is indication also for the excitation of the 2 + ; T = 2 states [at E x = 8.05 MeV in 20 F and at 18.5 MeV in 20 Ne (estimated errors ±0.1 MeV)] (1964CE05, 1969HA38) Ne(d, α) 20 F Q m = Angular distributions have been obtained at E d = 10 MeV to all 20 F states with E x < 4.4 MeV: they are generally featureless. Observed states of 20 F are displayed in Table See also (1978AJ03) Na(n, α) 20 F Q m = See (1978AJ03). 29

30 20 Ne (Figs. 11 and 13) GENERAL: (See also (1978AJ03).) Shell model: (1977GR16, 1977HA1Z, 1977SC27, 1978AR1H, 1978CH26, 1978HA2C, 1978HE04, 1978MA2H, 1978RA1B, 1978TO07, 1979DA15, 1979EL04, 1979HA50, 1979HA59, 1979SI12, 1979WU06, 1980CA12, 1980MC1D, 1980RO11, 1980TE02, 1981ER03, 1981GR06, 1981KR1G, 1981SC12, 1982KA1K, 1982KI02). Collective, deformed and rotational models: (1977FO1E, 1977HA1Z, 1978HO1E, 1978PE09, 1978PI08, 1978TO07, 1979EL04, 1979FU06, 1979FU08, 1979FU09, 1979KO38, 1979MA01, 1979MA1J, 1980CA12, 1980FU1H, 1980LE26, 1980RO11, 1981KR1G, 1981MC1C, 1981MI13, 1981RA14). Cluster and α-particle models: (1977BA30, 1977BU22, 1977FO1E, 1977SA1C, 1978AR1H, 1978CH26, 1978HE04, 1978HO1E, 1978IS04, 1978KA22, 1978PI06, 1978TA1A, 1978TH1A, 1978TO07, 1979FU06, 1979FU08, 1979FU09, 1979GO24, 1980FU1G, 1980FU1H, 1980IK1B, 1981FU1F, 1981KN12, 1981WI01). Electromagnetic transitions: (1976MC1G, 1977MA1Y, 1978GO1K, 1978GR06, 1978HA2C, 1978RO07, 1978SC19, 1978SI11, 1978TO07, 1979FU06, 1979FU08, 1979FU09, 1979KA40, 1979SI12, 1980BR09, 1980KO1L, 1981CO04, 1981KH04, 1981KN06, 1981MC1C, 1981SC12, 1982HA07, 1982HA15, 1982HA10, 1982LA26, 1982RI1B). Special states: (1977BA30, 1977FO1E, 1977SC27, 1977SH18, 1978AL1T, 1978GO1K, 1978GR06, 1978HO1E, 1978KA22, 1978MA2H, 1978MC04, 1978PE09, 1978PI06, 1978PI08, 1978RA1B, 1978RO07, 1978SC19, 1978SI11, 1978TA1A, 1978TO07, 1978ZA04, 1979DA15, 1979FU06, 1979FU08, 1979FU09, 1979IN07, 1979KA40, 1979KO2L, 1979MI1L, 1979SI12, 1979WI1Q, 1980BI05, 1980BR21, 1980CA12, 1980FO02, 1980FU1H, 1980KL1B, 1980KO29, 1981CO04, 1981ER03, 1981RA14, 1981SC12, 1981WI01, 1981WI1K, 1982AO1B, 1982KI02, 1982MI1B). Giant resonance (See also reactions 43 and 45.): (1978HE04, 1980SP1E, 1980WI1J, 1981KN12, 1981SP1D). Astrophysical questions: (1977AL2C, 1977FR1K, 1978BU1H, 1978CL1F, 1978DI1D, 1978DW1B, 1978ME1D, 1978OR1A, 1978PO1B, 1978TR1D, 1978WO1E, 1979CH1T, 1979DI1B, 1979GA1M, 1979LA1H, 1979LE1F, 1979MA2D, 1979ME1L, 1979RA1C, 1979SI1D, 1980BH1B, 1980CO1R, 1980FR1C, 1980MO1L, 1980SC1L, 1981WI1D, 1981AU1D, 1981DU1E, 1981SH1J, 1981WE1F, 1981WO1B). Applied topics: (1979KU20). Complex reactions involving 20 Ne: (1978CA1N, 1978HE18, 1978KA1Y, 1978OB01, 1978SA33, 1978SH18, 1978VO1D, 1978WI1G, 1978YO01, 1979AL1H, 1979BE31, 1979CE1B, 1979DA1F, 1979GA04, 1979GA1L, 1979GO11, 1979HA07, 1979HE1D, 1979KN1H, 1979MC1D, 1979MO17, 30

31 1979NA1F, 1979SA1W, 1979ST1R, 1979SY01, 1979TA19, 1980AK1C, 1980CH1G, 1980EV1A, 1980GR10, 1980NA1C, 1980RA1G, 1981CE1D, 1981EG01, 1981GR08, 1981HI1C, 1981LO1F, 1981MA1G, 1981NA1E, 1981SC03, 1981TA02, 1982ME1C, 1982SU01, 1982TA02). Table 20.17: Energy levels of 20 Ne a E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions ; stable 2, 3, 7, 8, 9, 13, 17, 18, 22, 23, 24, 25, 30, 31, 32, 33, 38, 39, 40, 41, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 62, 63, 64, 67, 68, 69, 70, 71, 72, ± ; τ m = ± 0.06 psec γ 2, 3, 7, 8, 9, 10, 13, 17, 18, g = ± , 22, 23, 24, 25, 27, 29, 30, 31, 32, 33, 38, 39, 40, 41, 42, 45, 47, 48, 50, 51, 52, 55, 62, 63, 64, 67, 68, 69, 70, 71, 72, ± ; τ m = 93 ± 9 fsec γ 2, 3, 7, 8, 9, 13, 17, 18, 21, g = 0.01 ± , 23, 24, 25, 27, 29, 30, 31, 32, 38, 39, 40, 41, 47, 48, 50, 51, 55, 64, 67, 68, 69, 70, 71, ± ; 0 2 τ m = 4.8 ± 0.5 psec γ 2, 3, 7, 8, 9, 13, 17, 30, 33, 38, 39, 40, 41, 42, 47, 64, 67, 68, 71, ± ; ± 50 fsec γ, α 2, 3, 7, 8, 13, 17, 27, 38, 40, 41, 47, 65, 67, 70, 71, ± ; 0 0 γ, α 2, 3, 7, 8, 13, 14, 17, 18, 27, 31, 39, 40, 41, 47, 65, 67, 70, ± ; Γ = 15 ± 7 kev γ, α 8, 13, 17, 30, 38, 39, 41, 45, 47, 67, ± ; 0 2 τ m = 440 ± 90 fsec γ 2, 7, 8, 17, 39, 47, ± ; 0 0 Γ = 8.1 ± 0.3 kev γ, α 2, 4, 7, 8, 13, 14, 17, 18, 20, 23, 29, 30, 31, 38, 39, 47, ± ; γ, α 5, 6, 7, 13, 14, 45, 47, ± ; γ, α 2, 5, 6, 7, 13, 14, 17, 39, 41, 45, 47, 63, 65, ± ; γ, α 2, 6, 7, 13, 14, 30, 38, 39, 45, 47, 63, 65, ; α 14, ± ; ± γ, α 2, 6, 7, 13, 14, 17, 23, 39, 47, 71 31

32 Table 20.17: Energy levels of 20 Ne a (continued) E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions ± 5 1 ; 0 (1 ) 2.1 ± 0.8 γ, α 7, 13, 39, 47, ± ; < 3 γ, α 2, 4, 6, 7, 13, 14, 17, 18, 20, 21, 23, 29, 30, 38, 39, 47, ; > 800 α ± 5 1 ; α 7, 13, 14, 39, 65, ± ; γ, α 2, 6, 7, 13, 14, 39, 47, ± ; γ, α 2, 7, 13, 14, 38, 39, 47, ± 6 (1, 2, 3) + 7, 39, 47, ± ± ; 0 29 ± 15 γ, α 13, 14, 38, 39, 47, ± ; 0 γ 7, 39, ± 12 (1 + ); 0 τ m < 35 fsec γ 39, ± ; Γ = 155 ± 30 γ, α 2, 13, 14, 30, 38, 39, ± 4 5 ; ± 40 α 2, 4, 7, 14, 17, 18, 20, 23, ± ; ± 0.2 γ, α 13, 14, 30, 39, 63, 65, ± 5 3 ; α 7, 14, 31, 39, 65, ± ; 0 16 α 7, 14, ± ; 0 24 α 14, 39, 63, ± 6 6 ; 0 2 τ m = 23 ± 7 fsec γ 2, 6, ± 6 4, 3 + ; 0 γ 6, ± ; Γ = 350 α ± ; 0 13 α 14, 39, ± 6 (3 ) (1 ) 45 α 7, ± ; 1 τ m < 30 fsec γ 7, 39, 63, ± ; 0 Γ = 580 α ± ; 0 24 α 6, 7, 14, ± ; γ, α 13, 14, 39, ± ; 1 γ 38, 45, 63, ± 5 1 ; α ± 4 1 ; γ, α 13, 14, 39, 63, ± ; 0 40 ± 10 α 14, ± 6 3 +, 4 ; 0 τ m 30 fsec γ ± 6 1 +, 2, 3 + γ 7, ± 6 (2 +, 0 + ) Γ = 1.1 ± 0.5 γ, α 13, ± 10 2 ; (3 + ); 0 γ 6, ± ; 0 46 α 7, 14, 39, 63, 71 32

33 Table 20.17: Energy levels of 20 Ne a (continued) E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions ± ; ± 0.15 γ, α 13, 14, ± ; (3.5 ± 1.0) 10 2 γ, α 4, 6, 7, 8, 13, 14, 17, 18, 20, 21, 23, ± 8 1 ; 0 30 ± 5 α 14, ± 10 2 ; ± ; ± 0.07 α 5, 6, 7, 8, 14, ± ; 1 < 0.1 γ, α 13, 30, 38, ± ; ± 20 α ± 3 3 ; 1 < 1 γ, α 13, 14 (12.35 ± 100) (2 + ) 500 α ± 4 3 ; (1) 37.3 ± 0.9 γ, α 6, 7, 13, 14, 39, ± ; ± 0.5 γ, α 7, 13, 14, 30, 39, ± ; ± 20 α 6, 7, 14, 17, 18, 20, 21, ± ; ± 20 α 6, 7, 14, 17, 18, 20, 21, ± 15 5 ; α ± ; α 6, 7, ± α 14, 30, ± 10 7, ± 10 (4 + ; 0) 60 α 7, ± 10 (4 + ; 0) 70 α 6, 7, 14, ± p, α 36, 38, ± ; (1) 2.3 ± 0.2 γ, p, α 33, 34, 36, ± 10 (4 + ; 0) 60 α 6, 7, p, α p, α ± ± 0.1 γ, p, α 33, 34, ± 6 7 ; 0 2 (8 ± 3) 10 2 α 6, 7, 8, ± ; 0 20 ± 5 α ± ± 3 γ, p, α 14, 33, 34, 36 (13.42 ± 140) (4 + ; 0) 110 α ± p, α ± ; ± 0.3 γ, p, α 33, 34, 36, (1 ) 33 p, α 34, ± p, α 7, ± ± 1 p, α 30, 34, ± ; 1 17 ± 1 p, α 7, 34, 36, 38 (13.66) (1 ) 110 p, α 7, ± 0.7 (2 ) 4.5 ± 0.2 γ, p, α 33, 34, 36 33

34 Table 20.17: Energy levels of 20 Ne a (continued) E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions 13.7 ± 400 (3, 7) 320 α 14 (13.73) (0 + ) 170 p, α ± ± 0.5 γ, p, α 33, 34, ± 15 (1 ) 190 p, α 7, ± ; ± 0.05 γ, p, α 7, 8, 33, 34, 36, p, α 30, ± p, α ± ± 7 α 6, 7, 17, p, α ± p, α 34, ± ± 0.7 γ, p, α 33, 34, ± ± 1 p, α 7, 14, ± ± 1.0 γ, p, α 33, 34, ± 1 γ, p 30, 33, ± ± 20 6, 7, 14, 17, ± < 50 α ± ± 5 p, α 7, 34, ± 2 33 ± 3 p, α 34, ± ± 2 p, α ± ± 5 p, α ± 300 (4 + ) 240 α ± 10 p, α ± 2.5 (0 +, 1 + ) 36 ± 10 p, α 34, ± ± 20 p, α 34, ± 15 (2 +, 4 + ) 100 p, α 6, 7, 14, ± 15 (2 + ) 100 p, α 7, 14, ± (0 + 6 ) 60 ± 15 α 6, p, α (1 ) 285 p, α (0 + ) 285 p, α 14, ± ± 60 α 4, 6, 7, 17, 18, 20, 21, ± ± 20 p, α 7, p, α 36 b ± 15 (6 + ) α 6, 7, ± ± 15 α 5, 6, 7, 21, 29 (15.97) (6 + ) α ± 25 (2 + ; 1) 100 p, α 30, 36 34

35 Table 20.17: Energy levels of 20 Ne a (continued) E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions ± p, α 6, 7, 14, α 6, ± p, α 14, ± 15 (0, 2, 4) + 34 α ± ± 3 α 6, ± ± 6 α 7, 14, 17, 18, ± Γ = 160 ± 30 α ± ± 14 α ± ± 11 α ± 8 (5, 3) 14 ± 7 α 6, 7, ± ; ± 0.5 γ, p, α 30, 33, 34, α ± ± 5 α p, α ± ± 3 α ± ± 9 α ± 11 7 (9 ) 162 ± 20 α ± ± 10 α 4, 14, 17, 18, 20, 21, ± ± 13 α 6, 7, 8, ± α ± 10 (2 + ; 1) 19 n, p, α 30, 35, ± 15 4, (0 + ) 36 p, α 14, ± 20 (0 + ) n, p 30, ± 15 7 < 10 α ± ± 3 α ± ± 3 α 6, 7, 8, ± 20 (6 + ) 240 α 6, ± ; ± 3 γ, n, p, α 33, 34, 35, ± (0 + 6 ) 138 ± 13 α ± 100 (6 +, 7 ) 600 α 14, ± ± 18 α 8, ± ± 10 α 14, ± ± 7 α ± ± 8 α ± ± 19 α ± ± 21 α 14, ± ± 19 α ± ± 32 α 14 35

36 Table 20.17: Energy levels of 20 Ne a (continued) E x (MeV ± kev) J π ; T K π τ m or Γ c.m. (kev) Decay Reactions ± ± 30 α ± 9 (9 ) 75 ± 9 α 7, 14, ± ± 13 α 14, ± ± 22 α 7, ± 26 9 (1 ) 120 ± 50 α 4, 7, 18, 20, ± 100 7, α 14, ± 100 (7, 9 ) 240 ± 50 α 7, 14, ± 100 (8 + ) 630 ± 80 α 7, 14, ± ± 150 α 7, ± ± 40 α 4, 7, 14, 18, ± 30 9, (8 + ) 230 ± 100 α 7, 14, 17, ± α 14, ± 30 7, (5 ) 200 ± 50 α ± α 14, ± α 14, ± 100 (9 ) 700 α 14, α 14, ± 100 (10 + ) 700 α 14, 17 a See also Table b For other states with E x > 15.5 MeV see Tables 20.27, 20.28, and and reactions 1, 43 and 45. It is clear that there are many states with low angular momentum and with unnatural parity which have not been located at high E x. Muon and neutrino capture and reactions: (1978IT1A, 1979YU02, 1980GA10, 1981PA1D). Pion and kaon capture and reactions: (1977BA1Q, 1977NO1G, 1977ST1G, 1977YE1B, 1978AN20, 1978AT01, 1978BE1X, 1978YU1B, 1979AK02, 1979AL1V, 1979BA2V, 1979BE31, 1979HA07, 1979JA11, 1979KN1G, 1979MI1G, 1979NA1F, 1979NA12, 1979SA1W, 1979TA19, 1979TR1B, 1980OT1A, 1980ST25, 1980TR1A, 1981AN1H, 1981AS01, 1981GY1B, 1981MA04, 1982BI1H, 1982MU1C, 1982OS01, 1982RA1C). Other topics: (1977BO33, 1977GR16, 1977SA2C, 1977SH18, 1978AN15, 1978FI1C, 1978MA2H, 1978MC04, 1978RA1J, 1978RO17, 1978SA1R, 1978TA1Y, 1979BE1H, 1979BO17, 1979BR30, 1979CH2E, 1979CO10, 1979CO09, 1979EL04, 1979GO24, 1979HA50, 1979HA59, 1979HE1F, 1979KA40, 1979ST1V, 1979WI1Q, 1979WU06, 1980BR21, 1980DI06, 1980KO29, 1980RO11, 1980TE02, 1980ZO1A, 1981AR1D, 1981CA1H, 1981ER03, 1982IS1B, 1982KI02). Ground state of 20 Ne: (1976MC1G, 1977BO33, 1977HA1Z, 1977MA1Y, 1977ZA1D, 1978AN07, 1978AR1R, 1978CH26, 1978FI1C, 1978GO1K, 1978HE1D, 1978RO17, 1978SM02, 1978SV01, 36

37 1978DE1V, 1978TA1Y, 1978ZA1D, 1979BO17, 1979BR30, 1979CH2E, 1979HA50, 1979HA59, 1979IN07, 1979KA40, 1979MA01, 1979SI12, 1979WU06, 1980BR09, 1980BR13, 1980DI06, 1980LE26, 1980MO05, 1980TE02, 1981AR1D, 1981HA46, 1981SC12, 1982DE1N). Q 1.63 = 0.27 ± 0.03 e b (1978GR06). See also (1978AJ03, 1981SP07); g 1.63 = ± 0.04 (1975HO15). See also (1982SP02); B(E2) [0 1.63] = ± e 2 b 2 (1978GR06). See also (1978AJ03); Q 4.25 = ± e 2 b 2 (1978GR06); g 4.25 = 0.10 ± 0.19 (1980SP02), ± 0.20 (1982SP02): weighted mean = 0.01 ± 0.14 (1982SP02). 1. (a) 10 B( 10 B, 10 B) 10 B E b = (b) 10 B( 10 B, α) 16 O Q m = Excitation functions for reactions (a) and (b) have been measured for E c.m. = 3 to 10 MeV: large resonant structures are observed in reaction (b). Particularly pronounced structures [ 0.6 MeV] corresponding to E x 38 MeV (α 0 ) and 38.6 MeV (α to 16 O*(7.0, 10.3, 16.2 [u]) are reported (1978MA07). The elastic excitation function has also been studied for E( 10 B) = 8 to 30 MeV by (1975DI08). See also (1978AJ03), 10 B in (1979AJ01) and 16 O in (1982AJ01) B( 14 N, α) 20 Ne Q m = At E( 14 N) = 25 and 35 MeV angular distributions of the α-particles to 20 Ne*(0, 1.63, 4.25, 4.97, 5.62, 5.78, 7.00, 7.17, 7.42, 7.83, 8.45, 8.78, , 9.99, 10.26, 10.61) have been measured by (1975LE23, 1974MA38). The average behavior of the cross section is generally well described by a statistical mechanism but the reaction mechanism is not purely statistical (1975LE23). Angular distributions are also reported at E( 14 N) = 23.5 MeV (1978DU08: α 0, α 1, α 2, α 4+5 ). For experiments relating to the compound nucleus see (1978AJ03) and (1977MA33, 1978DU08, 1978DU23, 1978WU1C, 1981BA26). See also (1976KL1B, 1978HO1C) B( 16 O, 6 Li) 20 Ne Q m = At E( 16 O) = 19.5, 24.3, 31.5, 35.9 and 42 MeV angular distributions have been measured for the 6 Li ions corresponding to transitions to 20 Ne*(0, 1.63, 4.25, 4.97, , ). Hauser-Feshbach calculations are generally in good agreement with the data (1976LO03). See also (1977MO1A) and (1978AJ03). 37

38 Table 20.18: Radiative decays in 20 Ne a E i Ji π; T E f Branch Γ γ (MeV) (MeV) (%) (mev) ; ± 0.04 b ; ± 0.7 b ; ± 0.2 (8 ± 3) 10 4 b ± 0.02 b δ(m2/e1) = ± δ(e3/e1) = ± ; ± ± n ± ± 0.06 n ± ± n ; ± ± 0.3 o ± ± 0.8 o ; 0 0 M 2 = 7.4 ± 2.0 fm 2 i ; ± 0.2 (7 ± 3) 10 3 b b b b 7.16 c 3 ; ± ± ± ± ; 0 0 Γ π = ± 1.4 fm 2 i ± ; ± ± ± 1.4 m 29 ± ; ± 1 57 ± ± ± < 3 < ; ± d 1 ; ± 8 61 ± ± 8 9 ± ; ± 15 38

39 Table 20.18: Radiative decays in 20 Ne a (continued) E i Ji π; T E f Branch Γ γ (MeV) (MeV) (%) (mev) ; ± < 2 < d 3 ; ± 5 13 ± ± ± ± ± ; 0 0 < (100) 260 ± ; 0 0 < k ± (1 + ); ± ± ; 0 0 < (100) 900 ± ; ± ± ± ± ± ± ± ± ± ± ± ± ; ± ± 9 b ± ± 0.4 o , 3 + ; ± ± ; ± ± 3 l d,e 4 + ; ± ± p 99.5 ± ± d,e 1 ; ± ± 47 39

40 Table 20.18: Radiative decays in 20 Ne a (continued) E i Ji π; T E f Branch Γ γ (MeV) (MeV) (%) (mev) ± 1 18 ± ± 1 46 ± ± ± ± 1 63 ± , 4 ; ± ± f f 1 +, 2, 3 + ; d (0 +, 2 + ); < (3 + ) ± ± d 4 + ; ± ± ± ± g 8 + ; ± d 3 ; ± ± h 3 ; (1) h 0 + ; ± ; ; j 5.79 j (100) 5000 j ; (100)

41 a For earlier references see Table in (1978AJ03). See also Tables and here. b From τ m : see Table in (1978AJ03) and branching ratios. c (1980MA27). d (1980FI01). e See also Table in (1978AJ03). f See discussion in (1976FI10). g (1980HU08). h (1978ST08). i Monopole matrix element. j See footnote a in Table 2 of (1976MA01). k Γ γ (total)/γ = 0.82 ± l Γ γ (total)/γ < 0.3. m δ(e2/m1) = n Γ γ (total) = 240 ± 64 µev: see Table (P.M. Endt, private communication). o P.M. Endt, private communication. p δ = ± 0.06 (1980FI01) B( 16 O, 7 Li) 20 Ne Q m = At E( 11 B) = 115 MeV, angular distributions are reported to 20 Ne*(7.17, 8.78, 10.25, 11.95, 15.4). 20 Ne*(8.78, 15.4, 17.3, 21.0 ± 0.07, ± 0.06) are particularly strongly populated. It is suggested that these five states have J π = 6 +, 7, (8 + ), 9 and 9 (1979BR03, 1979RA10). See also (1978AJ03) C( 9 Be, n) 20 Ne Q m = At E( 9 Be) = 16 and 24 MeV angular distributions have been measured for 20 Ne*(7.3 ± 0.4, 9.2 ± 0.4, 10.9 ± 0.3, 12.2 ± 0.3, 15.7 ± 0.3). It is suggested that 20 Ne*(7.3, 9.2, 12.2, 15.7) correspond to the , 4 +, 6 + and 8 + members of the K π = band (1981SU01). 6. (a) 12 C( 10 B, d) 20 Ne Q m = (b) 12 C( 11 B, t) 20 Ne Q m = At E( 12 C) = 45 MeV the population of states of 20 Ne with E x = 8.45, 8.78, 9.03, 10.61, 10.67, 10.99, 11.01, 11.66, 11.94, 12.14, 12.39, 12.58, 12.73, 13.05, 13.17, [7 ], 13.69, 13.91, 14.29, 14.36, 14.81, [6 + ], [7 ], [(7, 8)], [(7)], 16.16, 16.22, [(8)], 16.73, [9 ], and MeV is reported. [Values in brackets are J π suggested 41

42 on basis of Hauser-Feshbach calculations. The states in italics are well resolved: the authors indicate ±20 kev for such states.] The relative intensities of the groups to 20 Ne*(17.39, 15.38) [J π = 9, 7 ] argue against the existence of a superband (1976KL03). At E( 10 B) = 20.0 and 20.5 MeV angular distributions are reported to the 2 + states 20 Ne*(7.42, 7.83). 20 Ne*(7.83) is more strongly populated than 20 Ne*(7.42), and it, and 20 Ne*(7.19), have integrated cross sections which deviate from the (2J + 1) rule by a factor of about two (1978FO01). See also (1978AJ03) and (1976KL1B, 1978HO1C) C( 12 C, α) 20 Ne Q m = Double and triple (α, α, γ) correlations and γ-ray branching measurements [see Table 20.18] lead to the J π assignments shown in Table 20.19, which also shows level assignments to rotational bands. Angular distributions have been reported at E( 12 C) = 4.9 to 51 MeV [see (1978AJ03)] and at E( 12 C) = 6.3 to 6.6 MeV (1980IS1B; α 0, α 1 ), 10 MeV (1981BE60; α 0 ), 12 MeV (1981BE60; α 1 ), 19.3 MeV (1980AN08; α 0 ) and 33 to 40 MeV (1982FO03; α 0 ). τ m for 20 Ne*(4.25) is 95 ± 13 fsec (1982SP02) [see also for g-value, the Ground state of 20 Ne section here]. The yields of various groups of α-particles and their relevance to states of 24 Mg, and fusion cross sections, have been studied by many groups: see (1978AJ03) for the earlier work and (1977CI1E, 1977CO25, 1977PA1G, 1978TR06, 1979DE08, 1980AN08, 1980CO03, 1980ER06, 1980IS1B, 1980KO02, 1981BE60, 1982FO03). See also (1978MA2J), (1978SC1G, 1979GO1C), (1978RO1D, 1978RO1L, 1981BE60, 1982IB1A; astrophys.) and (1977AB1E, 1978BR12, 1978MA1G, 1978TO12, 1980GA18, 1981NO1J, 1981SU1J; theor.) C( 14 N, 6 Li) 20 Ne Q m = Angular distributions of the 6 Li ions to many states of 20 Ne below 17.5 MeV have been reported for E( 14 N) = 30 to 78 MeV and E( 12 C) = 67.2 MeV. Compound nucleus formation appears to be dominant. In the latter work (1973BE11) 20 Ne*(16.67, 17.38, 18.11, 19.16, 19.6) are particularly strongly populated. For complete references see (1978AJ03). See also (1977ST34) and (1976KL1B, 1978HO1C). 9. (a) 12 C( 18 O, 10 Be) 20 Ne Q m = (b) 12 C( 19 F, 11 B) 20 Ne Q m = See (1978AJ03). See also (1981YO05; theor.) C( 13 C, α2n) 20 Ne Q m = See (1982CH05). 42

43 Table 20.19: Excited states of 20 Ne from 12 C( 12 C, α) 20 Ne a c E x J π b Γ c.m. K π b θα 2 (MeV ± kev) (kev) ± ± ± ± ± ± ± ± ± p ± ± p ± (1.6 ± 0.5) 10 3 q ± 6 1 (1 2 ) p ± (1 1 ) p ± a p, q ± 6 a ± 6 a ± ± 6 1 +, 2, 3 + a ± 6 1 +, 2, 3 + a ± ± ± 6 (3 ) (1 1 ) p ± ± ± 6 4, 3 + a ± 6 (3 ) (1 2 ) p ± a ± 6 43

Energy Levels of Light Nuclei A = 15

Energy Levels of Light Nuclei A = 15 Revised Manuscript 4 August 08 Energy Levels of Light Nuclei A = F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 904-696 Abstract: An evaluation of A = was published in Nuclear

Διαβάστε περισσότερα

Electronic structure and spectroscopy of HBr and HBr +

Electronic structure and spectroscopy of HBr and HBr + Electronic structure and spectroscopy of HBr and HBr + Gabriel J. Vázquez 1 H. P. Liebermann 2 H. Lefebvre Brion 3 1 Universidad Nacional Autónoma de México Cuernavaca México 2 Universität Wuppertal Wuppertal

Διαβάστε περισσότερα

Energy Levels of Light Nuclei A = 14

Energy Levels of Light Nuclei A = 14 14 Revised Manuscript 05 November 2012 Energy Levels of Light Nuclei A = 14 F. Ajzenberg-Selove University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 Abstract: An evaluation of A = 13 15 was

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Energy Levels of Light Nuclei A = 19

Energy Levels of Light Nuclei A = 19 9 Revised Manuscript October 08 Energy Levels of Light Nuclei A = 9 D.R. Tilley a,b, H.R. Weller a,c and C.M. Cheves a,c, R.M. Chasteler a,c a Triangle Universities Nuclear Laboratory, Durham, NC 08-008,

Διαβάστε περισσότερα

LIGHT UNFLAVORED MESONS (S = C = B = 0)

LIGHT UNFLAVORED MESONS (S = C = B = 0) LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1. Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design Engineering Tunable Single and Dual Optical Emission from Ru(II)-Polypyridyl Complexes Through Excited State Design Supplementary Information Julia Romanova 1, Yousif Sadik 1, M. R. Ranga Prabhath 1,,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium

Διαβάστε περισσότερα

CE 530 Molecular Simulation

CE 530 Molecular Simulation C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

In your answer, you should make clear how evidence for the size of the nucleus follows from your description 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes it suitable for this experiment.

Διαβάστε περισσότερα

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Electronic Supplementary Information:

Electronic Supplementary Information: Electronic Supplementary Information: 2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide 3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

* To whom correspondence should be addressed.

* To whom correspondence should be addressed. SUPPORTING INFORMATION Computational design of a pincer phosphinito vanadium ((OPO)V) propane monoxygenation homogeneous catalyst based on the reduction-coupled oxo activation (ROA) mechanism Ross Fu,

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible. B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3: 4 Πρόλογος Η παρούσα διπλωµατική εργασία µε τίτλο «ιερεύνηση χωρικής κατανοµής µετεωρολογικών µεταβλητών. Εφαρµογή στον ελληνικό χώρο», ανατέθηκε από το ιεπιστηµονικό ιατµηµατικό Πρόγραµµα Μεταπτυχιακών

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας» ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη

Διαβάστε περισσότερα

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions 1 Decay Scheme Cf- disintegrates by alpha emissions mainly to the Cm-248 ground state level, and by spontaneous fission for 3,086(8) %. The average number of neutrons emitted by spontaneous fission is:

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u .6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011. The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,*

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ανάκτηση Πληροφορίας Αποτίμηση Αποτελεσματικότητας Μέτρα Απόδοσης Precision = # σχετικών κειμένων που επιστρέφονται # κειμένων που επιστρέφονται Recall = # σχετικών κειμένων που επιστρέφονται # συνολικών

Διαβάστε περισσότερα

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates Zhong-Ling Lang, Guo-Chun Yang, Na-Na Ma, Shi-Zheng Wen,

Διαβάστε περισσότερα

Monolithic Crystal Filters (M.C.F.)

Monolithic Crystal Filters (M.C.F.) Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΕΙΟ Τμήμα Μηχανικών Μεταλλείων-Μεταλλουργών ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Κιτσάκη Μαρίνα

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides Supplementary Materials for Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides Indrek Kalvet, a Karl J. Bonney, a and Franziska Schoenebeck a * a Institute of Organic

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog J. Jpn. Soc. Soil Phys. No. +*-, p.-3.1,**0 ** * *** Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog Toshiki FUJIMOTO*, Ippei IIYAMA*, Mai SAKAI*, Osamu

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ

3.4 Αζηίεξ ημζκςκζηήξ ακζζυηδηαξ ζημ ζπμθείμ... 64 3.4.1 Πανάβμκηεξ πνμέθεοζδξ ηδξ ημζκςκζηήξ ακζζυηδηαξ... 64 3.5 οιαμθή ηςκ εηπαζδεοηζηχκ ζηδκ 2 Πεξηερόκελα Δονεηήνζμ πζκάηςκ... 4 Δονεηήνζμ δζαβναιιάηςκ... 5 Abstract... 6 Πενίθδρδ... 7 Δζζαβςβή... 8 ΘΔΩΡΗΣΙΚΟ ΜΔΡΟ... 12 Κεθάθαζμ 1: Θεςνδηζηέξ πνμζεββίζεζξ βζα ηδκ ακζζυηδηα ζηδκ εηπαίδεοζδ...

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Na/K (mole) A/CNK

Na/K (mole) A/CNK Li, W.-C., Chen, R.-X., Zheng, Y.-F., Tang, H., and Hu, Z., 206, Two episodes of partial melting in ultrahigh-pressure migmatites from deeply subducted continental crust in the Sulu orogen, China: GSA

Διαβάστε περισσότερα

2.1

2.1 181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα