Les gouttes enrobées

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Les gouttes enrobées"

Transcript

1 Les gouttes enrobées Pascale Aussillous To cite this version: Pascale Aussillous. Les gouttes enrobées. Fluid Dynamics. Université Pierre et Marie Curie - Paris VI,. French. <tel-363> HAL Id: tel-363 https://tel.archives-ouvertes.fr/tel-363 Submitted on 3 Oct 3 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

2 Ž Ž ŸŽ œ Œ Š œ šžž Žœ šž Žœ œž Ž Š ŠœŒŠ Ž ž Ž Ž Š Ž Ž Ž ŸŽ œ ž Ž Žœ ž Žœ Ž Žœ ž Ž žž Ž ŸŽ Ž ŽŸŠ Ž ž Œ œ Ž Ž 1 œš Ž Š Žž Ÿ Ž Š Žž Ž Ž Žœ œ Ž Š Ž 11 ŠŸ ŽŒ Žž Ž œž

3

4 Ž Ž Œ Ž Ž œ Ž Œ ž Š Ž Ž Žœ Ž Ž Žœ Ž Šž Ž Š œ šž ŠŒŒžŽ Ž Šž Š Š Ž Ž œ šžž Ž Š Š Ž Ž œ Ž ž Ž Ž Š ŒŽ ž ù Š Šœœ Žœ Š Žœ Ž ŠŸŠ šž Œ ž ŒŽ Š žœœ Ž Œ Šž Ž Žœ ž ž Šž œ Ž Ž Ž Žœ Ž Ž Žœ Š Ž Š Žœ Š Š ŽŸŠ Ž œ Œ Š Ž Ž œš Ž Š Š Ž Ÿ Ž ž šžž šž ŠŒŒŽ Ž Š Ž ŒŽ ŠŸŠ Ž Œ œž ž ŠŸ ž šž Š Ž ŒŠ Ž Ž Š ŒŽœ Š Žœ Šž Š Š Ž Š œž Ž œž Žœ œž Ž œ Š œ Šœ ŽŒ œ Ž Ž Œ Žœ Ž ž Ž Ž Ž Œ œž Ž ž Ž Ž Š ŽŠžŒ ž Ž Ž œ Ž Œ ŠŸ œž Ÿ Š Š Š Ž žœ Šœ Ž Ž šžž šžžœ ŒŠŒ Ž Žœ Ž Š Š Ž œž Ž žÿž Ž Š žž Ž Ž Ž šž Ž Žœ ž œ Š Ÿž Ž šžž šžžœ Ž œ Žœ Šž Œ ž œ Ž ŒŽœ šžš Ž Š Žœ ž Š œ Ž Š Ž Ž Ž œ Œ Š Ž œ Œ ŠŒŒžŽ Ž Šœ žÿž œ Ž Š œ Žœ žš Žœ ž Š Š Ž Š œ šžž Š ŽŒŽ Ž Š žœž Ž Š Ž ž Š Ž Ž Žœ Œ Žœ œž Ž ŒŽŠž Žœ Ž œž Ž Š Ÿ Ž Ž Š ž Ž Œ ž ŽŠž Š Ž Ž Š Š œ Š Ž œž ŸŠ Ž Žœ ŒŽ Ž Ž Š Ÿ Ž Ž Šž Ž Ž Ž Ž œœš Š Ž Ž Š ŸŽ žž œ ž Š Ž Ž Œ Žœ Š žœ Š Ž œ Ž Œ Ž ž Ž šž Ž œ ž Ž Ž Ž Ž Š Šœœ Ž ŒŠ Ž ž ŠŸŠ ž ŠœœŠ Ž Ž Œ Œ ž Š Ž ŽŒ ž Ž Ž žœ Žœ Œ œž œ ŠŸ œ œ Ž Žœ Š ŽœšžŽ žœ œž Ÿ œ ž Ž Š ž Š Ž Œ ŽŸ œ ŸŽ žœ Œ Ž šž Ž œ Ž Š Ž Ž Š Ž Ž œž Žœ Œ Š Žœ ŠŸŽŒ Žž œ žœ žžž ž Ž ŸžŽ œœ Ž šžž ŒŠ œ Ÿ Ž Ž Ž Š Žœ œ Ž œ Š œ Šžœœ Šž œž œ Ž ž Ž Ž ŒŽ Žž œ šžžœ Ž Ÿ šžžœ œ ž Žœ Š Š Ž Ž ž Ž Ž œ Ž ž žœ ŒŽž šž œ Šœœ œ Š œ šž Ž žœ ž ŸŽ Ž ž šž Š ŸŽ Š œ šžž Ž Š œ œ Ž Žž Žœ Ž œ Š Ž Š Žœ Š Šžœœ Žž ŒŒŠœ Ž ŠŸŠ Ž ŠŸŽŒ Š Ž Œ Ž œ Ž Š Ž ŒŽ ž Ž Žœ Ž œ œ Ž Œ œœš œ Ž Žœ Ž žÿ ž œž Ÿ Ž ŒŽœ Œ Š Š œ Ž Š Š Ž Š œ œ Ž œž Ž œž Ž Ž Š ŠŸŠ Š Ž Ž Š ž œœ Š Š Ž Œ Š Ž ŒŽ žž ŽŠž ž ŽŸ Ž Ž Š Ž šž ŽŠžŒ ž Š Š Šž ŸŽŠž ž Š Ž Š Šœ Žœ Ž Š Ž Ž Žž Ž ¹ Ž Ž ŽœœŽ šž Šž ŸŽŠž Žœœ Ž žœ ¹ Žœ žœ Žœ Žž œ Ž œš Žœ Ž Œ Šž Œ Ž Œ Žž œ Ž Š Ž œ ž Š Š Ž Ž Š Šº Ž Š Ž Š Š Š Š Ž Ž Ž Š Š Ÿ Ž Œ ž Š Ž Ž ž Ž Ž ŸŽ Šž Ž Š œ Ž Ž Ž Žœ Ž Ž Žœ Ž Œ žœ Žœ Žž Žœ Œ Ž Œ Žž œ šžž Š

5 Œâ œ Ž šž œ ž ŽŠžŒ ž Š œ Š Ÿ Ž ž Š Š Ž Š Ž Š Ž Ž Ž œ Ž ž Š Š ³ œ Š Ž žœ Š ŠŒ Ž Ÿ Ž Šž Œ Š Š Š Š Ž Ž ž Š Š Š Š Ž Š Ž Ž Ž Šž Ž Š ž Š Š Žœ Š Š Œ Š Š Š Ž Šž Ž œ Š Š Š Œ Š Ž Š Š ž Ž ž ŽŠž Ž Š œœž Š Ž Š Ž Ž Œ Ž Žœ Ž ŽŠœ Ž Ž Š Ž Š Š ŠŸ Š Ž ž œ Š Ž Ž Ž Œ šž Ž Ž Š Ž Ž Š Ž Š Š Œ Ž Šœœ Ž Ž Š ŒŽ Ž Ž Š ž ž Žœ Žœ ŒŽœ Š œ Žœ Ž œ Œ Š Ž Ž Š Ž ž ŠŸ œ Ž Š Œ Ž Œ Žœ Š ŽŠž ž Š šžž Ž Œ Š ³ œž ŠŸ Ž Š Ž Š ŒŽ Žœ ž Ž Ž œ Šœœ Ž šžž ŒŽ šžž žÿš Š Ž Ž œž ž Ž Šœ Š Ž ŠŸŽŒ ž Ž Œ Š Ž Ž Œ Š Ž Š Ž Š œž Š Š Ž ŒŽ Š Ž œž Ž Ž Š Ž Œ Šž Žž œ Š œ â Ž Š Ž ŒŽ Ž Š Ž Š Ž Š žž Š žžœ ŠŸŽŒ šž Š Š Š Žœ Ÿ Š Žœ Ž Š ŽžœŽ Ž Žœ Š Žœ žÿš œ Žœ Ž Œ ž Ž Š Š Ž šž Š ž ž œ œ ž Ž žž Ž Ž Œ ž Š Ž ¹ Ž œ ŒŽœ Š Žœ Š œ Ž Žœ Ž ž ŠŒŒŽ Ž Ž žœ ž Ž Œ Ž Ž

6 Š Ž Žœ Š Žœ žœ Š Ž ž Žœ Ž Žœ Œ Ž Ž œ Š šžž Š œ œž Ž ž Š Ž Š Ž œ Ž œž ŠŒŽ Š žžž ŒŠ Š Ž κ Ž ž Š Ž ž ŠŒŽœ Ž ž Žœ œž Ž Ž ž Žœ Ž Žœ Œ Ž Š Ž Žœ Š œ ŒŒž Ž ŒŽœ Š ž Ž Žœ Ž ž ŠŒ Š šžž ¹ Žœ ŠŸ Š Žœ κ Žœ κ Š Œž œ ž šžžœ Žœž Žœ Ž Ž Š Žœ œž Š œ Ž Ž Šž Š Š Ž Š Ž ž Žœ Ž Žœ Ÿ œšžžžœžœ œž ž Š Š Ž Ž Œ ŽœŒ Ž Ž Ž ŒŽ ŸŠ Ž Ž Ž Œ ¹ Žœ œž Š œ Ž Ž Šž œ Šž Žœ Žœ ž Ž

7 ŸŠ Ž Ž Ž ž Žœ œž Š œ Ž Ž Šž Ž Š Š ŽŸŠ ŽŠž Žœ ž Ž Œ žœ Š Ž Š Ž Ž Žœ ž Žœ Ž Š Š Ž Ž ŒŽ Ž Š ŽŠž œš Ž Š Ž Š ž šžž Ž Ž Œ ŸŽ Ž ŒŽœ Ž Š ŽœŠ Žž Š œ ž šžžœ Ž œ Œ Ž Ž 1šžŠ œ Ž Ž Š Žœ Žœ Š œ šžžœ œž Š œ Žœ Žœ Ž Ž Š Žœ ŽœŒ Žœ Ž Ž ŒŽœ œž Š œ Ž Ž Šž Š Š Ž Š Ž ž Žœ Ž Žœ žÿž Ž Š Ž œž Š Œ šž Žœ Žž Ÿ œšžžž œž Š œ Ž Ž Šž œœžœœ šž Žœ Ÿ œšžžž œž Š Ž Ž Œ Ž Š Ÿ ŽœœŽ Š ž Š Ž Ÿ ŽœœŽ Ž ŽœœŽ Ž Žœ ž Žœ Ž Žœ œœžœœ Š Š Ž

8 Š Ž Š œ Š œ Ž Š žž Š ŒŠŒŠ ž Ž œ Š Žœ Žœ Š œ šžžœ Š Š Šž Žœ Žœ œž ŸŠ œ Ž Ž Š Žœ œœžœœ Ž Žœ Ÿ ž œ šž Ž ŽœŒ Žœ Ž Ž ŒŽœ Ž Ž Ž Š Š Ž Š Ž Š ž Š Ž ž Žœ Ž Žœ Ž œ Ž Ž Š Ž Œ Š ŽœŒŽ ŒŽ Ÿ œ Š ŽŒ œ Š šžž Ž ŒŽœ Š Žœ Ž ŒŽ Ž Šœ ž Š Š šžž Š Š Ž Š Ž žœ ŽœœŽ Žœ ž Žœ Ž Žœ 1Œ ŠœŽ Ž Žœ ž Žœ Ž Žœ ŽœŒ Ž Ž Ž ŒŽ œž Š œ Ž Ž Šž œœžœœ Šž Ž ž Žœ Ž œ Šž œ Š Š œ Šž ž Žœ Š Š Ž Ž Ž Ž œ Ž ž Žœ Ž Žœ Ÿ œšžžžœžœ Š œ Š Ž Žœ Š Žœ Š œ

9 Š Ž ŽŒ Žœ œž Š Š Ž ŽœŒ Ž Ž Ž ŒŽ Ž Š ž Ž Žœ œž Š œ ŽœŒ Ž Ž Ž ŒŽ ŽŒ Žœ Ž Š Š Ž Ž Ž Š œ ŒŠ œž Š œ Ž Ž Šž Š œ Ž Š ž Ž Žœ Ž œ ŒŠ ŠŒ œ šžžœ Š œ Žœ Ž Ž ŒŽœ œž Š Œ ŒŠ Šž ŽŒ Žœ Ž Žœ ŽœœŽ Ž Š Žœ ŽŒ Žœ Š Žœ Ž Žœ Žœ ŽŒ Žœ Š Š Ž Š Ž ž Žœ Š Š Žœ Œ Ž Ž ŽœŒ Ž Ž Ž ŒŽ Œ Ž ŽœŒ Ž Ž Ž ŒŽ Ž œ Š šžž Žœ ž Žœ ž Ž Žœ œž Š œ Žœ ¹ Žœ Ž Žœ ž Žœ œž Š œ Ž Ž Šž Ž Š ŒŽ ŠŸŽŒ Š Š Ž Ž Š ž Ž Ž Š ŒŽ ŠŸŽŒ Œ Š œ ž Ž Ž Œ ¹ Ž Ž Ž Ÿ œšžžž ¹ Žœ œ Žœ ŽœŒ Ž Ž Ž ŒŽ ž Ž Žœ œž Š œ œœžœœ Š Š Ž

10 Œ žœ Ž ž Š Ž Š šžž Ž ž Žœ ŒŠ Š Žœ žœ â Ÿ œœ ŒŠ Š Ž Žœ Žœ Š Ž Ž Ž Ž Ÿ œœ Ž Ž Ž Ž Š œœ œœš Ž Ž Ž œ Œ Ž Žœ œœžœœ Ž Ž Ž Œ žœ Ž Ž Œ žœ Š Ž

11

12 žœ Š œ Š Žž Ž Ž Š Š Ž žœž Ž Ž ŸŽ Ž œš Ÿ Ž Š ž Ž ŽŠž Š ž

13

14 œ Ž Ž Ž Žœ ž Žœ œž šžžœ Ž šž Ž Žœ ž Œ Š Ž Ž ŒŠ ŒŽ Ž Œ Ž Ž Žœ ŒŽœ ŒŠ Š Žœ Ž Ž Ÿ šžž Ž Š Š œ Žœ ž Ž Ž Žœ œž Žœ œž ŠŒŽœ œ Žœ Ž Ÿ Š Žœ žœ Žž œ œ ž œ Ž œ Ž ŒŽ Ž Š ž œ ž Ž ž œ Š Ž Ž Ž ŒŽ Ž œ Žœ œž ŠŒŽœ œž Ž Žœ šžž Ž žÿž Œ Ž ŒŽ Š œ œžœ Žœ Ž Š Žœ Ž Ž Ž Ž Žœ ž Ž Ž Žœ šžšœ œ šžžœ Žž Š Ž Ž Š Ž Ž Ž Žœ ž Žœ Ž Ÿ Š Ž ŸŽ œžœ Š Žœ Ž Š Žœ ŠŒ žœ šžžœ ŒŠ ŠŒ Š œ Š Š ž Š Ž Ž œ Ž œ Žœ Ž Ž Š ž œ ŠŒ Ž œ œ œ Ž Š Ž Ž Œ ŠŒ Œ Ž Žœ Ž Žœ ž Žœ œž Žœ œž ŠŒŽœ œž Ž Žœ Ž Š œž ŒŽ Žœ Žœ Ž Œ ŠŒ Š Ž Ž Ž Žœ ž Žœ šžš Žœ Ž Ž žÿž Ž ž Ž Š œž Ž žÿž Ž Žœ ž Žœ Ž Ÿ Š ŒŽœœ Ž ž Ž ŽŒ šžž œ œ šž Ž Ž Ž Ž Šž ŠŒŽ Ž Œ žœœ ŸŠ Žž ŠŸŽŒ Š ž Ž žœ œ œ Š œ ŒŽ Ž œž ž Ž žÿž Ž Ž ž Š Ž Ž ž Ž œ žš Ž ž Š Ž ž ž Ž Š Š ž Ž ŠŒ Ž Š ž Ž Œ žÿ Š Žœ ž Žœ Ž šž Ž ž Ž Š Ž ž ŽžœŽ Ž ž Ž Ž Œž Ž Š Ž ž Ž œž Ž Š Ž Ž Ž Ž Žœ ž Žœ Ž Žœ Ž œ žš Ž ž Š Ž Š ž Ž œ Ž Œ Ž Ž Ž šž Ž ž œž œ Š œž ŽšžŽ Ž Ž Ž œž Š ž Ž Ž Š œ Š Ž šžž ž œž œš Ž œ œž Ž Œ Ž Ž Šž Œ ŽŒ œ žžœ Š ŠŸ œ Žœ Ž Žœ ž Žœ Ž Žœ ŠŒ œ œž ž Ž œž ŠŒŽ Š Ž Œ Ž ž ŸŽ Ž œ Š Š Ž Ž œ šžžœ œšž Žž ŠœŽ Ž Ž Ž Š Š ŠŸ Žœ ž Žœ žœ œœžœ Ž Ž ž Ž Ž Œ Šœ Ž Ž Ž œ Ž œ ŽžŸŽ ¹ Ž Ÿžœ Œ Ž Žœ œ Žœ žœ ž Žœ šž Žœ ŽŠž œ œž Ž ŠŒ Ž Ž Œ Ž Žœ šž Žœ Š œ Žœ Ž Žœ Œ Ž Žœ œ Žœ œ œž Ž Šžœœ Š Š Œž Š Ž Ž œž Ž ž Ž Ž ž ž Š Ž ž šž Ž œž ž œ Ž ŒŽ Ž ž ž Š Ž ž ž ŒŽ Š Žœ œž ŠŒŽœ œž Ž Žœ Žž Ž Žœ Š Žœ Ž Œ ŠŒ œ ŽŸ œ žœšž Š œ Š Ž Ž ¹ Ž Ž Ž Žž Šœ ¹ Ž Š Ž Ž Š ž Ž Ž Ž Ž Ž Ž Š Œ ŒŽ Š Ž Ž Ž œ Š Š Œ Ž žœ Žœ Žœ œ Šž ž Š Ž Ž Š Žœ Žœ Ž Œ ŠŒ Š œ Ž Ž Ž Œ Š Ž Ž ŒŽ Ž œž Š œ ŠŸ Š Ž šžž šžžœ Š œ œž Ž ž Š Ž žœ œ Œ Ž Ž Žœ ž Žœ Ž Žœ Ž œœž œ Žž Ž œ Š šžž Ž Žž Ž Œ Š Ž œž Ž Žž žÿž Ž Š Ž Ÿ ŽœœŽ Œ Žœ Ž œž Žœ Š œ Ž Ž Œ œ Ž ž Žœ šž Žœ Ÿ œšžžž Š œ ŒŽ Œ Š Ž žœ œ Œ Ž Žœ Œ œ šžžœ Ž Š Š ŽŸŠ Ž ŽŠž œž Žœ ž Žœ ž Š Žœ Ž Ž Ž Ž Œ Ž Ž šžš Š ŸŽ Ž Š Ÿ ŽœœŽ Ž Ž ŒŽœ ž Žœ

15 žš Ž Žœ œ Ž žÿž Ž Žœ ž Žœ Ž Žœ œž Ž Ž œ Š Ž ž Ž ž Ž Žœ šž Žœ Ž Š œž Ž ž Ž Š Ž Š ŒŽ Š Ž Ž Ž Š œ Š Š Ž ŠŸŽŒ Žœ Œ œ Œ Žœ Žœ šž Š Ž Ž Ž ŽžœŽœ ŽŒ Ž Œ Žœ Ž ž œ žœ Žž œ œ Œ Žœ Š œ Ž Œ Š Ž žœ œž œ šžž šžžœ ž Žœ Ž ŒŽœ ž Žœ Ž Ž Š Žœ šžžœ Ž ž šžžœ œž Ž žœ ŒŠ Œž œ ž šžž Ž ž Ž Š Ž œœ Ž Ž Žœ šž Ž Ž ž Žœ Ž Š žœ œž œ šžž šžžœ œž Š œ Ž Ž Šž šžž Ž œ œ Ž Ž Ž Ž œ œ Ž Ž Š œ Ž Œ Š Ž žœ žœ Œ œšœ œ Šž žÿž Ž Š Ž Žœ ž Žœ Ž Žœ ŒŽ ž Žœ ž Žœ œ Žž Ÿ œšžžžœžœ ž Žœ ž Žœ žœ Ÿ œšžžžœžœ œž ž Š Ž Ž Œ žœ Š œ Ž œž Ž Šž Œ Š Ž Ž Ž Ž Š œ Š Ž ŒŽœ ž Žœ šžš Ž Žœ œ Ž Š Ž Œ Ÿ œ šžž šžžœ ž Žœ Žœ Š œ Š œ šž ŽžŸŽ Ž ŸŽ Ž Ž Žœ Ž Žœ Œ ž Š œ Š œ Ž Œ Š Ž œž ŸŠ žœ žœ Žœœ œ Š œž Ž žÿž Ž Žœ ž Žœ Ž Žœ Ž Ž Š œ ŽŒ Š šžž ŒŽ œ œ Ž Š Œ ž šžž Šž žÿ Œ â Ž Ž ŠŒŽ Ž Ž ŒŽœ Ž œ Šž Šžœœ Ž Œ ŠÉ Ž Š žœ ŽœœŽ ŒŽ Ž ž Ž Žœ ŸŽ Ž Š œ Ž Œ Š Ž Š Ž Ž žœ œž œ Žž ž Žœ œ Žœ Š Ž ŠŸŠ Š œ œž Žœ ž Žœ Ž Žœ Ž Œ Š Ž Žœ ž Ž Š Œ Ž Ž Ž Š Ž Ž ž Ž Žœ ŽŒ Žœ œ Š Ž Ž Žœ Ž Ž Š Ž Žœ Ž šž œ Žœ œ žœ Ž ŠŒ Ž Žœ œž Ž Ž Žœ Žœ Š Ž Ž ŒŽ Žœ Ž žžœ Š œ ŒŽ Š Žœ Œ œ ŠŸŽŒ Žœ ž Žœ Ž Žœ Š œ Ž Œ Š Ž žœ ŸŽ œ ž Ž Šž Ž Š œš Ž Ž Š Ž ž ž Š Ž ž ŒŽ Ž Ž ž Žœ Š Š œ ž šž Ž œ žœ ž œ Ž ž Š Ž Ž žœ Ž œ Š œ Ž ŒŠ ŠŒ œž Š Š šžž Ž Ž Žœ ž Žœ Š œ Ž Œ Š Ž ŠŸ

16 Š Ž ž Žœ Ž Žœ Œ Ž Ž œ Š šžž

17 Š Ž Žœ Š Žœ Š Ž ž Žœ Ž Žœ Œ Ž Ž œ Š šžž Š œ œž Ž ž Š Ž Š Ž œ Ž œž ŠŒŽ Š žžž ŒŠ Š Ž κ Ž ž Š Ž ž ŠŒŽœ Ž ž Žœ œž Ž Ž ž Žœ Ž Žœ Œ Ž Š Ž Žœ Š œ ŒŒž Ž ŒŽœ Š ž Ž Žœ Ž ž ŠŒ Š šžž ¹ Žœ ŠŸ Š Žœ κ Žœ κ Š Œž œ ž šžžœ Žœž Žœ Ž Ž Š Žœ œž Š œ Ž Ž Šž Š Š Ž

18 Š œ œž Ž ž Š Ž Ž Ž Œ Ž œž Œ Ž ž Ž ž Ž Ž šž Ž œž ž œ Ž Žœ ž Ž Š Ž Š ŒŽ Š šžž Š Ž Ž Ž Š Ž œ Ž ž Ž Ž šžž Žœ ž Žœ ž œœž Ž œž œ Ÿ¹ Ž Ž œ Š šžž ŒŽž Œ Ž œ Ž Šœ ž ž Š Ž ž ŠŸŠ ž ž œ Ž Š šžž Žœ ž œ šž Ž Ž Ž ŸŠŒžŽ Š Ž Œž Ž ŽŠž šž Š Ž Š ŒŽ Žœ Ž Ž Š Ž Žœ Œ Žœ ž Ž ž ž Š Ž Ž Ž Ž Žž Œ Ž Ž ŒŽœ Žœ Ž ŸŽ žž Ž Ž Ž Žœ Ž žœ Š œ Š Ž Ž Š œ ŒŽ Œ Š Ž šžž šžžœ Š œ œž Ž ž Š Ž ž ž Ž žœ žœ Œ Ž Šž Žœ ŒŠ Š Žœ Žž œž Ž Šž Ÿ Ž Š œ ž ŒŽ ž Ž Ž Ž Žœ Œ Š Š ž Š Ž œ Ž œž ŠŒŽ Œ Ž ž Ž Ž ŠŒŽ Ž Ž Žž Žž Žœ Œž Žœ ŠŒ Žœ Ž ŠŒŽ Šœ Ž ¹ Ž Ž Ÿ Ž Ž šžž ŒŽ ž šž Ž Žœ Šž Š Ž Ž Ÿ ž Ž Š Œž Ž Ž Žœ œž œœž Žœ ŒŽœ Š ŠŒ ŸŽœ Ž Žž œ Ÿ œ Žœ Žœ œš Žœ Ž Ž œ Ž ŒŽ Žœ ŠœŽœ Œ Ž œ Žœ šž Ž œ Šœ Žœ ¹ Žœ ŽŒ ž ž Ž Ž Ž œ Œ šžž Šž Œž Žœ œž žÿš Ž ŠŒŽ Ž Œ ž Ž Ž Ž Ž œž ŠŒŽ œ ŸŽ ž Ž ŠŒŽ Œ œ Ž Ž γ Ž Ž Ž ŠŒ Š Ž ž Ž œž ŠŒŽ Ž Ž Žž Žž Žœ Ž Ž Š Ž ž Œ Ž ž Ž Ž ŠŒŽ Ž œž ŠŒŽ ž Ž Ž Žœ Žž Žž žœ Š Œž Ž Ž Š Ž Ž Š Ž Ž Ž œž ŠŒŽ ž Ž Ž œž Ž Œ Ž Ž Ž Ž Ž ŠŒ Š Ž Ž Ž ž Ž ŠœŽ Œ Ž œ Ž Ž Š Ž Ÿ Š Žœ Šž Š žœ ŠŸ Š Ž ž ž Žž Ž Œ Ž ž Ž Ž ŠŒŽ šžž Žœ Š œ œ Œ œ ž ŸŽœ ž Žž œ Žœ œ ž Š ž Š Žœ ž Žœ ù Žœ Ž ŠŒ œ œ Ž Ž Š Ž ŠŠ œ Š Ž œ Ž œž ŠŒŽ Žœ Ž Ž Ž Š œ šžž ž ŽŠž ŒŠžœŽ Žœ Š œ œ Žœ Ž Ž Žœ žœ Š Ž Ž Š ž Šž Ž ŒŽ Š žœœ γ Ž Ž Ž œž ŠŒŽ œ Ž šž Ž γ ŒŽ Ž Ž Ž Ž œ Ž Ž Š ŸŠ Žž Ž γ ŒŽ Ž Ž Ž Ž šž Ž Ž Š ŸŠ Žž Žœ œœ Ž œž ŸŽ Ž œ Ž ŒŽ Ž Ž Ž Ž œž ŠŒŽ Š ž Ž Ž Ž ŒŽ œ Ž ŠŒŽ ž Ž šž Ž Š œ ž ŒŠ Ž œœ Š ž Œâ Ž Žž Ž ŠŒŽœ šž Ž Š œ Š œ Œ Žœ Ž Ž Žœœžœ Š Š Ž Ž Œ Ž Œ Š œ Š ž Ž œ Š Ž ³ Š œ šž Šž ž ž ŠŸŠ ž ŠŒŽ Ž Œâ Ž

19 dx L F ž Ž Œ Š ž Ž Ž Ž ŒŽ Ž ŒŠ Ž Ž ž Š ŒŽ Ž Ž Ž ŒŽ ŠŒŒ É Š œž ŠŒŽ šž Ž Š Ž Ž Š Ž Žœ Œ Ž Ž Ž Ž œž ŠŒŽ Ž Ž Š Ž Ž œ Œ δw = γldx Ž Š Ž Ž Ž Š Š Š ŠÉ Ž ž Ž ŒŽ Ž Ž γl œ Ž Ž œž Ž Œ Ž Ž Žœ Šžœœ ž Ž ŒŽ Š ž Ž žžž Š Ž Š Ž Ž šž œ œž ŠŒŒ œœž Ž Ž œž ŠŒŽ Ž Ž ŒŽ Žœ Ž Š Š Ž Ž ŒŽ ŒŠ Š Ž Š Ž œ Ž œž ŠŒŽ žž ž â Ž Š ž Žœ œ œ Žœ Š Žœ Œ Žœ Ž Ž šžž Š Ž Š Ž œ šžž Žœ ž Žœ Ž œšÿ ž Œ Ž ž Ž Ž Ž ž Ž œ ž Ž Š œ ž Ž œšÿ Žž Ž Š ž Ž Žœ Œ Žœœž œ Ž ŒŽ œ Žœ ŒŽœ ŒŠ Š Žœ šž œ Žœ œš Žœ Ž ŒŽ œšž Ž Žœœ Š ŠŸŽ œ Ž Ž Š œž ŠŒŽ Œ ž Ž Ž œ Ž Ž Ž ž Žž žœ œ Ž ž Ž ž Ž œ šžž Œ Ž Ž œž œž Š ž Ž e z γ γ α ž Ž Žž ž Ž ž Ž Žœ Žœœž œ Š œ œ ž Š Žœ ŒŽœ šž œ Ž Ž ŒŽ œž Š Š Ž œ Ž Š œ Ž œœ Š Ž Š ž Ž Š Ž œ Ž œž ŠŒŽ ŽŠž Š Ž œž Š Ž Ž žžž Ž Š Œ Ž ž Ž ŒŽ Ž œ π œž ŸŠ Š Š Ž Ž Š œ Ž γsin α π r œž Š Ž Žœ Ž Ž ŒŽ Žœ šž Ž Š Š œž Žœœ Š œ Š ž Ž šž œ Š ž Ž œž Š œž ŠŒŽ œ Ž Š Žœ œ Pπr Œ œ Š Š Ž Š šžž r = R sin α ù Žœ Ž Š Ž Š ž Ž Ž ž šž Ž ž Ž œž Žœœ Žž Ž Š ž Ž P = γ / R

20 Ž Š³ žœ Š Ž Š ŠŸŽ œ Ž ž Ž Ž ŠŒŽ Ž Ž Žž ž Žœ œ ŠŒŒ Š Ž ž Ž ŸŠ Š Ž Žœœ Š Ž Šž ž Ž Š Ž œ œž Ž Œ Ž Ž Š Š Œ ž ž Ž Ž Š œž ŠŒŽ šžš Ž Š ŠŒŽ P = γ 1 R + 1 R 1 ù Ž œ Žœ Žž Š œ Ž Œ ž ž Žœ Œ Šž Š žžž ŒŠ Š Ž κ Š ŒŠ Š Žœ Š Ž ž Žœ Ž œ Ž œ ž Žœœžœ ž Ž ŒŽ Š Ž Œ Ž Ž κ Š ŠŸ ŽŸ Ž Š Ž Ž Žœ œž ŠŒŽœ Š Žœ œ Š Žœ Ž Ž žžž œ Š Ž Ž Š žžž ŒŠ Š Ž ž Žœ Ž Ž œ Ž Ž Ž ž Ž ž Ž ŽŠž œ šžž Ž Š Š Žœœ Ž Š ŠŒŽ œ Œ γ Š œ šžž Š Žœœ Ž Š Œ Ž ŽŠž ŸŠ Ž Ž ρ Š Ž Ž Š ž Ž Ž œž Š Šœ Ž Š Š ŠŸ œ Š 1 R << κ = γ ρg Ž Ž žžž ŸŠž ž ŽŠž Ž ž Žœ ž Žœ œ Œ Žœ Ž ž Š Ž žš œž ž Ž Ž Ž ž Ž šž Ž œž ž œ Ž Žž œ žš œ ŽžŸŽ œž ž Ž œ Žœ Ž šžž Ž žœ ŠŸ Š Ž Ž Ž ŠŒŽ ž Ž Ž ŠŒŽ œ Ž Š Š Žž Ž ŠŒŽœ Š šž Ž Ž šž Ž œ Ž Š œ Š ž Ž œ Š Ž Œ Ž Ž œž Ž œ Ž Ž Žœ Š œ ž Ž œ žš Ž ž Š Ž Š

21 ž Š Ž Š θ = ž Š Ž Š Ž θ θ < 9 γ γ γ θ > 9 θ ž Ž Œ Š Žœ Ž Žœ œ žš œ Ž ž Š Ž ž Ž ž Ž Ž šž Ž œ Ž œž ž œ Ž Ž Š Š Ž Š Ž Ž γ ( γ + γ) S = Ž ž Š Ž Š Œ Žœ Œ SV SL Š œ Ž ŒŠœ Œ Š Ž Š Ž Ž ž Š Ž Š Ž Š ž Ž Ž Š œ Š Ž ž Ž ŒŠ Ž œ šžž ŠŸŽŒ ž Š Ž θ Ž ŠŒŒ Šž ŸŽŠž ž œ Ž Ž Š Ž Žœ Š šž Ž Žœ ŒŽœ Ž Ž œ Ž œž ŠŒŽ Šž ŸŽŠž Ž Š Ž ù Žœ œ ŠœŽœ œ Ž Œ ŠŒ Ž Š Ž ž cos θ e = γ SV γ γ SL Žœ ŠœŽœ šž Ž Ž œ Ž Š ž Žœ Žž Œ Ž œ Žœ Š Ž Š γsl < γ SV Œ Žœ Ž θ Œ œ œœš Ž Ž Œ ž Ž šž Ž œ Ž Ž Ž Š ž šž Ž Ž Šž Ž Ž Ž Œ Ž ŽŠž Ž ž œ Ž Ž œ ŠœœŽ Ž Ž Œ Ž ŒŽ Š œ Šœ šžžœ Š ŸŽ ž Žœ œž ŠŒŽœ œœžœ žœšž Žœ Š Žœ Ž Œ ŠŒ Ž ž Ž Žœ Š Žœ žœ ŽŸ œ Šž ŠŸŠ Ž ŠŸŽŒ Žœ œž ŠŒŽœ Ž ž Žœ ž ŠŒŽœ Ž ž Žœ œž Ž Ž Š Ž Ž Œ ŠŒ Š Ž Ÿ Ž ž Žž œž Ž Ž Š œ ŠŸŠ Š Žœ ŒŠ ŠŸ œž Š Ž Ž Ž ž Ž ŸŽ œ Œ Ž Ž Ž Š Š œ ŒŽ Š Žœ œ žš œ ŒŽ Š Žž œ ŠŸ Ž Šœ Ž œ ŽŠž ž Š Žœ Š Žœ Žœ Š œ ž Ž ž Ž ŽŠž ž Ž Ž Ž Žœ Žž Š Žœ Ž Ž Ž Š Žœ œ ŒŠ Š Žœ Ž ž Ž ŒŽ Ž Š Ž œž Š Ž ž Ž Š ž œž ž Ž Ž œ Ž Ž œ Š Š ž Ž Š Ž Š Š Žœ œ Ž žœœš Žœ ž ŽŠž Š Ž Ž œž ŠŒŽœ œž Ž Žœ Ž œž ŠŒŽ Ž ž Ž Š Ž Ž Œ Ž Ž ž šž Ž œž ž œ Ž Ž ž Š Ž Š Ž Ž Ž Ž šž Ž šž ŽœœŽ Š Ž ž Ž Ž Œ Š ž œ ž œ Ž šž Œ Žœ Š œž ŠŒŽ Š Ž œž Š œž ŠŒŽ Ž Ž ŸŠ Š Ž ž Š Ž Ž Œ ŠŒ ŠŒ œœ šžž θ Š Œ œ θ Œ œθ Ž Š Ž Ž Ž ŠŸŽŒ šž Ž Š Š ž Š Ž Ž ž œž œž ŠŒŽ œœž œž Žž œž Ž Š Š œ ž Š Ž žœ

22 ŽŸ œž œž ŠŒŽ Ž ž Ž Ž Ž Š œ Š ž Ž Ž Š Ž ž Ž Žœ œž œš Ž Š Ž Ž Š Žœ Š œ Žœ ŒŠŸ œ œ žœ Š ž Ž Ž Œ Ž Œ Š Š Žž œ Ž Š œž ŠŒŽ Œ Žœ ž Ž œž ŠŒŽ Ž œ Ž Š Š Ž Ž Œ ŠŒ ŠŒ œœ šžž œ Œ Š œ ŒŽ ŒŠœ cosθ* = 1+ φ S ( 1+ cos θ ) e ù φ Žœ Š ŠŒ Ž œž ŠŒŽ œ Ž ž Š Šž Œ œ Ž œš Šž ž ž Š šžž Ž Ž Žœ œž ŠŒŽœ Ž Š Ž Ž Žœ Š Žœ Ž Œ ŠŒ Ž Ž Ž Š œ Š œž ŒŽ ž œ Ž œ žœ Š ž Ž Ž ¹Œ Ž Š Ž Ž Žœ ŸŠ Žž œ œž Žž Žœ ž œ Ž Œ žž ¹ Ž Ž Œ ŠŒ ŠŸŽŒ Š ž Ž φ Ž Š ž Ž Ž šžž θ Ž Žž Š Ž Ž ž Š œž Žœ œž ŠŒŽœ œž Š Ž ž Š Ž žœ ŠŸ œ Š Ž œ œ Ž Œ Šž Š Š Š Ž œž ŸŠ ž Žœ Ž Žœ Œ Ž žœ Ÿ ž œ Œ Ž ž Ž ž Ž Ž šž Ž œš œ ŠžŒž Œ ŠŒ ŠŸŽŒ Ž œž œž ŽšžŽ Ž Ž Ž œž žœ Žž œ Žœ œ ž œ Žœ ž Š Ž Ž ŒŽ ž Žž Š Ž Ž Ž Ž Ž Žœ ž Žœ Ž Ÿ Š ŒŽ ž Ž Š ŠŸŽ œ ž Žž ž Ž Œ ŠŸ ŒŽ Žœ Žœ ŠŒ žœ šžžœ Žœ Š Ž Ž œœ Ž Ž Ž Ž Š ž Ž Ž ŒŠ ŠŒ ž Ž Ž Ž Š Ž Š Œ Š ŽœŒŽ ŒŽ ž Ž ž Ž Ž šž Ž œž ž Š ž ¹ Ž šž Ž Ž Ž Š ž Ž Ž Ž ž Ž žÿž Ž Œ Ÿ Ž Ž ž Žœ ŒŽœ ŽŒ šžžœ Žœ šžž Š Š ž Š Žœ ž Žœ Š œ Žœ Žœ Œ Ž Žœ ž šž žœ ŠŸ œ Œ œ Ž œž ž Ž žÿž Ž Ž ž ŒŽ Š žœ ž œ œ ž Ž ž Ž Ž šž Ž Ž œ Š Ž Š ž Ž Ž œ Ž ž œ Ž œž ŽšžŽ Ž Ž Ž œž ŒŽ ŒŽ Ž Ž Š žœ Ž Œ ŠŒ Ž Ž Š ŠœŽ šž Ž Ž Ž œ Ž Ž Ž Žž žœ Ž Ž Š Ž Ž ž Š Ž Š Ž Ž Š Ž Š œ Œ ž Ž ž Ž Ž Ž ž Ž œ šžž Ž šž Ž Ž Ž œ Šœ ŽŒ Ž Ž Ž Œ ŠŒ ŠŸŽŒ Š ŠœŽ ž Ž Žž Ž Š œž ŒŽ Ž Š ŠšžŽ œ Ž žž ž â Ž Ž Š Š œ Š Ž Ž Š ž Ž Ž Ž Š œ Œ Ž

23 ž Ž ž Ž Ž Ž œ Ž œž ž œ Ž Ž Œ Ž Ž Š ŒŠ Ž ŒŽœ Ž œ Š Žœ ž œ ž œš Žœ Žœ ŽœœŠ Ž Š Ž ŒŽœ Ž Ž œ Š Ž Žœ Š œ ž Œ Ž Ž Ž œ Ž ŒŽ Žœ ž Žœ Ž Žœ Œ Ž ³ œ Š ž Ž Ž Œ Ž Ž ž Ž ž Ž Ž œ Ž œž ž œž Ÿ ŽŠž ŠšžŽ Š œ Ž ŒŽ Š œ Ž šž Ž žœšž œš œ šž Ž Š Š Ž Žœ Š œ Žœ ž Žœ ž œ Žœ Žœ œ Žž Ž Š žžž ŒŠ Š Ž Šž Š ž Œ Š Ž šžž šžžœ Žœ Žœ ŒŽœ Ž ŽœŠ Žž œ Œ ŽŠ Žœ Š Š Š ŒŽ ŒŠ Š Ž Ž Š œž ŠŒŒ Ž Š œž ŠŒŽ Ž šž Ž ŠŸŽŒ Š Ž Ž Œ ŠŒ θ Ž œž œž šžž Š œž ŠŒŽ Ž ž šž Ž Žœ Š Ž Š Œž œ Ž Ž ž œ œ Ž šž Ž Š šž Ž Ž Š Žœ Ž Œ ž Ž œ Š ŒŽ Š Š ž Š Šž Žœœžœ Ž Š œž ŠŒŽ ž Ž Œ œ Ž Ž Š œœž Ž œ šžž R θ z ž Ž œœ Š ž Š œœž Ž œ šžž œ Ž ³Š Š œ ž œž Ÿ Ž šž Ž Š ŸŠ Š Ž Ž œž Ž Œ Ž Ž Ž Ž ŒŽ Ž ž Š œ Œ E = πr γ ( 1+ cosθ ) e

24 Ž Ž Ž Ž Žœ ž ž œ Š ŸŽ šžž šžž œ Š Ž Ž Œ ŠŒ Žœ ž ž œ ŠŸ Š Ž ž Ž œ œ Ž šžž Ž Š œž Œ Ž Š ž Ž ž Š ž Ž žœ ŠŸ œ Ž œž Ž Ž Œ Ž Š Ž Ž Œ ŠŒ Ž Ž Š Ž Žœ Šž Š žœ Š Ž šžž Š Ž Ž Œ ŠŒ Žœ Ž E/γ θ e ( ) ž Ž 1 Ž Ž Ž Œ Š Ž Žœ Š œ Š œ Ž Š γ π Ž Œ Ž Š Ž Ž Œ ŠŒ θ šž Ž Š Ž Š Žœ Ž ž Š Ž Š Œ œθ Ž Œ Ž Ž Š œ Ž šž Ž Žœ Ž ž Š Ž ž θ Ž Ž Š Ž Šž Œ Š Ž Žœ ž Ž Ž Ž Š žœ ŠŸ œ Ÿž Š œ Žœ Š œ œž Ž ž Š Ž šžž ¹ Ž ŠŸŽŒ Žœ œž ŠŒŽœ Ž ž Žœ Š ž ž œ ž Œ ŠŒ œ Ž šž Ž Ž Ž Žž Šœ Š Ž Ž Ž ž Š Ž ž œ šžž šžž œ Žœ œ Ž ž Š Ž ž Š ž œ Ž ž Š Ž Š Ž Œ Ž Š Š ž Ž E/γ ž Ž -.6 Sphère -.8 cube -1 θ e ( ) Ž Ž Ž Ž ŒŽ Žœ Š œ Š œ Ž Š γ Ž Œ Ž Š Ž Ž Œ ŠŒ θ šž Ž Š ž ž Š œ šžž ž Œž šžž žœ ŠŸ œ Ž œž œž Š ž Ž Ž Š Ž Ž ž œ œ Ž šž Ž Š Š œ œš œ šž Ž Š Š ž Ž Ž œ Œ Ž ž Š ( 1 cosθ ) Eémergence = πr γ Ž Š Žœ œ Š Ž ž Žœ Ž œ Š Žœ Ž Œ ŠŒ e Žž œ Ž Š œ Ž ŒŽ Š Š œ ŠŒ Ž Ž ŒŽ šž Žž Ž Ž Š Ž Š ž Ž Ž Ž Ÿ œ Ÿ œ Žœ œœ Š œ Ž œš œž ŠŒŽ ž Ž ž Žœ Œ Œœ Œ Ž Š œ ¹ šž Žž ŠŸ ŠŸŠ Ž ŠŸŽŒ Žœ Š œ Žœ

25 θ θ θ e > θ e < ž Ž ž Š œ œœ Žœ Žœ Š œ œ žœ Š ž Ž Ž Ž œž ŸŠ Žœ œ Ž ž Š Ž ž œ œ Ž ž Š ž Ž žœ ŠŸ œ Š Ž Ž Ž œž Ž Š Ž Ž Ž Ž ŒŽ ž ž Š Œž šžž Š œ ŒŽ Ž Ž œ Š Ž ŒŠœ Š Œž Ž ù θ Ž ŠŒŒ Ž Š Ž Ž Ž Žž œž Š Ž šž Šž ŸŽŠž Žœ Œ œ ž Œž Ž ù Š ŒŠ Š Ž žœ Žž œ Š Žœ œ Šž œ œ Žž Žœ Žœ Žž Œ ž Š œ œž Žœ œž Š ž Ž œ Š œ œœ Žœ œ Ž Š Žœ Š Ž Ž Ž Œ θ œ Ž Žœ Šœ ž ž θ θ e < 9 θ e > 9 ž Ž œ œ šž Žœ ž Š Œž šžž ž Ž Ž ŠŒŽ šž Ž ŸŠ Žž Ž Œ Ž Ÿ Š ŒŽœœ ž œž Žœ Š œ Žœ Ž Š œ ž Ž Ž ž Ž žœ žœ Š³ œ Š œ ŒŽ ŒŠœ ŽŸŽ œ œž œž Š Œ ž Š ž Ž ž Ž Ž Ž Žœ Š œ Ž ž Ž Œ Ž Ž Š ž Ž Ž šž Ž ž œ Ž ž œž œ Š œž ŽšžŽ Ž Ž Ž œž Žœ Š œ Š œ œ œ œ ŸŽ œ ž Ž Ž œ Ž Š Œ Ž Ž šž Ž Šž Žœœžœ ž Š ž Š œ Ž ŒŠœ Žœ œœžœ ž Žœ šž Ž Ž Š Ž Ž Œ ¹ Žœ Œ Ž Ž ŸŽ Š Š Š œž Ž ŒŽ Ž Šž Žž Žœ Ž Žž œ Š žžž ŒŠ Š Ž Ž Ž œž Ž ž Ž œž Žœœ Ž ρ κ Ž šž œ Ž ž Š Ž Œ ž ž Ž Ž Ž ŠŒŽ ž šž Ž Ž Ž Žœ Š œ κ Ž Š Ž Œ ž ž Ž Žœ šžž ž ž Ž œ Š ŒŽ Ž Š œ Ž Ž Ž Š Žž Ž Š Š Ž Žœ Š œ Žž ¹ Ž Œ œ Œ Ž Ž Š Ž Š œž ŠŒŽ Š Ž ŒŽ šž žœ Ž œž Š Ž Œ Ž Ž žœ ŠŸ œ ž œ Žœ ž Žœ Š Žœ Œ šžž Ž ž ¹ Ž Žœ žœ žœ

26 œ Žœ Œ œ Šž šž Žœ Š Š Žœ Šž Žœ Ž œ œ Ž œž ŠŒŽ Œ Ž Žœ šž Žœ Š Žœ žœ ŠŸ œ Œ œ Ž ŠŸŠ Ž ŠŸŽŒ ž Ž œ Ž Ž Š Žœ ŽŠž Œ Ž Œ Ž Š Š Žœ œ Œ Žœ Ž ŒŽ Žœ Ž ŽŠž Ž œ Ž œž ŠŒŽ γ Ž œ Š œ œœ Ž ž Ž Ÿ œœ œ žœ Ž œ œž Žž Ž Žœ Š Žœ ŽŠž Œ œ Œ Š Œž Ž Ž ŽœœŠ œ ž œž ŸŽ Ž šžš Ž Žœ ŒŽœ Ž Œ Ÿ œšžžžœž žœ ŠŸ œ ž Žž ž Žœ Ž Žœ Š Ž Ž Žœ ž Ž ž Ž Ž Œ Žœ œ Žœ Ž ž Ž Š Š Ž Ž Š Ž Šž ž Œ Œ œ Š Ž Žœ Š œ Žœž Ž šžž Ž Ž œ œ Žž œ Š œ Š Ž Ž Žœ œ Ž ž Š Ž œ Ž ŠŒŽ Žœ ž Ž ž Ž ŽŠž œ Ž œž Ž Ž œ Š œ œž Ž ž Š Ž Ž Œ ŠŒ œ ŽŸ ž Ž Œ Ž Ÿž Šž Œ œœ Ž ŽŒ šžž Š Ž šžž Š Žž Ž ž Ž ž œ Ž Žœ ž Ž ž Ž Ž œ ŒŽ Š Ž Šž Œ œ Š Ž Š Š Ž šžž Žœ Š œ Žœ Ž ž Žœ Š Š œ Ž Š Ž Ž Žœ Š Žœ Ž Š Žœ Žž ž Žœ Žž Œ Š Ž Ž ž ŠŒ Žž Š œž ž Ž ž Ž Ž Ž Žœ Š Œž Ž Ž Š œ œž ž Ž ž Ž Ž šž Ž œž ž Šœ Ž ž Ž Ž Ž Ž œ Ž Ž œ Š Ž Žœ Š œ œœ Ž œž ŸŽ Šž Œ œœ Ž Š œž ŠŒŽ ž Ž Ž Ž ž Ž ž Ž ž Ž ž Ž Ž Ž Ž Œ Žœ ŸžŽ Šž Œ œœ Ž Ÿ œ

27 Žœ Š œ œž œ œž œž Š œž ŠŒŽ šž Ž œž œ ž Ž Œ žœ Ž ŠŸŽŒ Žœ Žœ žžœ Ž žœ Žž œ Š Ž Ž Š ŽŒ Žœ Š œ œž œš ž Ž ž Ž ž Ž Ž šž Ž Ž œš œ Œ ŠŒ ŠŸŽŒ Š œž ŠŒŽ œž ŠšžŽ Ž Ž Ž Žœ œ Ž šžž Ž šžž œ ŒŽ Ž œž ŠŒŽ ŒŒž Ž ŒŽœ Š ž Ž Žœ žÿž Š œ Š Š ž Ž šžž šžžœ Ž Ž Žœ Ž ž Žœ Ž Žœ Š Š Ž Žœ œžœ Žœ Š Ž Š Žž Ž Š žžž ŒŠ Š Ž Ž ŽŠž œ œ Œ žž Ž Ž Œ œ Šž Žœ œ Šž ž Š Ž ž Ÿ Ž šž œ Ž œž Ž žÿž œ Š Žœ œ ŒŠ Š Žœ Š Š ž Ž Žœ Š œ ž Š ž Š Ž œž ŠŒŽœ œ Žœ Žœ Š Ž Ž Ž ŒŽ šž Ž Ž Šž Š Š Žœ ŽŠž Ž Ž Ž Žœ žœž œ Ž œ œ Ž Ž Š ž Ž Ž Ž Š œ ŽŒ ž Žž Ž Ž Ž Ž œž Š ŠœœŽ Ž Žž œ Ž Œ Ž œ Ÿ œšžžž Žž Œ œ ž Žœ Š œ Ž Œ Ž Žœ Š œ ŽŒ žÿ Ž Žœ Ž Œ Ž œ Žž œ Ž Ž Š žœ Œ Š Š œ ž Ž ž Ž Ž Ž ŠŒ Ž ŠŒŽ Ž ŸŠŒžŽ ŒŽ šž ž Ž ŸžŽ Ž Ž Žœ Š Ž Š ž Žž œž Ÿ Ž Ž œ Š Žž œ Žœ œ Š œ šž œ Œ Š œ Ž ŒŽ Ž Œ Ž Ž Ž Œž Ž Ž Š Œ Š œž Š œž ŠŒŽ Žœ ž Žœ ž Ž Žœ žœœš ž Žœ Š Ž ž Ž ž Žœ Š œ œ Œ Š Š Žœ Œ Žœ Ž Ÿ Ž ž Ž Œ Š Š ŒŽ Š Žœ Š Žœ œ Žœ Ž Žž Žœ Šž Ž Š Žœ Žœ Š Ž Ž Ž Ž ŒŠœ ž žœ Ž œ Ž Š Žœ Žž Žœ œž Ž Žœ ŒŽ Žž Œ œ Ž Žž Ž ž Ž Ž Ž Š Ž ŒŠ œ Ž Ž Ž Š Ž Žœ œžœœž Ž Ž Š Ž Ž ŸŽ Žœ ž Žœ Ž Žœ Ž Ž Žœ ž Žœ Ž ž Ž Ž ž Š Š œž Ž Ž Ž Š Š Ž Ž ŠÉ Ž ŠŸŽŒ Ž Žœ Ž œ Ž Š Žœ žœœ Žœ Žœ šž Š žš ž Ž Ž Œ Š Š Ž Ž Š œ Ž œž žžœ ž Š ¹ Ž ž Š Ž Šž ž Žœ Ž Žœ Ž ŸŽ Šœ Ž Œ žœ Ž Ž Ž ŽŒ žÿ Š Žœ ž Žœ Žœ Ž Š œœš Ž Œ Ž ž ŸŽ Šœ Ž œž ŒŽ ŽŠž Žž ¹ Ž Š Š Š Ž ž Žœ Ž Žœ

28 Ž ž ŠŒ Š šžž ž šžž Š ŠœŽ Žž Ž Ž Š ž Ž Ž Ž Ž œ Šœ Ž Œ ŠŒ ŠŸŽŒ Ž œ Ž Š œž ŒŽ ž œ Ž ž ž Ž Š Ž Š ž Ž Ž Ž ŒŽœ ž Žœ Š Žœ Ž Žœ œž Ž ž Š Š œœž Žž Ž Ž Ž Ž Ž Ž ŠŸ Ž œž Žž Ž Ž Žž Š œ ž Ž Ž Ž Œ ŠŒ œ Š šžž Ž Œ Žœ ž œšžž Ž Š Š Š Ž Šž œž Š Œ Š œœš ŒŽ Ž Š Š Ž Ž ŒŽ Ž Ž Žœ Š Ž ŒŠ Œ Žœ ŠŸŽ œ ŒŽ Œ ŠŒ šžž Žœ ŒŽœ Ž Œ Ÿ œšžžžœž Ÿ Ž œ ž žÿž Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ ž Ž ž Ž Ž œ žš Ž ž Š Ž ž Š ž Ž šžž Ž Š Š Š ŽŸŠ ŽŠž žœ œž œ Œ Žœ œž Š œ Ž Žž Ž Š œ šžž Žœ Žœ Ž Ž Š Žœ Ž žžœ Š Ž Ž Š ž Ž œž Ž ž šž Ž Ž Ž Š ŠŸ šž Š Š Ž Š Š œœž œ ŒŽ Ž Ž ŠœœŽ Ž Š ŒŽ ŒŠ Š Ž šž Ž Š Ž Ž œ šžž Ž Ž Ž ρ γ Œ Š Ž ŒŽœ Žž Ž Ž œ Œ ŠŸŠ Ž Œ Š Ž Ž Ÿ ž Ž œ Š Š Ž ŒŠ ŠŒ œ šžž Žœ Œ Ž Š Ž Š œ Ž Ž Ÿ ž Ž R 3 4π = V 1/ 3 ž Žœ Ž Ž œ Ž Š ŠŸ œ ŽŠ Žœ Ž Š Ž Ž Š ž Ž Žœ Œ Ž Ž Š 1 œ Ž ŽŒ Œ Žœ κ ù = γ ρg κ Žœ Š žžž ŒŠ Š Ž ž Š ŠŸ ŽŸ Ž Š Ž Ž Œ ž ž Ž Ž Ž Œ ¹ Ž Š Ž ž Ž Žœ Ž Ž Š Žœ Ž ž Žœ Ž Žœ Ž Žœœ žœ Ž Š žžž ŒŠ Š Ž Ž Ž ž Ž œ šžž Ž ž ž Ž Š Ž Ž Ž Ž Š žžž ŒŠ Š Ž œœž ž Ž Ž Ž Š Š Ž ž Š ž Ž Ž Ž Š Š œœš Ž Š ŠŸ Žœ Ÿ œ Ž ž Žœ ž Žœ Ž Ž Ž Š žžž ŒŠ Š Ž Š œ šžž Žœ ž Žœ žœ Ž Žœ œ œ šžžœ Š žžž ŒŠ Š Ž

29 Žœ Ž Ž Ž Š œ Ž ŒŠœ Žœ ž Žœ Ž Žœ žœ Š œ œž Œ Ž žœ Œ œ Ž ŒŽœ Žœ Ž ž Žœ Ž ž Š Ž ž ¹ Žœ ŠŸ Š Žœ κ œž ž Ž œœž šžš Ž šž Ž œž ž Ž œž ŠŒŽ šž ž Ž Š Ž Ž Ž Š ž Ž Ž ŽœœŽ Œ Š Ž Ž Žœ Ž Ž œ ŠŸ Š Ž œ Ž Ž Žœ Š Ž œšž Šž ŸŽŠž ž ŠŒŒ Ž Ž ŠŸŽŒ Ž œ Ž ù Ž žÿž Š Ž Ž Œ ŠŒ œ Š šžž Š Š Ž Š Ž ž γ γ sv θ e γ s x ž Ž Œ Š ž Ž œœž ž Ž κ Ž ž Š Ž Š Ž ž Š ž Ž žœ ŠŸ œ Ž œž ž Ž œœž ž Ž Ž œ Ž Œ šžž Ž ž Š Ž Š Ž Š œ œ Ž Š Žœ ŒŽœ Š šž Žœ ŒŽœ ŒŠ Š Žœ Ž œž Žœœ œ Š šžž œž Ž œ Ž Š Ž šž Œ Ž ž Ž Š Œ ž Ž ù Š Š Ž œž Žž Ž Žœ Šœ Š Ž Š œ Ž ŒŠœ Žœ œœžœ ž Žœ Ž Ž Ž œ Ž ŒŽ Ž Ž Š Š Š Ž Ž Œ ŠŒ Ž šž Ž Žœ ŒŽœ œ Œ h γ SV π + ρg π SL ( γ + γ ) π ž œš Š ž Ž Ž ž šž Ž Žœ ŒŽœ ŒŠ Š Žœ Šž ŸŽŠž ž Œ ŠŒ Ž Ž Žœ ŠœŽœ Ž ž Š œœžž Ž Š Œ ¹ Ž šž Ž h κ 1 (1 cosθ e ) θ Ž Š Šž Žž Ž Š Œ ¹ Ž ŸŠž κ Ž Ž Š œœžž Žœ Ž Š Ž ž Ÿ ž Ž Ž Š ž Ž ž Žœ ž Žœ Ž ž Š Ž ž Š œœš Š Ž Ž Š Œ ¹ Ž Žž Ž ž Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ Š Ž

30 Ž Š Œ œž ŸŠ ž Ÿ ž Ž π 4 h πr 3 3 κ 1 3 ( R κ) 3 / Žœ κ ŽŒ ž œ Ž Š œ Ž Ž œž ž Ž Ž Ž ž Ž Ž œ žš Ž ž Š Ž ž œ Ž œž ž œ Ž ž Žœ Š œ Žž œ Š žžž ŒŠ Š Ž Ž Ž Žœ Š šžž Ž œ šžž œšž Šž ŸŽŠž Ž œš ŠœŽ ù Ž Ž Ž Š ŠŸ Š Ž Ž ž œšžž Ž Œ ŠŒ Ž Š P + γ/r P R ž Ž Œ Š ž Ž Ž Ž ž Ž Ž Žœœ žœ Ž Š žžž ŒŠ Š Ž ž Ž œ Š Žœœ Š œ Š ž Ž Žœ ž Ž ž œšžž Š Žœœ œ Š šžž Žœ ŽŠ Ž Š Ž Ž Š Žœœ Ž Žž Ž Š Žœœ Š œ Š ž Ž Žœ Ž Š Ž œšž Ž Žœœ ú Šž Œ ž ž Žœ Ž Š œ Ž Ž œ œ Ž γ P = P + R Ž Š Ž Ž Œ ŠŒ Žœ Š Ž Š Žœœ œ žœ Š ž Ž Žœ Š ¹ Ž šžž Š œ Š ž Ž Ž œ Ž ŽœœŽ Œ ž Ž œž Žœœ γ šž Œ Žœ œš ŠŒ œž Ž œšžž Ž Œ ŠŒ ž šž Ž Ž œ Ž Š ž Ž Pπ 4 ρgπr 3 3

31 Š Š Ž Ž Š Ž Ž Œ ŠŒ Š œ Ž ŒŠœ Žœ Ž Žœ ž Žœ ŸŠž Š œ κ 1 3 ( R κ) Ž Ž Š œ Ž œš œ Œ Ž Œ Ž ž šžž Š Š Š ŽŸŠ Ž ŽŠž Ž Ž šžž Ž Š Ž Œ ŠŒ ŸŠ Ž Œ Ž ŽŠžŒ ž žœ Ÿ Ž Œ šžž ž ž Ž ž Ž žœžž Ž ù Šž Ž Ž Œ Ž Ž Š šž œ Šžœœ šžž Žœ Žž œ Ž œž ŠŒŒ Ž šžž Ž ž κ Žœ Ž œ Ž ŒŽœ Žœ Ž œ Š šžž œ œ Žœ Ž Ž Œ žœ Š ŠŸ Ž Š ŒŠ Š žœ Š œ Œ ŽœœŠ Ž Ž ŸŠ Ž ŒŽœ Žœ Š Š ž šžž Žœ šžš œ šž œœž Š Ž ž Ž ž Ž œ Ž œž ž œ Ž Ž ž Š Ž ž θ Š Œž œ ž šžžœ Š Ž Ž Š ž Ž œž Ž Ž šž Ž Ž Ž Žœ ŒŽœ ŒŠ Š Žœ Ž Ž œ z O Q α P x u Z ž Ž Ž ž Ž ž Ž Ž ž Š Ž ž Žœ Š Š Žœ ž œ œ œ Ž Š ž šžž Œ šžž Žœ Žž Š œ Ž Œ ž ž Ž Œ Šž œ δ Š Ž Œ ž ž Ž Ž Š Ž Ž Ž Š Š Ž Ž Š œž Š Ž ŒŠ Š ž Ž Žœ Š œ šžž Š œž Žœœ Š œ Š ž Ž žž Šž ŒŽœ ŒŠ Š Žœ Žœ Ž Š šžš Ž Š ŠŒŽ šžš 1 P = γ + δ 1 PQ

32 Š Žœœ œ Š šžž œ Œ P = P ρgz ù Žœ Š Žœœ Š œ Š ž Ž Ž Ž Ž ž Ÿ ž Ž Š Ž Š ž Ž ž žœ Ž Œ Š Žœœ Ž Žž Ž Žœ Ž Œ Žœ Œž Ÿ Ž Ž ŒŠ œ Ž Žœ Žœ Œ ž ž Žœ œ Œ ŸŽ 1 dα = δ ds Ž 1 sin α = PQ x ù œ œ Ž Š œœ œœž Œž Ÿ Ž Ž α Š Ž Ž Ž Š Š Ž Š Œ ž Ž Ž Š Ž Ž Ÿ ž Žœ šžš œ Ž Ž Ž Ž Ž šžš Ž Ž Ž œœš Š Ž Ž Š ž Ž šžš dα sin α z = ds x a κ ŠŸŽŒ dx / ds = cosα dz / ds = sin α Š γ Žœ ž Ž žžž Ž Š ž Ÿ ž Ž šž Ž œž Ž Ž Š Ž Œ ž ž Ž Ž Ž Šž Ž Š ž Ž Ž žœ Žœ Œ œ Šž Žœ œž ž Ž Š Ž Ž Š Ž Ž Šž Ž Ž Šœ Ž Š ž Ž Ž Š ž œž Š ž Ž ŠŸŽŒ α Ž Œ Ž Š α ŒŽ šžš Ž Ž Ž žœšž Šž ù α π ŠŒŒ Ž Š Œ ž Ž Š Ž Žœ Š ž Ž Ž Š Ž œž Š κ Š Ž Žœ Š šžž Ž œ šžž Ž Š Ž œž Ž Ž Š Ž Š ž Ž Š œ Ž ŒŠœ Œ Š Ž Š ž Ž Žœ œ Š Ž Ž ŽœœŽ Ž ž Ž Œ ¹ Ž Ž Š Š Ž Š ž Ž œ Ž Š Ž Ž Ž ŒŠ Œž Š ž šžž Ž Ž Ÿ ž Ž Š ž Ž Ž Žœ Žœ ž šžžœ Ž žžœ ž ž Ž žžž ŒŠ Š Ž Ž Ž Ž œ Ÿ ž Žœ

33 ž Ž Žœ Ž ž Ž Ž ž Š Ž ž Žœ ž šžž Ž ž Ž Ž ž Ž žžž ŒŠ Š Ž Ž Š Žœ Žœ Žœ Ž ŸŽ Š Š Ž Ž Š Ž Ž Œ ŠŒ Ž Š Šž Žž Ž Š ž Ž Ž Ž œž Ž Žœ šžš œ Ž žœ ŠŸ œ ŠŒ œž Š ž Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ Ž Œ ž Š Š Ž Š ž Ž Ž Š œš ŒŽœ Žž žžž œ Š Š žžž ŒŠ Š Ž 1 κ R κ 1 ž Ž žžž Ž Š Ž Ž Œ ŠŒ Ž Œ ž Š Š Ž Š ž Ž žœ Žž Š œ œ Š Š žžž ŒŠ Š Ž Žœ œ œ ž œ Ž Š ž šžž Ž šžš Ž Žœ Žœ Œ Žœ Ž Šž šžš œ Ž Žœ Œ ž Žœ Ž Š Ž ž Ž Žœ Žœ ŽŒ ŸŽœ Ž Ž ž Œ Ž Œ Ž ž šžž šžš œ Ž Žœ Žœ œž œ Œ Ž Ž Žœ œ Ž ž œœš ŒŽ Š œ šžž Žœ Œ Ž Œ Ž œ ž šžžœ œ Œ Œ œ Š Š ž šžž

34 hκ R κ 1 ž Ž Šž Žž Ž Š ž Ž Ž Œ Ž œ Š Š žœ Žž Š œ œ Š Š žžž ŒŠ Š Ž ž Š ž Ž žœ ŠŸ œ Ž Š Šž Žž Ž Š ž Ž Ž Œ ž Š Š œž ŸŽ šžž Š Šž Žž Ž ŸŽ œ κ Š ŸŠ Žž œž Žž Ž ž Žœ Š œ Ÿ ž Žœ Œ ¹ Žœ ŠŸ Š Žœ ž ŽžœŽ Ž Š ž Ž Š žœ Š œœž Žœ Šœ Š Œ ¹ Ž ŠŸ Š Ž Š œ ž Ž œœž ž Ž Ž Š ŸŠž κ Ž Ž Š œœžž Š Š Ž šžž Žž Ž Ž ž Ž ž Ž Ž ž Š Ž ž Žœ κ Žž ž œž Ž Ž Š Ž Ž Š Šž Žž Ž Š Œ ¹ Ž ž Ž Ž Š žžž ŒŠ Š Ž Šž Ž Ž κ ŠŸŽŒ ž Ž œž Žœ Š Š Š Ž Ž Ž Œ Ž ž Ž Š Ž œ œž Ž Œ Ž Ž šž Ž Š Žœž Žœ Ž Ž Š Žœ Žœ Žœž Žœ Ž Ž Š Žœ Œ œ œ Ž Ž ŽŸŽ Š Šž Žž Ž Š ž Ž Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ Š Ž ž Œ œœ Ž ŠŒ Š Ž Ž Ž Œ ž Ÿ ž Ž Ž Š ž Ž Š šž Ž ŠŸŽ œ Ž Œ œœ Ž Œ œ Š Ž Ž ŽŒ ŸŽ Ž šžž Š Ž Ž Œ ŠŒ Žœ Š Š œ Œ žž Ž ¹ Ž ž Žœ œ Ž Žœ ž Žœ Œ Ž Ž Ž Š ž Ž ž Ž œ Ž Ž ž Ž ŽŠž Ž Ž Ž Œ Žœ žž Ž ŠŸŽ œ Š ž Ž Ž ŠŸŽŒ Ž Ž Š œ Š ŠšžŽ Ž ŸŽ Ž Ž Ÿ œ Ž œž Ž

35 œž Š œ Ž Ž Šž žœ ž œ œ Žž šž Žœ Ž Œ Ž ŽŠž œž Žž Žœ Ž œ Ž ŸŽ Ž œš œ Ž Š Ž žœœ Ž Ž Žž Ž Š Žœ Ž œ Œ Žœ Š œ Ž œ ŒŽ Š Ž Š Žœž Ž Ž Š œœžž Žœ ž Žœ Ž Œ Ž Žž Š Ž žœ Ž Ž Ž Ÿ Ž Ž Š ŒŽ ž Œ Ž Ž Žœ ž Žœ Ž Žœ Ÿ œ Ÿ œ ž œ Ž Ž žœ Ž Šžœœ ŠŒŒ œ Š žžž ŒŠ Š Ž ž œ œ Ž šž ž Š ¹ Ž Ž Š Š œž ŒŽ Ž Š ž Ž Š ž Ž Ž Š Šž Žž Ž Š ž Ž Ž Œ Ž œ Š Š žœ Žž Š œ œ Š Š žžž ŒŠ Š Ž ž Ž žœ ŠŸ œ Ž œž œž ŒŽ Ž ž Ž Ž œž Š ž ŒŠ Œž ž šžž Š žžž ŒŠ Š Ž ž œ Ž Žœ ŒŽ Ž šž Ž Ž Š œž Ž œ Žœ Žœ Ž Ž Š Žœ œž ŒŽ Ž Œ ž Ž žœ Ž ž œ œ Žœ Ž œ œ Ž œž ŠŒŽ Ž ŽŒ ŸŽœ ž Žœ ž Žœ Ž Žœ Ž Œ Žœ γ Ž γ Š ž Ž Ž Œ Ž Œ Š Ž Œ Š Ž œ Ž œž ŠŒŽ šž Ž Š ž œ œ Ž Žœ œœ Ž šž Ž Ž Š žž Žœ ž œ œž Ž Šž ŸŽ œ Š Ž Ž œ ž Š ž Ž ŽŠž Ž Ž Ž œ ŒŽ Š ŸŠ Žž Ž Š Ž œ Ž œž ŠŒŽ Žœ Ž ŒŽ Ž Ž ŽŠž ž Ž γ œ Ž šžž Œ Ž œ Š Ž Š ž ž Ž œ žš Ž ž Š Ž Ž œ Ž ž œ Š Šœ žž ŒŽ hκ eau + lyc gly + lyc eau +silice gly +silice gly + lyc sur téflon R κ ž Ž Šž Žž Ž Š ž Ž Ž Œ ž Š Š žœ Žž Š œ œ Š Š žžž ŒŠ Š Ž Ž Š Ž Œ Žœ Šž ŒŠ Œž ž šžž Š Ž šžš Žœ šžš Ž Ž Žœ œ Žœ Œ Žœ Ž Žœ Ž Ž ŒŽœ œž ž ŸŽ Ž Š Žœž Ž Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ Œ Ž Žœ Žœ œž œ Œ Ž Ž Ž Š ž Ž

36 1 κ 1 eau + lyc.1 eau +silice gly + lyc gly +silice gly + lyc sur téflon R κ ž Ž Š Ž Ž Š Ž Ž Œ ŠŒ Ž Œ ž Š Ž Š ž Ž žœ Žž Š œ œ Š Š žžž ŒŠ Š Ž Žœ Š œ Ž œ Œ Žœ Ž Šž œ Ž ž œœš ŒŽ Žœ šžš œ Ž ŠŸŽŒ ž Œ Ž Œ Ž ž šžž Ž Žœ Œ ž Žœ Ž Š œ Ž œ Œ Žœ Ž Šž œ Ž ž œœš ŒŽ ž Ž Ž Š Š ŽŸŠ ŽŠž Ž Ž Š Œ ¹ Ž ŠŸ Š Ž ž œœš ŒŽœ Žœ ŽŒ ŸŽœ Ž Ž Ž Œ Ž Š Š Ž Ž Š ž Ž Žœ Žœ Ž Ž Š Žœ œ Ž Š žœ Žœ Š Žœ Žž œ Ž ž œœš ŒŽœ ŠŸŽŒ ž Œ Ž Œ Ž ž šžž Ž Œ Ž ž Œ Ž Œ Ž Š Ž ž Š žœ ŠŸ œ Œ Š œ ŒŽ Œ Š Ž Žœ ž Žœ Ž Žœ ŠœœŽ Š Žœ Ž šž Ž Ž Ž Š œ Žœ šž Ž Ž Ž Ž Š œž ž Ž œ žš Ž ž Š Ž ž žœ ŠŸ œ œ œ œž Š Ž Ž Ž œ Ž œ ž Žœ Š œ Š Žœ Žœ ž Žœ œ ŽœšžŽ œ šžžœ œšž Žž ŠœŽ Š Ž Ž Œ ŠŒ ŸŠ Ž Œ Ž Ž ŒŠ ž Š Ž žž Œ œ Ÿ Ž ŠŸŽŒ ž Žœ œ Ž œ œ Š Š œ Š Š ŠŸ Ž Ž Ž Š Ž Ž Œ ¹ Žœ Š œœžž Žœ Ž Š Ž ž Ÿ ž Ž Ž Š Ž Žž œ Š žžž ŒŠ Š Ž žœ Š œ Š Ž Š ž Ž Ž žÿž Ž Ž ŒŽœ Ž œ Š Œž Ž œ

37

38 Š Ž œ ŒŠ Ž œ ž ŠŒŽœ Ž Š œ Ž Ž 11 ž Žœ ž Žœ Ž Žœ Ž Žœ Œ ŽŒ 1 Ž Ž Ž Š Š Š Š œžœ œ Šœ Š ž Œ Ž ž ŠŒŽ Œž ž Žœ Œ Š ŒŠ Žœ œ Š ŒŽ œ œž ŠŒŽœ Ž Š Ž Ž œ Ž Ž 11 ŽŠ œ ž œ Œœ Ž Ž œ Ž ž Ž Š Ž Ž Ž Ž ž ŠŒŽœ Žœž ŠŒ Š žœ ž Ž œ Ž Ž ž Ž Š Ž Ž Ž Ž ŠŒ Š žœ ž Ž Š ž žš œ Ž ž Š Ž ž œž Ž ŸŽ œ Š œ ŒŠ œ Žœ Š œž ŠŒŽœ Ž ž Žœ ž Žœ Žž œž Ž ŸŽ œ Š œ Žœž Ž Ž Ÿ œœ œ œš œ Œ ŠŒ Š Ÿ Š Ž ž Žœ œž Ž Š Š ŒŠ Šž Š Š Žœ Š šžžœ œž Ž œ ž Š Š Ž Œ Ž ŒŽ šž Ž Ž Ž ž ŒŠ Š šž œ Žœž œ Ž Ž Ž œ ŠŒŽ ž ŽŒ Ž šž ž šž œ ž Ž Ž Ž ŽŒ œ Š Š ŠŒ žœ Œ Š Ž Žœž œ Ž Ž Ž œ ŠŒŽ ž ŽŒ Ž Š Žœ Š ŽŽ œ ŠŒŽ Š Ž Ž Š Žœž œ œ ŽŸ Ž Ž œ Ž ŠšžŠŽ Œ ž œ ž œ šžš Š žœ ŠŒ Š žœ ž œ ž Ž ŽŸ Š Š ŸŽ Š ž ŽŒ

39 Ž Ž šž œ Š œ Œœ Š Ž ž Žœœ Œ Š ŽœŒŽ ŒŽ œ ŽŠ Š Ž Ž Š ž Ž Š Ž œ œ Œœ ž œ Ž ž Žœœ Œ Š ŽœŒŽ ŒŽ Š Ž Ž œ Š Ž Ž Ž œ Š œ Œœ ž œ Ž Š œ œž Ž Š Žœ Œ Œ Ž ž Ž œšœ Ž žœ ŽœŒŠ Ž Œ Š Š ŒŠ œž ŠŒŽ Š Š Ž Ž œ œ Œœ ž œ œ Ž Œ

40 Š Ž ž Žœ Ž Žœ Ÿ œšžžžœžœ œž ž Š Š Ž Ž Œ

41 Š Ž Žœ Š Žœ Š Ž ž Žœ Ž Žœ Ÿ œšžžžœžœ œž ž Š Š Ž Ž Œ ŽœŒ Ž Ž Ž ŒŽ ŸŠ Ž Ž Ž Œ ¹ Žœ œž Š œ Ž Ž Šž œ Šž Žœ Žœ ž Ž ŸŠ Ž Ž Ž ž Žœ œž Š œ Ž Ž Šž Ž Š Š ŽŸŠ ŽŠž Žœ ž Ž Œ žœ Š Ž

42 Š œ ŒŽ Ž Ž Œ Š Ž œž Š Š šžž Žœ ž Žœ Ž Žœ žœ žœ Š³ œ Š œ Ž ŒŠœ Žœ Š Žœ Ž Žœ Ž Žœ šž Žœ Ÿ œšžžž žœ Žœ œ Š œ žÿ ž Ž Ž žÿž Ž Š Žœ Žœ Ž œœ Š Ÿ œšžžžœž Š Š šžž ž ŸŠ Ž Ž ž Ž ž Ž Ž œ žš Ž ž Š Ž ž Š ž šžž Ž Š Š Š ŽŸŠ Ž ŽŠž Ž Š Ž œž Ž Œ Ž Ž Ž Š Ž Ž œž Žœ œž ŠŒŽœ œž Ž Žœ Š Œ Š Ž ž Š œ ŒŽ Ž ž Ž Žœ Žœ Ž ŽœœŽ Ž Ž Ž šžš Š ŸŽ Œ žœ œ œ ž Ž ž Ž šžš Š ŸŽ Ž ŒŽ žÿž Ž Š œ Ž ŒŠœ Žœ ž Žœ Ž Žœ Œ Žœ Ž Š œ Š Ž Ž ¹ Ž ž ž Š Ž ž ŽœŒ Ž Ž Ž ŒŽ ŠŒŽ ž Ž ž Ž Ž Ž Ÿ œšžžžœž Š Ž ŽŠž Œ ž Ž šž Ž œž ž Š Š Ž Ž Œ ž Ž Ž ž Œ Žœ Ž Š Ž ž Ÿ Ž ž œ ŠŒ Ž œž Ž Š Ž Ž Š ž Ž Š Ž ž Š Š Š Ž Ž žÿž Ž Žœ Ž œ Ž šžž Žœ ž Žœ Š Ž Žž Ž œ Š šžž z x R T R N mg α ž Ž Œ Š ŽœŒ Ž Ž Ž ŒŽ Ž ŸŠ Ž Ž œž ž Š Œ ŒŽ Šž Š œ žœ Œ œ Š œ šžž Ž žÿž Ž Žœ ž Ž Š œš œ œœž Ž Š ŠŸŠ Œ Ž Ž Š ž Ž Šž Œ ž œ ž Ž œ Ž Š šžž šžž Š ž Ž Š Ž ž Ž Ÿ ŽœœŽ Ž ŽŒ œ Ž šž Š ž Ž Ž šž œ œž Š ŠŸ Žœ Ž Ž ŒŽœ Œ œ œ Ž Ž ŽŸŽ Š Ÿ ŽœœŽ Ž Ž Š ž Ž ž ž Ž Ž Ž Ž ž Ž Ÿ œœ œ Žœ Ž ŒŽ ž Ž Žœ Š Žœ Ž ž Ž Ž ŒŠœ Ž žœ œ Ž Žœ ŒŽ ž ž Ž Š Ž Ž šž Ž Š œœžž Œ œ Š Ž œž Š Œ Ž ŽŠžŒ ž Š Œ ¹ Ž ŠŸ Š Ž žœ Š œ Œ Ž ŒŽ Š ž Ž œ Œ Ž Ž œž Ž Š Š Ž Ž Œ Ž žœ Ž Ž œ ž œœž Ž Žœ Œ œ Šž Žœ šž œ Š šžž œž ž Ž ž Ž Ž Ž œž Ž žœ žœ

43 Œ œšœ Ž œ Šž ŒŠœ Žœ Ž Žœ ž Žœ ŸŠ Ž Ž Ž Œ ¹ Žœ œž Š œ Ž Ž Šž ž Ž Š Ÿ ŽœœŽ ž œœž ž Ž Ž Ž œž ž Ž Ž Ž Š Ž Š Ž Ž Ž œž Š ž Ž Ž Œ Ž œš Š Ž Š Ž œ Š Ž ³ šž Ž Ž Ž Ž Šœ Š Ÿ ŽœœŽ Žœ Œ œ Š Ž šžž šžž œ Ž Ÿ ž Ž Ž Š ž Ž Ž Š ŒŽ Ž Œ œ Š Ž Š œ Ž ž šž Ž ž œ žœ Š ž Ž Žœ Ÿ œšžžžœž œ Ž Ž ŸŠ Ÿ Ž šžš ž Ž Š Ÿ œœ œ Ž Ÿ Š Žž Ÿ œž Š Ÿ ŽœœŽ Žž œ Š Š ¹ Ž ŸŠ Žž V (mm/s) cP, 1 7cP, 5 45cP, cp, R (mm) ž Ž ŽœœŽ Ž Ž Œ ¹ Žœ Ž Žœ Ž Œ Žœ œž ž Š Š Ž Ž Œ ž œ šž Žœ Ÿ œšžžž Ž Œ Ž Žž Œ Š œ œ Ž ž Ž šž Ž Ž œ Ÿ œšžžž Ž žœ Žœ Žœ ŠŸŽŒ Ž šž Ž Ž Ÿ œœ œ Œ Ž šžž Ž Š Ž Ž Ž Š Ž Œ Š œ Š Œ ¹ Ž Ž Ž Žœ Šž Š žœ Š Ž šžž Ž Š Žœ Œ Ž ž Š Š Ž Ž Š ž Ž œš Ÿ ŽœœŽ Žž œ Ž Š ¹ Ž ŸŠ Žž œ Šž Žœ Š Œ ¹ Ž Žœ Š œœžž Œ œ Š Ž Ž œ Š Žœ Š Š Š ŒŽ Ž Š œœžž Žž Š œž Š ž Ž Š Ž Ž šž Ž Ž ¹ Ž Š œœžž κ Œ œα 1 Š šžž Š œ ŒŽ Œ Š Ž žœ ž œ Žœ žÿž Ž œ ù Š Ž œ Žœ Š Ž žœ Ž œ κ κ Œ œα

44 Ž Žž Š Ž Žž Žœ Ž Žœ ž Ž Ž šž Ž ž Ž œž ŠŒŽ œž Žž Ž Ž ž œ Ž ž Ž h v x (z) h v x (z) α α ž Ž Š Ž Ÿ ŽœœŽ ž Œ ž Ž Ž ž Ž Š Ž šž Ž Ÿ œšžžžœž œž ž Š Š Ž Ž Œ ŠŸŽŒ ž Ž œž ŠŒŽ œž Žž Ž Ž ž œ Ž ž ž Ž Ž žÿž Ž ž Ž Š Ž Ž šž Ž Ž Ÿ ŽœœŽ Ž Ž ŠŒ Ž œž ž Š Œ Œ šžš Ž ŠŸ Ž Žœ Ž Ž œ Š Š Ž Š œ Š Ž Œ œ Ž Ž žÿž Ž Žœ œžž Ž Ž œž Žœ Žž ŽŒ œ Ž v η z x P = ρgsin α x P = P ρgz cosα Š Ÿ ŽœœŽ Žœ ž Ž Š Š Žž Ž Ÿ Š œ Ž ŒŠœ ž Ž Š Œ ž Žœ Œ Š Žœ Ÿ œšžžžœžœ Ž Ž Ž šž Ž Ž Š Œ Žœ Ž ž Ž Œ Š Ž ž Ž Š œž ŠŒŽ Ÿ Š œ šžž ž ž Œ Žž Š Ž ž žÿž Ž Ž Ž Œ Ž Ž Ž Š œž ŠŒŽ œž Žž Ž ŠŸŠ ŒŽ Žž œ Š Ÿ ŽœœŽ Ž Ž Ÿ Ž Ž œž Ž šžš Š Š Ž Œ Š Œ œž ŸŠ ž Q = Vh = v x (z) dz h 3V z Ž žÿž Š œ ž žÿž Ž Ž œžž Ž Š œ Ž Ž Ž ŒŠœ v x = zh h z Ž ž žÿž Ž Ž žž Ž Š œ Ž œžœ v = x V h

45 ŒŠ Œž Ž Ž Š Œ Š Ž Ÿ œšžžžœž ηs v x z œž ž Ž œž ŠŒŽ œ Ž ž Žž œž ŸŠ Ž ŒŠœ Œ œ Žž Š Ž Ž šž Ž ŒŽ Ž ŒŽ Ÿ œšžžžœž Œ Š œœš Š œœžž Ž Š Œ ¹ Ž ŠŸŽŒ Ž œ ž šž Ž Ž Ž ž Ž Ÿ ŽœœŽ Ž Ž œ Š Š Ž šž Ž ž šžž Ž Žœ œ ž šž Ž Ž Ž Š Ž Ž œ Ž V 4 3 γ η tan α œ Œ ž Ž Ž Žœ Ž Ž œžž Ž V γ tan α η œ Œ ž Ž Ž Žœ Ž Ž žž Ž œ Šž Žœ œž Š ž Ž Ž Ž Š œž ŠŒŽ Ž Š ž Ž Š Ž œ Ž ŒŠžœŽ Žœ Š œ žœ žœ œ Žœ Ž Š œ œ ž Ž Ž Š Š šžž ž ŸŠ Ž Ž Ž Ž Ž Š Œ Ž Ž Ž ŒŽœ Žž Œ Ž Ž œ Š œ ž Ž Ž Ž œ žœ ŠŸ œ Ÿ Žœ Œ œ Šž Žœ œž ž Ž ž Ž Ž Œ œ Ž œž ž Ž œž ŠŒŽ œž Ž Ž Œ Žœ Ž Ž ž Š Ž Š šžž Ž ž žœ ŠŸ œ Ž œž Ž ž Ž Ž Ž Ž Š Ž Š Š ž Ž Ž Œ Š œ Žœž Žœ Š œ žš Ž œ Ž œž Ž Ž ¹ Ž Ž ž Š Ž ž ŠŒŽ ž Ž Œ ¹ Ž Ž Œ œž ž Ž œž ŠŒŽ œž Ž Ž Š šž Ž Š ž Ž ž Ž Ž Œ Žœ Š Ž Ž Œ Ž œž ž œž œ Š œœž ž œ ŽŒ Ž Žœ Œ œ Šž Žœ Ž Ž Š ž Š šžžž œž Š Œ ¹ Ž šž ŠŸŠ ŒŽ œš Ÿ ŽœœŽ ¹ Ž ž Ž Š Š Ž Š Ž ž Ž œ Ž Ž Ž Š Ÿ ŽœœŽ ž œž Ž Šž Ž Š ž Ž Š œ Ž ŒŠ Œž Œ Ž ž Œ Š Ž Ÿ ŽœœŽ Š œ Ž ŒŠœ ž Ž Ž žÿž Ž Ž Š ž Ž Šž Œ ž œ ž Ž œ Žœ Š œ Š œ šžž ŒŽ Ž Š ž Ž Žœ Š Žœ Ž ŠžŒ Ž Œ Žœ Ž Šž ŠœœŠ Ž ž Š šžžž œ žœ Š ž Ž šž ž Ž œžœ Žœ Ž Š šžž šžž œž ŒŽœ œ Š Žœ Ž Š šžžž Ž ž Ž Šœ ŒŽ šž žœ Ž Ž Š Œ Ž Ÿ ŽœœŽ ž Ž œž Ž œ Ž Š œ Žœ Š Žœ Ž Ž Ž Š šžžž Žœ œž Š œž ŠŒŽ œž Žž Ž Ž Š ž Ž Ž Š Žœ Ž Žž œ žœ Ž Ž œ ž Š Œ ž Š ž Ž ŒŽ šž Œ Žœ Ž œž Ž Œ Š Ž ž Ž Š œž ŠŒŽ

46 t = s t = 4 s t = 1. s t = 6.4 s t =.4 s t = 8.8 s ž Ž œœž ž Ž Ž Œ œž ž Ž œž ŠŒŽ œž Ž Ž ŸžŽ Ž Žœœžœ ŠžŒ Ž Ž Š šžžž Žœ œ žœ Š ž Ž Ž ž Ž Šœ Ž Ž Šž Žœœžœ Ÿ šžž Ž Š šžžž ŠœœŽ œ žœ Ž Ž œ œž Š ž Ž šžž Žœœ žœ Žœ ŽŒ ŸŽ Ž œ Ž œ Žž Œ Ž ŒŽ Ž ž Ž Š Š Žœž Ž Ž Š Ÿ ŽœœŽ ž Š šžžž œž Š ž Ž Ž Œ Ž Š Ÿ ŽœœŽ ž ž žœ Žž œ Ž Ž ŒŽœ žœ Žž œ Š Žœ ž Ž ž Ž Ž Œ œž ž Ž œž ŠŒŽ œž Ž Ž ŽœœŽ ž Š šžžž Ž Œ Ž Š Ÿ ŽœœŽ ž Š Ž Žœ Ž Ž Ž Ž Š šžžž ŠŸŠ ŒŽ Ž ŽŒ ŸŽ Ž ž Ž œ Ž Ž Ž žœ Ÿ Ž šžž Ž žœ žÿ œ Ž Ž ž Ÿ Ž Š Ÿ ŽœœŽ Ž Žœ Œ ¹ Žœ Ž ž Š Ž ž šžš

47 P γ/η tanα ž Ž ž Ž Ž Œ œž ž Ž œž ŠŒŽ œž Ž Ž Š Ÿ ŽœœŽ ž Žœ Ž Ž Œ Ž γ η Š α Œ Ž œž Š šžš Ž ž Ž Ž ŒŽ šž Ž šžž Š Œ Ž Ž Œ Ž Ž žÿž Ž Ž Œ Ž Œ Ž ž šžž ŸŠž Ž Žœ Œ œž Žž Š Œ Ž šžš Š Ž ž ž Š œ Žœ ¹ Žœ Œ œ Ž ŒŠ Žœ Žž ¹ Ž ú ž ŠŒ Žž Ž Ž Š œ ŒŽ Ž Ž Ž ŒŽ žœ ŠŸ œ Šœ ž Ž Š Ž Ž Š œ ž Ž Œ ¹ Ž Ž Ž Œ Œž Š Ž ¹ Ž Ž Ž žœ ž œ œ ž Ž ž Ž Ž Œ Ž Ž ž Ž ž Ž Ž Œ Ž Ž Š Ž Ž Š ž Ž Žœ Ž Š ŸŽ Ž Ž Œ Ž ž Ž Œ žœ Ž Ž ŠŒŽ Ž Žœ Š œ Žœ ž œ Š Š Šž Šž Žœ Žœ Ž Ž žÿž Ž Ž Š ž Ž ŸŠ ŽœœŽ Ž ŒŽ ž ž Ž Œ Ž Ž œž Ž žÿž Ž ž Š šžžž ŽŸ Š Œ ŠœœŽ Šž Š Ž Ž œ œ žœ Š ž Ž šžž Žœœžœ Ž ž Ž œ œž Š ž Ž ŠŸŠ ŒŽ Žž œ žœ Ÿ Ž šžž Ž Ž Ž Š Œ Ž Ž ŽŒ žÿ Ž Ž Ž œ Ž Žœ Šœ Š œž Žž šžž Š Ÿ ŽœœŽ œ Ž Š Ž Ž Ž Žœ Žž Žœ žž Ž Ž œžž Ž žœ žœ œž Ÿ œ Œ Œ Ž Š šžžž œ Žœ Š œ Žž ¹ Žœ šžž œž Š œ Ž žÿž Ž ž Š œ Ž Š Žœ Ž Š ž Ž Ž Š šžž šžž Š Œ ¹ Ž Ž Ž ŠŸŠ ŒŽ Ÿ ŽœœŽ Œ œ Š Ž Ž šž Ž Ž Ž ž Ž Ž Š Ž Š Ž ŠŸŠ Ž Š Ž Š Ž Ž Š Šœ Ž ŒŠœ ž Š Œ ¹ Ž Ž Œ œž ž Ž œž ŠŒŽ œž Ž Ž Š œž ŒŽ Ž Š ž Ž œž Š œž ŠŒŽ žž ŒŽ Œ Ž žÿž Ž Ž Š ž Ž

48 t = s t = 8 s t = 16 s t = 4 s ž Ž œœž ž Ž Ž Ž Œ Ž Ž Œ ŠŸŠ ³Š œž ž Š Š Ž Ž Œ žœ ŠŸ œ œž Š ž Ž Š œ Š œ ž Ž Š ž Ž Ž ŒŽ Ž ž Š šžžž Š œž ŠŒŽ Ž Œ ž Ž œ qr q s ž Ž œ ž Ž Š ž Ž Ž ž Š šžžž Ž Œ ž Ž œ Ÿ œž ŒŽ Ž Ž Ž ŒŽ šžž šžš Žœ Žœœžœ Ž Š šžžž ŸŠ Š šžž Ž Žž œ žœ Ÿ Ž šžž Š ž Ž žš Š œ ž Š šžžž Žœ Š ¹ Ž šžž ŒŽ Ž ž œž Ž žÿž œ žœ Š ž Ž Ž œ Žœœ Ÿ šž Š Šœœ Žž œ Šž Š Ž Ž œ Žœœ žœ šžž Žœœžœ

49 ž ¹ Ž žœ šžš Š Š Ÿ ŽœœŽ Žœ Š œ œž Žž œ Ž Œ Ž ŒŽ Ž Ž Š ž Ž Žœ ŠŒ Ž œž Š ž Ž ž žœ Žž œ Œ Š œ œ ž Š Š Ÿ ŽœœŽ œž Ž Žœœžœ Ž Š ž Ž Žœ Ž Ž Žž Ž œ Š Ÿ ŽœœŽ ž ž œšž Ž ŸŽ ž Œ Ž Œ Ž ž šžž Ž t œ 5 1 œ ž Ž ž Ž Ž Œ Ž Ž ŽœœŽ ž Š Š œž ŠŒŽ Ž Œ Ž Š Ÿ ŽœœŽ ž Š Ž Š ž Ž Ž Ž Œ Ž Œ Ž Žœ Ž Š Ž Ž Ž ŒŽ ž ž Ž Œ Ž œž ŠŒŽ Ž Œ Ž Œ Ž Ž ŒŽ ž ž žÿž Ž Ž Œ Ž Ž Œ Ž Œ Ž Š ž Ž œ Ž Žž œž Š Š Ž Ž Ž ŒŠ œœž ž Ž Œ Š Ž Ž Ž Ÿ ŽœœŽ Ž Ž Ž Žœœ žœ Ž Ž Žœœžœ Ž Š ž Ž Ž Š žœ Š Ž Š Œ Œ žœ šžž Š Œ Žœ ŽŒ Ž ž Ž Žœœžœ Ž Š ž Ž Žœ ž Ž Œ Ž Ž Ž Žœ Žž Ž œ Žœ Žœ ž Ž Š œ šžš Š Ÿ ŽœœŽ Ž Š Œ ¹ Ž Ÿ œšžžžœž ŸŠ Ž Œ Ž γ η Š α ž Œ Ž Œ Ž ž šžž œ Ž ž šž Ž ž ŽŒ žÿ Ž Ž Ž ž Ž Š œ šžž Ž Š Ž Ž Š ž Ž Š Ÿ ŽœœŽ Žœ œœžœ ž Žœ Ž Œ œžž Ž Ž Žœ œ ž šž Ž ž œ Ž œ Ž œž ŠŒŽ Ž Ÿ œœ œ Ž Ž Š Ž Ž Œ œ Ž ž Ž Š Œ œž Š œ Ž Ž Šž ž Ÿ Ž ŒŽ Ž Œ Ž Ž Ž œžœ Žœ žœ Ž ŽŒ ž œ ž Ž Ž Ž œ Ž Ž Ž ŒŽ ŠŸŽŒ ž œžž šž Ž Ž žœ Ÿ œšžžž Ž œ œ Ž Œ ž Ž žœ Žž œ Š Žœ Ž ŽœŒŽ Ž žœ Ž œ Ž Ÿ ž Ž Ž žœ Š œœ Ž Ž Ž Š Ž Ž Œ Žœ Ž Žœ Œ ¹ Žœ Ž Ÿ Œ Œ Ž Š Ž Š ž Ž Š Ž ž Ž Ÿ ŽœœŽ Ž

50 Œ œ Š Ž Ž œž Žœ Š Žœ šž œž ŸŽ ŒŽ Ž Ÿ ŽœœŽ Š œ Ž Š γ/η Ž Œ Ž Š Ž œ 1 ηv /γ 1 ηv /γ tanα 1..4 tanα.6 ž Ž ž Ž Ž Ž Ž Œ ŽœœŽ ž Š œ Ž Ž Œ Ž Š Ž Ž Š Ž Œ Žœ Š α. žœ œž Ÿ œ Ž ž Ž Ž Š ŒŽ Š Ž Ž Š α ŠŸŽŒ ž Œ Ž Œ Ž ž ŒŠ Ž ž ž Š Ž Žž Š α Š œ Ž ŒŠœ ž Œ ž Žœ Ž Žœ œž Žž Žœ Š ž Ž ŸŠ žœ Ÿ Ž šžž ŒŽ šž Žœ Ÿž Š Ž Ž Žœ œœ Ž šžž Š Šœ ž œ Žœ Š œ Ž ž Žœ œž œš œ ž ¹ Ž Ž Ž Œ ¹ Ž Š šžž Žœ Œ Ž Ž Š šžž Žœ Œ ¹ Žœ Ž Žœ Ž Š ŠœœŽ ž ŒŽ Ž Š œ Žœ œž Ž Š Ž žÿž ž Ž Ÿ ŽœœŽ žœ Š Ž Ž Ž Ÿ šžž ŒŽ Ž ž Ž Š Ž Š œœžž Œ œ Š Ž ŒŠžœŽ Žœ Ž Ž œ Ž Ž žœ œ žÿž Žœ œ Ž Š ž Ž ž œž ž Ž œœ Š Ÿ œšžžžœž œž Ž Š Ž šž Ž Žœ Š Ž Œ ŒŽ Ž Š Ž Ž Ž œž œ Š ŠŸŽŒ ž Š Ž Ž Ž Š ž Ž œœ Ž ž žÿž Ž Ž ž Ž Ž šž Žž ¹ Ž žž ž â Ž Š œ ŒŽ Ž œž ŸŠ Š³ œ žœ Š Ž Š Š Ž Ž Ž Ž žœ ž œ œ Š œ Ž Ž Š Žœ Œ ŽŠž ž Š Ž ŸŠ Ž Š Ÿ œœ œ α γ/η α γ/η 3 ž Ž ž Žœ Ž Žœ Š Ž ŽŠž Œ Œ Žœ ŽœœŽ Ž Š ž Ž Ÿ œ Ž Š Š Š Ž Ž Ž Š Ž œ Ž Œ Ž γ/η Ž Š Ž Œ Žœ γ/η.

51 Š œ Œ Ž Ž Š Ž žœ ŠŸ œ â Žœ Žœ šž œ ŒŠ Ž ŽŠžŒ ž Ž Š ŸŠ Š Š Ž ŒŠ Ž Žœ Œ ŠœŽ Œ Ž Ž Ž žœ ŠŸ œ Œ œ Ž Š Ž œžž Ž Ž Ž Ž Ž Ÿ Š Ž Œ Ž Š šžž Š Ÿ ŽœœŽ Žœ Š Ž œž ŸŽ ž ŠŒŒ Ž Œ Ž Ž ŠŸŽŒ Ž Ž šžš Ž Œ Ž ž Œ Ž Œ Ž ž šžž Ž Ž ŠŒŒ Žœ ŸŠ Š Ž ž Žœ šž Žœ œž œš Ž Ÿ œšžžž Žœœ žœ ž Ž ŒŽ Š Ž Ÿ œœ œ Š Ÿ ŽœœŽ Žœ žœ Š Ž šžž ŒŽ Ž ŸžŽ Š Ž Ž Ž Š œ Ž šž ž Ž Šž Ž œ ž ŒŽ Ž œœ Š Š œ ¹ Ž œž Ž Œ Ž ž ž Ž Ž Ž Ž ŒŽ Ž Ž Ž Ÿ œœ œ Œ Žœ γ/η œ Ž η Œ Žœ ŽœœŠ ŽœœŠ Ž Ž Žœ Žœ Ž ŒŽ Ž Žœ ž Ž Œ ¹ Ž Ž Ž Žœ ŸŠ Š Ž œ Š Žœ Œ ¹ Žœ Œ Žœ Ž œ κ ž Ž Š ž Ž Š Ž œš Ž œ Š šžž Žœ ŒŽœ Ž Ž Žœ Žœ ŒŽœ Ÿ œšžžžœžœ Ž ŸŽ Ž œš Ž Ž žÿž Ž Žž Ž Š Œ ¹ Ž Š Œ Š Ž Ž ž žÿž Ž Ž Œ œš Ž Ž œ Ž Š ž Ž Ž ŽœœŽ Šœ Ž ŒŽ ŒŽ ž Ž Š œ ŒŽ Ž ŒŽ œ Žœ ŒŽœ Ÿ œšžžžœžœ Š œ ž Ž Š ž Ž šž œ ŒŽ œ Žœ œœ Ž Œ Š Œ žœ Ž Ž δ ¹ Ž Ž Ž Ž ŸŽ Ž Œ Žœ Ž δ η ρ V h * * ù Žœ Š Š Ž œ Š šžž Ž Š Ž Ž Œ ŠŒ Ž Š ( ) 3/ Ž γ V tan α Ž κ ŒŽ šž Ž Œ Ž Œ η κ 3 R κ Š Ž ž η γ tan α g cosα Ž Ž Ž Žœœ Ž Ž Ž Ž Š Š Ž Ž Š ž Ž ž Žœ ž Žœ Ž Žœ Š Š œš Ž œ œœžœ Œ ¹ Žœ Žœ Œ Ž Ž Žœ Ž ž ž œ Š œ Žœ Š Žœ Ž Ž ž ŒŽ Ž ž Ž Š Ž ž ž Š Ž Ž Ž ž Ž ž Ž Ž Œ Ž Š Ž žÿž ž Ž Ÿ œœ œ Ž Ž Ž Ž Œ ž γ/η œ ŒŽ šž Žœ Ž Ž Ž Š Žž Š žšžž œž ŸŽ Žœ Ÿ Š œ šžš œž Š ž Ž Ž žœ ž Ž Ž Œ žœ Ž Ž Œ ž Ž œž Ž ž Ž Ÿ ŽœœŽ Ž Ž Š Žž Ž Š

52 Ÿ œœ œ ŒŽ šž œž Ž ¹ Ž Ž ŒŠœ Šž Žœ Žœ ž Š Ž Œ ž Ž ž Ž Ÿ ŽœœŽ Ž Ž Š Ž Ž Š Ÿ œœ œ Œ Ž ž žÿž Ž Š Žœ Ž Ž œ Ž Š ŽŒ Ž ž Ž Šž Ž Ž œœ Ž ŒŽ žÿž Ž Ÿ œšžžž ŒŽ Ž ù Žœ Ž Ž œ Ž Š ŽŸ Ž Ž žœ Š œ šžž Žœ Ž Ž œ Ÿ œšžžž Ž Ž Œ œ Œ ρ V π V η h a π Š Ž ŠŸŽŒ Ž Ž Ÿ œšžžž Š tan α γ V Ž κ œ η η > ρ γ tan ακ * a 1 Ž Ž Ž Œ ž Žœ Œ œ œ Š œ Žœ ž Š Ž Ž Ž žÿž ž Ž Ÿ œœ œ Ž Ž Œ Ž Ž Ž Žž Ž Šž Œ ž ŽœšžŽ œ Žœ Ÿ Š œ Œ Ž ŒŽ Žœ Žœ ŽŸ Š Ž Ž ŽŸŠ Œ Ž ¹ Ž Ž Ž œ ž Žœ Œ ¹ Žœ Ž Žœ Œ œ ž Žœ ŽŠž ŸŠ Ž Ž Ž ž Žœ žœ žœ Žœœ œ Š Ž Š Šž žÿž Ž Ž Ž Žœ ž Žœ Ÿ œšžžžœžœ šž ž Ž Ž šžšœ œ šžž œž ž Š Š Ž Ž Œ žœ œž Ž œ Š Š ž Ž Žœ œž Š œ Ž Ž Šž ž œ Ž Ž Ž Š Š ŽŸŠ ŽŠž Š œ šžž Žœ Žœ Ž ŒŽ Ž œž Œ Š Ž Š œ ŠšžŽ Ž žœ žœ Š³ œ Š œ ŒŽ Š Š Š Ž Žœ Œ Ž Œ Ž Ž šžž Š ž Ž Š Ž œš Ž œ Š šžž œž Š œ Ž Ž Šž žœ ž œ œ Ž šž Ž Ž žœ Ÿ œšžžž Ž œ œ Ž Œ ž œž ž Š Œ Ž Š Š Š Ž Š œ Ž Š ž Ž Ž Œ ž Ž œ Žœ Žœž Ž Ž œ Šœœž Ž šžž Š Ÿ ŽœœŽ Ž Žœ Š Ž Ž Žœ Ÿ ŽœœŽœ šž œ Ž Ž ž

53 Ž Š œžœ Ž œ Žœž Žœ Ž Œ Ž Š Š Ž Ž Š ž Ž ž Š ž Ž Žž œ žž Žž Žœ œ Š Ÿ ŽœœŽ Ž Žœ œœžœ ž Žœ Žœ Ž Š Ž Ž Žž Š Ž Žœ Ž Žœ ž Žœ Ž ŽŸŠ Œ Ž Ÿ Šž Š žœ Ÿ Ž šž Ž Žœ œ Ž Žœ ŽŒ Žœ ž Œ Ž Ž œ Š žž Ž Š Š œ Žœ žÿž Ž œ Š ŒŽ ŒŽ Žœ Ž œ žœ Žœ Ž œ œ œ žœ Žž Ÿ ŽœœŽ Ž Š Ž Žœ Š Ž œ Žœ ž Žœ Ÿ œšžžžœžœ ŠŒ Žœ œž ž Š Œ Ž ž Š Ž Š Ž œž Žœ œž ŠŒŽœ œœžœ Ÿ Šž Š žœ Ÿ Ž šž Ž Žœ œ œœžœ V (mm/s) 5 gly 115cP V R (mm) ž Ž ŽœœŽ Ž ž Žœ Ž Œ Ž Žœ Ž Œ Žœ œž ž Š Œ Ž Œ ž Š Ž ŒŽœ ž Žœ ž Š ž Ž œ šžž Š œ Ž Ž Ž Žœ ž Žœ œ Š Š Ž Ž Š ž Ž Žœ Ÿ œ Ž Š Žž œš Ÿ ŽœœŽ ž Ž Š œ šžž Š Ÿ ŽœœŽ Žœ œœžœ ž Žœ Š Ž Ž Š Ž Œ Œ Ž Ž Ž Š Š ŽŸŠ ŽŠž Ž Ž Ž ž Ž Ž Ž Ÿ œšžžžœž Ž Ž šžšœ œ šžž ŸŠ Ž Ž Ž Ž ž Š Œ Ž œž Žœ Ž Ž œ Ÿ œšžžž Š ž Ž œž Ž Ž Š œ Ž Š œ ž Ž œš Š Ž œ šžž Š œœ Š œž Š Š œ œžž Ž Ž Š œ Š Š Ž šž Žœ Šœ Ž Š œ Ž Œ Žœ Ž Šž ž Ž Š Ž Ž Œ ŠŒ œ Š šžž Ž Š Ž ù Š ž Ž Žœ Š Š Ž Ž Ž Š Š Š œ Ž ž Ž

54 59 9 α ž Ž Œ Š Žœ Žœ Ž Œ ž Š Š œ ž Ž ž Ž Ž Ž šžšœ œ šžž ŸŠ Š ž Š Š Ž Ž Œ žš Ž žÿž Ž Žœ œ Š Š Ž Š Ÿ ŽœœŽ Ž Š ž Ž Žœ Ž Ž Š šž Ž Ž Ž Ž Š Ž Ž Ž Ž Ž Ž Š œœ Š Ÿ œšžžžœž Š œ Š ž Ž œž œž šžž Š ž Œ ž Ž Ž Ž Žœ œœ Š Š œ Š ž Ž Ž Š œ Ž Ž ž Œ œš Ž Ž Šž ŸŽŠž ž Œ ŠŒ œž œž Šžœœ šžž ŒŽ Œ œš Ž Ž œž Š Ž Š œ Š ž Ž œž ž Ž Šž Žž Š Ž ŒŠ ŠŒ œ šžž Ž Š Ž Ž Œ ŠŒ ŸŽŒ ŒŽœ œžœ Žž Ž œž Ž Œ Ž œž Š ž Ž Ž Œ Š Ž Ÿ ŽœœŽ Š œ Š ž Ž V V V /R ž Ž Ÿ ŽœœŽ œž Š Ž ŒŽ Š Ž Š ž Ž Š ž œœš ŒŽ œœ Ž Š œ Š ž Ž Žœ Ž Š Ž η ( u) dω Ω ù Ω Œ Žœ Šž Ÿ ž Ž Ž šž Ž Š œ ŽšžŽ Š œœ Š Š Žž Ž Ÿ ž Ž Žœ Ž Ž Ž Š Ž Ž Ÿ ŽœœŽ Š ŠŸŽ œ Ž Ž Š Œ œš Ž Žœ Ž Œ Ž Ž œœ Ž Žœ Ž 3 ( V ) η R Š ž Ž Ž œ Ž œ Š Š Ž ŒŽ Ž œœ Š Œ Žœ Ž Š ž Ž Ž Ž Ž Ž Š ž Ž Ž œ šž ŸŠž œ α žÿž Š œ ž Ž Ÿ ŽœœŽ Ž Š œ Ž ŒŠœ Žœ Ž Žœ ž Žœ Ž Š ρgsin α V ~ 3 η 5 R Ž žœ ž Ž œ Š šžž žœ Ž Š Š Ž Ž Š Ž Ž Œ ŠŒ R κ * šžš

55 ù κ κ Œ œα Š Ÿ ŽœœŽ Ž Žœ Ž Žœ ž Žœ Žœ Š Ž Ž Ž Š šžš κ* V ~ V R 1 ù 1.5( γ / η) tanα V Žœ Š Ÿ ŽœœŽ Ž Š Œ ¹ Ž Š œ ŒŽ Ž Žœ ž Žœ Ÿ Šž Š žœ Ÿ Ž šž Ž Žœ œ Ž Žœ ŒŽ šž Œ Ž šžš Š ŸŽ Ž Ž Ž ŒŽ Ž Š ž Ž Ž Ž Ž Ÿ Ž Ž Š Ž œ Š šžž Ž Š ž Ž Š Ž Ž Œ ŠŒ Žœ Š Š Ž Ž œž œ Ž Š Š Ž Ž Š ž Ž ž Ž Žœ Žž Žœ ŸŽ œž ŠŒŒ Ž ž κ Š Ž Ž Ž Žœ Žž ŽœŒ œ ŒŽ šž žœ Ž Ž Ž œž œž šžž Ž Œ Ž Œ Ž ž šžž ¹ Ž Œ Ž Ž ž ž Ÿ Ž Ž Ž œž ŠŒŽ Š Ž Ž Ž Ž Ž ž œž Žœ šž Žœ Ÿ œšžžž Š Ÿ ŽœœŽ Žœ ž Žœ Žœ Š œ Ž Š Ž Ž Š Š Š žžž ŒŠ Š Ž ž Š ž Ž žœ ŠŸ œ Žœ œž Š œ Ž Ž Šž ž œ Ÿ œœ œ œ Ž Žœ Ž Œ Ž Žž Ž Žœ Ž œž ŸŽ šžž ž Žœ Žœ Œ ž Žœ œž œž Ž œž 6 V/V gly 7cP 5 5 gly 45cP 5 gly 115cP 4 4 gly 115cP R κ ž Ž ŽœœŽ Ž ŸŠ Ž Ž Ž ž Žœ Ž Žœ Š Žœ ŽŠž Œ Ž Œ Žœ ( ) Š Ÿ ŽœœŽ Žœ Š œ Ž Š Š Ÿ ŽœœŽ Ž Š Œ ¹ Ž V 1.5 γ / η tan α Ž Ž Ž Œ ž Š Ž Š ž Ž Š œ Š Š žžž ŒŠ Š Ž Ž Š Ž Œ Žœ Ž Ž Ž Š šžš šžš žœšž ž œ Š Œ œ Š Ž.

56 Ž Ž Ž Ž Š Ž œž Š Œ ž Ž Œ Ž Ž Ž Ž žœšž ž ž œ Š Œ œ Š Ž ž Œ œ Ž Žœ Ž Ž ŒŽœ Ž Œ Ž Ž Š Žœ Ž Žœ ž Žœ Ÿ žœ Ÿ Ž šžž Žœ œœžœ Ÿ Ž Œ Ž Š œœ Š Ÿ œšžžžœž Š œ Š Ž Ž Œ ŠŒ œ Š šžž žœ œœž œ œž Žœ Žœ Žœ ž Ž œž ŸŠ œ Ž Ž Š Žœ ž Š ž Ž žœ Œ œ Š œ šžž œ Š Ÿ œœ œ ž šž Ž Žœ Š Ž Š Ÿ ŽœœŽ Œ É ŠŸŽŒ Ž Š Ž Š ž Ž Šž Žž Ž Œ É Ž Œ Ž Œ Ž Ž V/V R κ* eau gly9cp 5 gly7cp 5 ž Ž ŽœœŽ Š œ Ž Š Š Ÿ ŽœœŽ Ž Š Œ ¹ Ž Ÿ œšžžžœž 1.5( γ / η) tanα V Ž Œ ž Š Ž Š ž Ž Š œ Š Š žžž ŒŠ Š Ž ž Žœ šž Žœ Žž Ÿ œšžžž Ž Š Œ Žœ Šž Ž Žœ Œ ¹ Žœ Ÿ œšžžžœžœ. ž Ž žœ Ž Š šž œ žÿžšž šžž œ Ÿ œœ œ Ž Š Ž Ž Ž Œ ¹ Ž Ÿ œšžžžœž Ž œ Ž Ž Œ Ž œ Š ŠÉ ž Žœ Ÿ œœ œ œ žœ Š Žœ Ž ¹ Ž ž Žœ Ž Žœ ŽŸ Žœ Ž Ž Žœ žœ ŸŠ Š Ž Œ Ž Ž Ž Š ž Ž šž Œ Š Ž Žœ Ÿ ŽœœŽœ Ž ŸŠ Ž Ž ž Ž ž Ž Ÿ œšžžžœž œž Žž Ž Žœ œ Ž Žœ

57 3 V/V 5 gly 115cP 4 gly 115cP R κ* ž Ž ŽœœŽ Š œ Ž Š Š Ÿ ŽœœŽ Ž Š Œ ¹ Ž Ž Œ Ž Š Š Ž Š œ Ž Š Š žžž ŒŠ Š Ž ž ž Ž Š Ž Ž ž Ž Ž Ž Ž ž Žœ Ž Žœ ž Žœ Žœ Ÿ ŽœœŽœ œž Ÿ Žœ ž Žœ Ž Žœ ŽŸ Žœ Œ œ ŽŠžŒ ž žœ Š Žœ šžž Žœ Ÿ ŽœœŽœ ž Ž Š Š ŽŸŠ ŽŠž Ž Ž Š œžœ Ž Œ Ž šžž šžžœ ŒŽ Žœ Š œžœ Ž œž šžž Š Ž Š Ž œ Š šžž Žœ žœ ŸŠ Š Ž Š œ ŒŽœ Œ œ ŒŠ Ž Žž žœ Ž Š ŒŽ ŒŽ ž Ž Ž Ž œ œž ŸŽ Š œ Žœ ž Žœ Ž Žœ Žž žÿž Žœ Žœ œ Žœ Ž Š œ Ž Š Ž Š ž Ž Ž ž Ž ž Ž Ž Ž Ž Œ Š œ ž Ž Ž ŽœŒŽ Ž Š ž Ž Š œ ž Ž Ž Žœ ž Ž œ Ž Ž ŒŠŒŠ ž Ž šž ŽœœŽ Ž Ÿ ŽŸ Š Ž Ž Ž œœš œž Ž œž œ Š ž Ž Ž Žœ Žœ ž Žœ Ž Žœ ž Žœ Žœ Ž Žœ Ž Š Œ Žœ Œ Ž Ž žÿž Ž ŸŠ Ž ŠžŒ Ž Ž œž ž Š Œ Ž Š Š Žœ Ž Ž œ œ Š Ž Œ ŠšžŽ Š Ž Š œ Žœ Œ œ Ž Ž Š Žœ œ Œ Ž Žž Šžœœ œž ŸŽ ž Žž Ž Ž Ž Š Œ Ž Ž Ž Š ž Ž

58 ž Ž Ž žž Žœ ž Žœ Ž Žœ ž Žœ Žœ Ž Žœ Ž Š Œ Žœ Œ Ž Ž žÿž Ž ŸŠ Ž ŠžŒ Ž Ž œž ž Š Œ Ž Š Š Žœ Ž Ž œ œ Š Ž Œ ŠšžŽ Š Ž Š ž Ž Š Š Ž Š œ Š Ž ž Ž žž œž Š ¹ Ž Ž Ž Ž Ž Š ŽŠž ž Œ Ž ŒŽ Ž Ž Ž Ž Š Š Š œž ž ŸŽŠž Ž œ Ž ŒŽœ Žœ Ž Ž Š ž Ž Ž šž ŠœœŽ Š žœ Žœ ŒŽ Žœ Žœ žžœ Ž Š ž Ž žœ Ž ž Ž šžž Žœ ŒŽ Žœ Ž œ Šœ Šž ¹ Ž ŸŽŠž šžž Ž Ž Š Ž Ž Œ šžž Žœ žžœ Ž œ Šœ ž Žœ Žœ Ž ž ŒŽ Ž šž Ž Ÿ œšžžž Šž ŒŽ Ž Ž Š Ž 1❶1 ž Ž Š œž Žœ ŸŽŠž Ž œ Ž Š Ž žž Ž Š ž Ž Œ Ž Ž ŸŠ ž Š Œ Šž ž Ž Š Ž Ž ŒŽœ Žœ Ž Š Ž ž Œ Š Ž Š œ ŒŽœ œž ŸŠ œ žœ Ž Ž Ž Ž Œ œž Žœ Žœ ž Ž Š Š ŽŸŠ ŽŠž Žœ ž Ž žœ œ Žœ Š œ Ž ŒŠœ Žœ Ž Žœ ž Žœ ž ŽœšžŽ Žœ Š ŠŸ Š ž œžž Ž Œ œ šžž ŒŽ Ž Ž ž Ž Š Ž Ž Š Ž œ šžž Ž Ž Ž Ž Œ œ Œ κ Œ œα

59 žœ ŠŸ œ Š œž ž Œ ž Ž Ž Ž Žœ Š Š Ÿ œœ œ Šž Œ ŠŸ ž Ž Ž Ž œ šž Œ Š Ž Ž Ž Ž ŒŽ Ÿ œšžžžœž Žž ž ρvr Re = < 1 η ù Ž Ž ž œš šžš η > ργκ 1 tan α cosα = η ŽŒ Žœ Ž ž Ž Œ Ž Ž Ÿ œœ œ Ž Ž Š Ž Ž Ž α η ργκ Šž Ž Ž Ž ž Ž žœ ŠŸ œ Š Ž Ž Š œž ž Ž ž Ž šžšœ œ šžž Ž Š œ Ž šžž Š ž Ž Žœ Šœ Ž Š Š ŒŽ ŒŽ ž Ž šž ¹ Ž Ž Ž ŽŸŠ Š ŒŽ ŒŠ Š Ž ŽŒ šžž ž Ž Œ œž Ž Ž Ž Ž Ž šž Œ Š Ž Ž Ž Ž ŒŠ Š ρv R We = γ < 1 ù R κ 1 ργκ > η 1 tan α cosα Ž œ Ž Œ Šžœœ ž Ž Ž Žž Ž Ž Š Š œ ŒŽ Ž Šž Ž šžž Žœ ŒŽœ Ÿ œšžžžœžœ Ž Ž Šœ Š ž Ž Ž Œ šž Ž Žœ œ Ž œ Žž Žœ Šž ŒŽœ ŒŠ Š Žœ Š Ž Ž ¹ Ž Œ œ ž œž Š Ž Ž œœ Š Ž œž ž Ž Š ž Ž Œ Ž ž Žœ Žž Žœ œš œ Ž œ Œ Ž œ Š žœ Žž œ Œ Ž Žœ ŒŠ ŠŒ œ šžžœ Š œ œ Ž Ž ŒŽœ Šž Œ žœ Ž Œ ž Ž ž Ž ŒŠ Š Ž Š ž œœš ŒŽ Ÿ œšžžžœž œ Œ ( ) 3 Œ Ž Ž Ÿ œšžžžœž œœ Žœ Ž η V R Ž Ž Ž œ ŒŠ ŠŒ œ šžž Ž Ž Ž ŒŽ Žœ Ž E η η V R 4

60 Ž Ž Ž Š Ž ŒŠ Š Ž œ Œ γδ ù δ Ž œž Ž Š Š œœž Ž ž ŒŽ Ž Ž Š ž Ž Š Š Š œ Ž Ž Ž ŒŠ Š Ž Ž ŒŽ Ž Ž Ž ŒŽ Žœ Œ Eη ηv Ca = ŒŠ δ E γ γ R ù Š Œ R κ 1 > tan α cosα Š Œ œž Ž Ž ŒŠ Š Ž šžš Žœ žœ œ Ÿ Ž šžž ŒŽ Ž œž Ž Ž Ž Ž Ž šžš Š šžž η > η Œ Žœ Ž Š šžž Š Œ œž Ž Ž Ž Ž œ Žœ Žœ ŽŒ Ž Š Œ Šž Š Žž Œ œ ž œž ŸŽ Ž Ž Š Š ŽŸŠ ŽŠž Š Ž Ž Œ ŒŽ Ž Ž šž Ž ž œž ž ž Ž Ž Ž Ž η ργκ 1 > tan α cosα Š Ž Ž Ž ž ž Ž Ž Ž Ž Šž ž Ž Ÿ œœ œ œž Žž Ž Œ ž žÿ œž ŸŽ Ž Ž Š Š ŽŸŠ ŽŠž ŒŽ šž Œ Žœ Ž Ž Ž Š Žž Š Žœ Ž Ž ŒŽœ Š Žž Ž Œ Š Ž ŸŽ ž Ž Š Ž Ž Š Žœ Ž ž Ž tan α cosα R < κ 1 < 1 cosα Ž Š Ž Ž Žž Žœž Ž Ž Š ŠžšžŽ œž ŸŽ ž Ž Š œ Ž Ž Ž Ž Ž ŒŽ ž ù Žœ ž Žœ œ ŒŽ ž Žœ Ž œž ŸŽ œš ŸŠ Š Ž Œ Ž Š α Œ œ α ž Ž

61 R * κ glycérol ~3cP ~15cP tanα/(cosα) 1/ ž Ž Š Ž Š œ Ž Œ Ž Š Ž Ž žÿž Ž ŽŒ ŸŽ Ž šžž Ž Š Š Š œ Žœ Ž Š Ž Š Ÿ œœ œ ž šž Ž Ž œž Ž Ž ŸŠ Ž šž ŠŸŽŒ Š Ž Ž œ Ž Š Œ ž Ž Ž Š Ž Ž œž Ž R * κ 1 =.3 tan α cosα Ž Ž œž Ž Š œ Š Ž ¹ Ž œ Žœ Šœ Ÿ Š Ž ž šžž Š Ž œž ŠœœŽ œž Ž Ž ŒŠ Š Ž Ž Ž Š œœ Ž Žœ Ž Ž šž ŠŸŽŒ Š Š Ž Ž ž Œ ŠŒ Žœ Ž Ž œ Ÿ œšžžž Ž ŽžŸŽ Šœ Œ Ž Š Š ŒŽ Ž œ ŠŸŽŒ Žœ Žœ Ž Žœ œš œ Ž Š ž Ž Š Ž Œ Š Ž ž Ž ŒŠžœŽ ž Ž œœ Š Ÿ œšžžžœž Š Ž Š œ Š ž Ž Š ž Ž Œ žž Š œ ŠŒŒ Ž ž œšžž Ž Ž œ Š Š Ž Žœ Šœ Š Ž ŠŒŒ Š Žœ ŒŽœ ŒŽ ž Žœ Ž Š ž Ž Ž œž Š Ž Ž Œ ŠŒ Ž Œ Žœ Ž Ž œ Ÿ œšžžž Š ž Ž ŠŒŒ Ž žœšž ¹ Ž œ ž œž ž Ž Šž Ž œ ž ŒŽ Ž œœ Š Š Ž Ž Ž Ž Ž Ž Ž Š Œ Ž Œ Ž Š Š œ Ž Œ Š Ž šžš Ž Ž ŽœœŠ Ž Ž Œ Ž Ž Žœ œœ Š œ Š œ Žœ Žœ Š Žœ Š Œ œž Ž Ž ŒŠ Š Ž Žž Šžœœ œž Š ž Ž Ž Ž Ž Ž Ÿ ŽœœŽ Šž ž Ž Ÿ ŽœœŽ V <. 5γ η ž ¹ Ž Š œ Ž Ž Ž Ž Žœ Œ ž Žœ ž Ž ŒŽ Š Œ Žœ Š Ž Ž Ž ž ž Ž ž Ž Ž Œ Ž ž Ž Š œ ž ž Ž Ž Ž Ž

62 Œ žœ žœ ŠŸ œ Š œ ŒŽ Œ Š Ž šžž Ž žÿž Ž Žœ ž Žœ Ž Žœ Ÿ œšžžžœžœ œž ž Š Š Ž Ž Œ Žœ Ž Š ŸŽ Ž Ž Œ œ Žœ œœžœ ž Žœ šž Š Ž ž Ž Œ ¹ Ž ŠŸ Š Ž œ œ ž œžœ ž Œ œš Ž Ž œž Žž Š œœžž ŒŽ šž Œ ž ž Ž Ÿ ŽœœŽ Ž Ž Ž Š šžž Žœ ŒŠ ŠŒ œ šžžœ ž šž Ž Ž Ž Š Ž Ž Š œ Žœ Ž Žœ ž Žœ šžšœ Ž œ šžžœ Š œœ Š Ÿ œšžžžœž Ž Ÿ Ž Šž ŸŽŠž Ž Š Ž Ž Œ ŠŒ Ž Ž Š œ ž Ž Ÿ ŽœœŽ Ž ŸŽ œž Ž Ž Ž Š Š Ž Ž Š ž Ž žœ Žœ ž Žœ œ Ž Žœ žœ Ž Žœ Ÿ Ÿ Ž žœ ŠŸ œ ž Žœ Žœ Ž ŒŽœ Žœ œ Ž Ž Ž Žœ ž Žœ œ Žœ Š Š ŒŽ ŒŽ ž Ž Ž ŽœœŽ Ž Žœ žžœ ž Žœ ŒŠŒŠ ž Žœ Žœ Žœ Ž šž œ ŽœœŽ žœ Ž Š Š Ž Žœ Š Ž Ž Ž Žž œž Ž Ž Ž Ž Š œ Š ž Ž Šž ž ž Š Ž ž Ž ž Ž Ž šž Ž Ž œ Š Ž Šœ Ž Ž Š œ Ž ž Žœ Žœ ŒŽœ Ž Žž Š Š Š Žœ Žœ Œ ŽœœŠ Ž œž Ž Œ Ž œž ž Ž Žœ ž Žœ Ž Š ŒŽ šžž žœ Š œ Š Ž Š œ Ž Œ Š Ž œž ŸŠ

63

64 Š Ž Ž Ž œ œ Œœ ž œ Ž 11 œ Š Ž Ž Š Ž œ ž œ Œœ Ž Ž œ 1 Ž Š šžž œ šžž ŽŒ Žž Ž žš œ Ž ž Š Ž ž œž Ž ŸŽ œ Š œ ŒŠ œ Žœ Š œž ŠŒŽœ Ž ž Žœ ž Žœ Žž œž Ž ŸŽ œ Š œ Ž œ Š Œ Ž Š Ž Š Ž ŠŒŽ Œ Ž ŒŽ Ž Ž Š ž ž Ž ŠŒŽ Š Š œ œž ŠŒŽ ž ŽŒ Ž 11 šž Š Žœ Š ž Ž

65

66 Š Ž Ž Žœ ž Žœ Ž Š

67 Š Ž Žœ Š Žœ Š Ž Ž Žœ ž Žœ Ž Š Š Ž Ž ŒŽ Ž Š ŽŠž œš Ž Š Ž Š ž šžž Ž Ž Œ ŸŽ Ž ŒŽœ Ž Š ŽœŠ Žž Š œ ž šžžœ Ž œ Œ Ž Ž 1šžŠ œ Ž Ž Š Žœ Žœ Š œ šžžœ œž Š œ Žœ Žœ Ž Ž Š Žœ ŽœŒ Žœ Ž Ž ŒŽœ œž Š œ Ž Ž Šž Š Š Ž

68 Žœ Žœ Ž žžœ Š œ Ž Œ Š Ž Œ Ž ž Žœ ž Žœ Ž Žœ Ÿ œšžžžœžœ œž Žœ Žœ Ž Žœ Žœ Žœ Ž žžœ Ž ž Ž œœžœœ žœ Š Ž 1 Š šžž Ž Ž Ž Ž Ž Šœœ Œ šž Œ Š Ž Žœ ŒŽœ ŒŽ ž Žœ Šž ŒŽœ ŒŠ Š Žœ Žœ Ž Žž Ž œž šžž ŒŽœ Žœ Ÿ Ž Ž Ž Š ŒŽ ž Š ž Ž Žœ ž Žœ Ž Š Žœ Œ Ž Ž Š Ž Ž žœ Ž œ ž Ž ŽŸžŽ Š Ž Žœ Œ Š œœš ŒŽœ Š œ ŒŽ Š Ž œž Ž žœ ŒŠ Œž Ž œ ž šžž Ž Žœ Žœ šž Ž Š œ šžž ž œ žœ œž œ šžž šžžœ Žœ Ž Œ Ž Ž ž Žœ Žœ œž Ÿ Žœ žœ œž Ž œ Žœ œž Š œ Ž Ž Šž Ž žœ Š Ž ž Ž Žœ Žœ Žœ ž Žœ Ž Š Žœ ž œž Ž šž ŽœœŽ Ž ž œ œ Ž Žž œ Œ Žœ œ Œ Ž œ Ž Š Š Œ Ž œ žš œ Ž ž Ž ž Ž Ž šž Ž Ž šž Š Ž Ž Š Š ŒŽ ŒŽ ž Ž šž Ž Ž Š ž Ž œ œž Š Ž œ Ž œž ŠŒŽ šž Ž Š Š Ž œ šžž ž Ž Žœ Žœ Žœ ž Žœ Ž Š Žž œž Ÿ Ž Ž ŒŽ Žœ Žœ Œ œ Œ Žœ Žœ ù Žœ ŒŽœ Ž ŠŸ Š Ž ŠŒŽ Š ŒŠ Š Ž Ž Š ŒŽœ ŒŽœ œ Ž Ÿ ž Ž Ž Ž œž ŠŒŽ ù Žœ Š Žœ Ž œ ž œ Ž Žœ Žœ Ž Žœ ž Žœ œž ŒŽ œž Ž Ž Ž Š ŠŒŽ Š ŽŠž Š œš œ Žœ Ž Ž ŒŽœ Š œ Ž ž Ž ž Ž Ž šž Ž Ž Š Ž Ž Ž Š ŒŠ Ž ž Š Žœ Žœ šž Žœ Žœ ž Žœ Ž Š Ž Š Š œœ Ž œ Ž ŒŽ Ž Žœ Šœ šžžœ Žœ ž Ž Žœ ž Œ Œ ž Ž ŒŽ Ž œ Ž Ž Šžœ ŸŽ Š ŠœŽ Š Ž Œ Ÿ šžž Ž Žœ Žœ Ž ž Žœ Ž Š Ž Žœ Š Œ Š Žœ Žœ Žœ Š Žœ Ž Žœ Š ŽŠž Ž Š ž Ž ž Ž Žœ ž Žœ Ž Š Š Šžœœ Žœœ Š œ šžž žœ Š Ž Ž Ž Ž œ Ž œš ž ŒŠ œ Ž Ž œœ žœ Š Ž Š Š žž Š ž ž Ž ž Ž ž Ž Ž šž Ž Ž Š Ž Ž Š ž Ž ž Šž ž Ž ž Ž Ž šž Ž Œ Š Ž Š œœ Žž ¹ Ž Œ Š Ž Š Ÿ œ Ž Š œ Ž Ž šž Ž Ž Žž Š Ž œ Ž œž ŠŒŽ žž Š œ Ž â Ž Žœ ŒŽœ žœ Š Žœ Œ ž Ž Ž Š Œž Ž Ž Š Ž Ž ŒŽ Ž Žœ œ Ž ž Ž ž Ž Ž šž Ž Žœ ŒŽœ Ž Žž Žœ ŠŸ ž Š Ž œž ž œž œ Š ž Ž ž Ž Ž œ šžž Ž Ž Š Ž Ž Ž œž Ž Ž Š Š œ ŒŽ Ž Š Ž Š šžž žœ œž Ž œ ž Š Ž Ž ŒŽ œ šžž Ž Š ŽŠž ž œ žœ Œ œ Žž œ ž œ Žœ Žœ

69 šž Ž Ž ž Žœ Ž Š ŒŽ Ž Š Š šžž Ž Š Ž Š Š Ž Ž ŒŽ Ž ž šžž Ž Ž Œ ŸŽ šž Ž ž Š Š Ž Ž ŠœŽ œ Œ Ž Žœ Žœ šž Ž Ž Ž Žž œ œ Š œ Ž Š ŸŽœ žœ œž Ž œ šžž šžžœ œž Š œ Ž žœ Š Š Ž Œ Š Š Žž œ œ Ž Ž ŒŽœ Ž Œ ŠŸ Ž ŒŽ Ž Š ŽŠž ž œ Ž ž Ž ž Ž Ž šž Ž Š ŽŠž ŠŸŠ Ž ŠŸŽŒ ž Ž ž Ž ž Ž ŸŽ šž Ž Ž Š œ ž Š Ž ŽŠž Ž Š Œ œ Ž œž Žœ ž Žœ ž Ž šžž Ž œ ŒŽ Žœ Ž Š Ž ž œž Ž œ œ Ž œž œž Š ž Ž Œ Žœœ žœ ž Ž Ž Žœ ž Žœ Ž žÿž Ž ž Ž Š Ž Ž Ž Š ž œ Š Š ŽŠž ž Ž Ž Žœ ž Žœ ž Ž Ž Š Ž Š Ž Ž Ž Š ŠŸ Š œ ž Ž ŒžŸŽ Ž ŸŽ Ž ŠŒŽ ž Ž Ž Š šžž Œ Ž Š Šž Žž ž œšžž Ž Š Ž šžž Ž Œ Ž Ž Ž Žœ Ž Ž ž Ž Š ŸŽ Ž Ž Ž Š Š œž Ž Š Ž Ž œž Ž Ž Ž œž Ž Š ŒžŸŽ ŠŸŽŒ Ž Š Ž ŽŠž Š Œ Ž ž Š ž Ž ž Ž œž Ž œšžž Ž Š Ž šž Ž Ž œž ŒŽ Ž Œ ŽŒ Ž Ž Žœœžœ Ž Ž œž Ž Š ž Ž Ž Š Š Ž Ž Š Š ŸŽ Ž Ž Š Žœ œž ŸŠ œ œž ŸŠ Žœ Š Ž Ÿ ŽœœŽ Ž Š Ž Ž ž ž Š œžœ Ž ž œ Ž Žœ Ž œ Ê Žœ Š Š œ Šž â Žœ Ž Š ž Ž Š Š Ž ž Ž Ž ŠŸŽŒ Žœ Žœ Žœ Š Žœ Ž Š ž Žœ Ÿ ŽœœŽœ ž Žž žœ Š Žœ Ž ž œ Š œžœ Ž Ž šž Ž Ž ž Ž Ž Š ŽŠž ž Šž œšžž Š ž Ž Ž Œž Ž œ ŒŽ šž ŸŠ Ž Šž žžœ ž Žœ šžž œž ŸŽ ŠŸŽŒ Žœ ž Žœ Ž Žœ ž œ šžš Ž žÿž Ž ž œšžž Žœ žœšžž Ž Š ¹ Š Ž Œž Ž œž Ž ž Š ŽŠž Š Š Š œš Ž œž Šž Š ŽŠž Ž Š ž Ž Žœ Ž ž Ž Š šžž šžžœ œ Š œ ŠŸŠ šž Ž œž Ž Ž Ž œž ž

70 ¹ Ž Ž œœ Š Ž ŒŽ Š ŽŠž Žœ Ž œž œž Š ž Ž ž Ž ŽŠž œž Ÿ Ž œœ Š œ Š Š ŽŠž ž Ž œ Š ŽŠž Ž žÿž Ž ž œšžž Žœ Ž œ Š œ Š ŽŠž Ž œž Ž Ž Šœ Š œ œž Ÿ œž Ž œ Žœ ž Š œž Ž Žœ ¹ Žœ Ž Šž ž Ž Š Ž Š Š œ Ž žÿž Ž ž œ œ Ž Ž Š Žœ Š œž ŒŽ Ž œ Ž Žœ œ Žœ Œ Ž Ž Œ Ž ŒŽ Ž Žœœ šžš Š ŸŽ Ž œ ž Š Žœ œš Ž Žœ Ž žÿž Ž Žœ Š Ž ž Ž œ Š ŠœœŽ ž Ž œž Ž Ž Š œ Ž ŒŠœ ž Ž Ÿ ŽœœŽ ŽŸ Ž Ž Ž ž ž Š œžœ Ž Žœ ž Žœ œž ŸŠ Žœ œ Ž žžœ Š œš œž Ž Š Ž žž ž Ž Žœ œž Ÿ Žœ Ž œœ Š œ Žœ Š Š ŽŠž Žœ Žœ œ Š Š Ž Ž ŒŽ Žœ Žœ œž Žœ Š œ Ž Œ Š Ž Œ Ž Ž žšœœž Ž Š Ž Š šžž Š œ œ Ÿ Ž œž Š ŒŠ Š ŒŽ Ž Ž Ž ŒŽ Žœ ž Ž Ž Š Œ Ž Ž Ž Ž Š Ž ŽŠž Š Œ Š Ž ¹ Ž Ž œ šžž ž Ž œ ž ž Ž Ž Œ Š ž Ž ž Ž ŽŸ Š Žœ Ž œ šžž žšœœž Ž Ž Ž Ž Ž Š ŒŽ ŒŽ ž Ž Œ Ž Š žž Š Ž ŒŽ Ž Ÿ œœ œ œ ŒŽ Ž Ž ŒŽ Ž Ž ž Ž Ž Ž Š Ž ŽŠž Š Œ Žœ œž œš Ž Š šž Ž œžž Ž Š ž Ž ž Ž Žœ Ž ŠÉ Ž œš Ž Š Ž Š Š Žœ œž ŸŠ œ Ž Š ŽŠž Š Ž œž Žœ šžš œ Œ Žœ Š Šž Žœ šž Ž Š œ šžžœ Ž Žœ Ž ž šžž Ž Ž œš Žœ Žœ

71 ❷ ❼ ❺ ❽ ❸ ❹ ❻ Š Š šžžœ Š œ ŒŽ Š Žœ Žœ žœ Š œ œž Ž œžœ ŒŠ Œž œ šž œž ŸŽ Ž ŠœŽ Ž Š ž šžž Žœ Žœ Š œ šžžœ Š Ž Ž Š ž Ž œž Ž Ž šž Ž Ž Ž Žœ ŒŽœ ŒŠ Š Žœ Ž Žœ ŒŽœ ŒŽ ž Žœ œž œž šžž Ž žÿž Ž œž Š Ÿ ŽœœŽ Š ž Š Ž ω Œ œ Š Ž Š œ ž Ž Š ž Ž ω α ž Ž Œ Š Ž ŒŠ ž ŒŠ Œž Žœ Žœ Š œ šžžœ Žœ ž Žœ Ž Š œž ŠŒŽ Š œ Ž Ž Ž ž Š Š Ÿ ŽœœŽ Š ž Š Ž ω Š œ ŒŽ Ž Ž Š ž Ž Žœ Ž Ž Žž ŒŠ Œž Ž Š Žœœ Ž ž šžž Œ šžž Ž Š œž ŠŒŽ Ž Œ ŸŠ šž Ž Žœ ŒŽœ ρω x P = + P ù Žœ Š Žœœ œž Š Ž Ž Š Ž žœ Ž Œ ŸŠ Š Ž Š ŠŒŽ Š P = Pext + γ C ù ❾ ❿ ➀ Žœ Š Žœœ Š œ šžž Ž Š Œ ž ž Ž Ž Ž ŠŒŽ Ž œž Š Š Ž Ž ❾ ❿ ➀ Š Ž ž žœ Ž Œ Š Œ ž ž Ž Š œ Ž ŒŠœ ž Ž œž ŠŒŽ Ž Ÿ ž Žž œ Ž Ž Š Ž Š œœ œœž Œž Ÿ Ž œ Ž Ž ž Ž Ž Ž d y / ds C = dx / ds + 1 dy x ds šžš Ž Ž Ž šž Š Ž Š œ šžž Ž Š ž Ž Ž Š œ Œ Š œ

72 Š œ ž Ž Ž Ž Š Ž œ dy ρω x x = ds 8γ 4 P x + γ + K ù Žœ ž Ž Œ œ Š Ž Š Š Ž ŒŽ Ž šžš Ž Ž Ž Žž œ žž žœ Žž œ ŒŠœ Š Œ ž Ž Ž Œ Ž Š Ž Ž Š ž œž Š ž Ž Š ž Ž Š Ž Ž Š Ž ŒŽ šž Ž Š Œ œ Š Ž ž œž šžš Žž Š Š Ž Ž Žœ ŸŽ ŒŠ Ž œ Ž žœ œž Š Ž Ž Ž Š Œ œ Š Ž Ž Š Ž Ž Ω R ρω = 8γ a 3 œ Š ž Ž œ Ž Ž Ž Ž Ž Š Š Ž Š Š Ž Š Š Ž Ž Š ž Ž Ž Š Ž Š œ šžš Ž Ž Ž œž ŸŠ Ž dy ds = Ω R x a (1 Ω R ) x a ž Žœ Š Žœ Ÿ ŽœœŽœ Ž Š ŒŽ Ž šžš Žž œ Ž œ Žœ ž œœš ŒŽœ œž Žž Žœ Ω➁ œ Žœ žÿž Š œ šžž Š ž Ž Ž Š Ž ž Ž œ Ê Ž Ž Ÿ ž Ž Ž Š Ž Ž Ž œž œ Œ Š Ω➁ Šž Ž Ž Ž Ž Ω➁ Ž Š Ω➁ Ω➁ Šž Žž Ž Ž Ž ŒŠ Œž Ž Š Žœœ œž Š Ž Ž šžž Š šžž Ω➁ Žœ Œ ž ž Žœ Šž œ Œ ŸŽ Žœ Ž Ž Žœ Žœ ž â Ž œ Ê Š Žœ žš Ω➁ Š œž ŠŒŽ Ž Žœ Š Ž šžš Ω➁ Žœ Œ ž ž Žœ Ž Œ Š Ž Ž œ Ž Ž Žœ Žœ œ Œ ŒŠŸŽœ Ω➁ Š œœžž Ž Š Ž Œ ŒŠŸŽ œž Š Ž Ž Š Žœ šžšœ ž Ž ž Ž Š Œ ž Ž Ž Ž Œ Ž žœ Š Ž Ž Š Š Ž Œ œ Ž Š œ Ž œ œ Š Žœ Ž Ž ŒŽœ Ž Š ŽŠž šžž Š Ž Žœ Š ž Š Ž

73 Š Œ ž Ž Ž Ž Œ Ž Šœ Š Ž Ž Š Ω Š Ž Š Œ œ Š Ž ž šžž Š œ šžš œž œž šž Ž œ Ž Š Ž Š Ž œ šžž Š dy ds = 1 Ž Š Ž dy ds 1 = Ž Š Š Ž œž Ž Ž Ž œž Ž Ž ¹ Ž Ž Œ Ž Œ Š Ž Š Žž Š Ž Žœ ŸŽ ŒŠ Žœ Š œ Ž šžš Ž Š ù Ž Ž Žœ Œ Ž Š Œ œ Š Ž ž šžž Š œ šžž ŽžŸŽ œ Ž Ž Š Ž Ž ŒŽœ Žž žžž œ ž Ž šžš dy ρω x = (x ds 8γ Š 1 )(x Š x ) + Š Š Š Š Š ž šžž Ž Ž Œ ŸŽ Ž Œ ŸŽ œž ž Ž Š ž šžž Žœ Žœ Ž ž Žœ Ž Š Š œ šž ž Ž Š Š œž Ž œ Š Œ Ž Ž Œ Ž Ž Žž ŒŠ Œž Œ œ œ Ž Š Ž šžš Ž Š ŠŒŽ Ž Ž ž šžž Ž œ ž Ž Ž œž Ž Žœ œ Š œ Ž Š ŸŽœ Žœ Žœ Ž žžœ œ Š Š ŠÉ Ž œ Ž Žž Š Ž Ž ž Ž Ž Ž Š Ω➂ Œ Ž Ž œš œ Ž œ ŒŠ ŠŒ œ šžž Ω S = ρω 8γ R 3 Ž Ž Žœ Œ œ ž œž Š Š Ž Š Ž Ž Š ž Ž Ž Šœ œž œš Š Ž Š Š Ž Œ Š Ž Ž ŒŽ ž ž œ Š Š Ž šžš œž Š œ ž šžžœ ž šžž Ž žœ Žž œ Š Žœ œ Ž žžœ ž Š Ž Žœ ž Žœ Ž Š Š Š Ž Žœ Žœ Š œ šžžœ Ÿ žž ž Ž Ž Ž œ Ž Š Š Ž ŒŽ Ž ž Ž œ Ê Ž Ž Ÿ ž Š Ž ž œ ŸŽ œ Žœ Žœ Œ ŒŠŸŽœ šžš Š Ÿ ŽœœŽ Š ž Š Ž

74 Šž Ž Ž ž Ž ž Žœœžœ ž Ž Ÿ ŽœœŽ Š ž Ω➃ ➄➆➅ ➇ Ž Žž žœ ŒŠ Œž Ž Ž Ž Š œ šžž Žœ ŒŽœ ŒŠ Š Žœ Ž ŽžŸŽ žœ Œ Ž Š Š ŒŽ Š œž Žœœ Ž Š Žœ ŒŽœ ŒŽ ž Žœ Š Š Ž Š œ šžž Ž œ ŠŒ ŸŽ Šœ Ω➃ ➄➆➅ ➇ Š œ Ž ž Ž ŸŽ œ Žœ Ÿ ŽœœŽœ Š ž Š Žœ žœ Š Žœ Ž œž Ž Ž Ž Ω➃ ➈➉➊ ù Š Ž Œ ŒŠŸŽ Š žœ Š œœžž œž Š Ž Ž Š ž Žœ Žœ Žœ œž Š Š Ž ŠœŒŽ Š Ž Š œ Š ž Ž œ œ Š Žœ Š Š ž Ž Ž ž Š Š œ šžž Ÿ ŽœœŽ Š ž Š Ž Œ œ Š Ž Š œ šžž Š Š Œ Ž ŽœŒŽ Š Ž Žœ œ Š Ž Š Š Šž Š œ Š œ šžžœ šž Ž Ÿ Ž Ž šž Ž Ž Š Ž Ž Š Ž Šž Ž Ž Ž Ž Š ž Š Ž Ÿ ŽœœŽ Ž Š Œ œ Š Ž Ž Ž Š ŒŽœ Ž ž Š œ Ž Œ œž ŸŽ Šœ Ž Ž Š ž Š Ž Ž Œ Š Š Œ Ž ŽœŒŽ Š Ž Žœ œ Š Ž Š Š ž Ž Ž ž Š Š œ šžž ž ž Ž ž Ž œ Ž a R Ω S ž Ž Žœ šž Žœ Ž ž Žœ œ Žœ Ž Š œ Š Žœ Š œ šžž Ž Žœ Š Ž Š Š Ž Š œ Ž Š Š Š Ž Ž Š œ Ž Ž Œ ž Ž Ž Ž Š Ω➃ Ž Š Ž Ž œž Ž Žœ Žœ œ Š Žœ Ž ž Ž Žœ Šœ œžž Ž Ž œ ž œž Šž Ž ž Š œ Š œ šžžœ Š œ Šžœœ Žœ Ž ž Š œ Šœ šžžœ Žœ Ž ž Š œ Ž Œ Š Ž Ž Ž Š ž Š Ž Ž Ž Ž Ž Ž Š œœž Š Ÿ ŽœœŽ Š ž Š Ž Š Ž Œ Š œ Š Žœ ž Žœ

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model.

Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Chemical and biological evaluations of an (111)in-labeled RGD-peptide targeting integrin alpha(v) beta(3) in a preclinical tumor model. Mitra Ahmadi, Lucie Sancey, Arnaud Briat, Laurent Riou, Didier Boturyn,

Διαβάστε περισσότερα

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby

Carolina Bernal, Frédéric Christophoul, Jean-Claude Soula, José Darrozes, Luc Bourrel, Alain Laraque, José Burgos, Séverine Bès de Berc, Patrice Baby Gradual diversions of the Rio Pastaza in the Ecuadorian piedmont of the Andes from 1906 to 2008: role of tectonics, alluvial fan aggradation and ENSO events Carolina Bernal, Frédéric Christophoul, Jean-Claude

Διαβάστε περισσότερα

διατηρούμενων ειδών ζαχαροπλαστικής Παραγωγή μακαρονιών, λαζανιών, κουσκούς και παρόμοιων 10.73

διατηρούμενων ειδών ζαχαροπλαστικής Παραγωγή μακαρονιών, λαζανιών, κουσκούς και παρόμοιων 10.73 !"#$%&'"()*+ &,!"#()*+ $&-./ 0"!#*1) 23$&/-.0"!#*1)!45"$!#'0&#-/0"-!# ΠΕΡΙΓΡΑΦΗ 01.6 ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ Υποστηρικτικές προς τη γεωργία δραστηριότητες και δραστηριότητες μετά τη συγκομιδή. 02.4 Υποστηρικτικές

Διαβάστε περισσότερα

v r T, 2 T, a r = a r (t) = 4π2 r

v r T, 2 T, a r = a r (t) = 4π2 r Πρώτη και Δεύτερη Διαστημική Ταχύτητα Άλκης Τερσένοβ 1. Πρώτη Διαστημική Ταχύτητα και Γεωστατική Τροχιά Πρώτη Διαστημική Ταχύτητα ονομάζεται η ελάχιστη ταχύτητα που θα πρέπει να αναπτύξει ένα σώμα που

Διαβάστε περισσότερα

Γραφικά Υπολογιστών: Θέαση στις 3D

Γραφικά Υπολογιστών: Θέαση στις 3D 1 ΤΕΙ Θεσσαλονίκης Τμήμα Πληροφορικής Γραφικά Υπολογιστών: Θέαση στις 3D Πασχάλης Ράπτης http://aetos.it.teithe.gr/~praptis praptis@it.teithe.gr 2 Περιεχόμενα Σήμερα θα δούμε τα παρακάτω θέματα: Μετασχηματισμοί

Διαβάστε περισσότερα

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail. Author(s): Chasandra, Mary; Tsiaousi, Louisa; Zisi, Vasiliki; Karatzaferi,

Διαβάστε περισσότερα

DOCUMENT DE RECHERCHE EPEE

DOCUMENT DE RECHERCHE EPEE DOCUMENT DE RECHERCHE EPEE CENTRE D ETUDES DES POLITIQUES ECONOMIQUES DE L UNIVERSITE D EVRY Changements organisationnels dans les entreprises, outils de gestion et risques psychosociaux : une analyse

Διαβάστε περισσότερα

30.ΚΑΣΕΡΜΑΝ Λ ΛΑΥΦΕΝ 2015 ΣΤΑΡΤΙΝΓ ΟΡ ΕΡ

30.ΚΑΣΕΡΜΑΝ Λ ΛΑΥΦΕΝ 2015 ΣΤΑΡΤΙΝΓ ΟΡ ΕΡ ϑυγεν 2 ΧΥΒΣ Μ ΧΗΕΝ Κ Ρ 1 Λινα Μαρια ΤΗΕΙΝΕΡ ΙΕς Ιννσβρυχκερ Εισλαυφϖερειν 2 Λισα ΠΕΙΝΤΝΕΡ ΙΕς Ιννσβρυχκερ Εισλαυφϖερειν 3 Λισα ΤΥΣΧΗ ΥΕΚ Υνιον Εισσπορτ Κλυβ Ιννσβρυχκ 4 ϑυλια ΚΡ ΛΛ ΣΓ ψναµο Σπορτϖερειν

Διαβάστε περισσότερα

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%

Διαβάστε περισσότερα

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

Διαβάστε περισσότερα

ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ

ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ 8 Raimon Novell ΤΟ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ Η ΜΑΡΙΑΝΉ ΠΑΙΔΑΓΩΓΙΚΗ ΑΠΑΝΤΗΣΗ ΜΕ ΒΑΣΗ ΤΙΣ ΡΙΖΕΣ ΚΑΙ ΤΗΝ ΠΑΡΑΔΟΣΗ ΤΗΣ ΚΑΙ ΟΙ ΣΥΓΧΡΟΝΕΣ ΠΡΟΚΛΗΣΕΙΣ 1.- ΑΠΟΣΤΟΛΗ, ΧΑΡΙΣΜΑ, ΠΑΡΑΔΟΣΗ ΚΑΙ ΜΑΡΙΑΝΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΦΟΣ

Διαβάστε περισσότερα

L effet de microlentille gravitationnelle dans la recherche de planètes extra-solaires et dans le sondage d atmosphères d étoiles géantes du Bulbe

L effet de microlentille gravitationnelle dans la recherche de planètes extra-solaires et dans le sondage d atmosphères d étoiles géantes du Bulbe L effet de microlentille gravitationnelle dans la recherche de planètes extra-solaires et dans le sondage d atmosphères d étoiles géantes du Bulbe Arnaud Cassan To cite this version: Arnaud Cassan. L effet

Διαβάστε περισσότερα

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Γενικής Παιδείας Άλγεβρα Β Λυκείου Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ e-mail: info@iliaskos.gr www.iliaskos.gr ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. y y 4 y

Διαβάστε περισσότερα

ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ

ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ 007-8 ΙΑΦΑΝΕΙΕΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ Ι ΜΙΧΑΗΛ ΒΕΛΓΑΚΗΣ, ΚΑΘΗΓΗΤΗΣ ΦΥΣΙΚΗΣ ΕΓΧΕΙΡΙ ΙΑ: α) R. A. SERWAY, PHYSICS FOR SCIENTISTS & ENGINEERS,

Διαβάστε περισσότερα

ΗΣΥΓΓΡΑΦΗ ΕΝΟΣ ΚΕΙΜΕΝΟΥ γιὰ τὸν Σεζὰν εἶναι ἔργο δυσχερές. Ἔχουν ἀφιερωθεῖ

ΗΣΥΓΓΡΑΦΗ ΕΝΟΣ ΚΕΙΜΕΝΟΥ γιὰ τὸν Σεζὰν εἶναι ἔργο δυσχερές. Ἔχουν ἀφιερωθεῖ Σὰρλ Ζυλιὲ* Ο ΣΙΤΑΟ ΚΑΙ Ο ΣΕΖΑΝ Η ΙΔΙΑ ΠΝΕΥΜΑΤΙΚΗ ΕΜΠΕΙΡΙΑ ΗΣΥΓΓΡΑΦΗ ΕΝΟΣ ΚΕΙΜΕΝΟΥ γιὰ τὸν Σεζὰν εἶναι ἔργο δυσχερές. Ἔχουν ἀφιερωθεῖ τόσες πολλὲς μελέτες, τόσα πολλὰ δοκίμια, σὲ αὐτὸν καὶ στὸ ἔργο του

Διαβάστε περισσότερα

Architectures des Accélérateurs de Traitement Flexibles pour les Systèmes sur Puce

Architectures des Accélérateurs de Traitement Flexibles pour les Systèmes sur Puce Architectures des Accélérateurs de Traitement Flexibles pour les Systèmes sur Puce Pascal Benoit To cite this version: Pascal Benoit. Architectures des Accélérateurs de Traitement Flexibles pour les Systèmes

Διαβάστε περισσότερα

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere

Διαβάστε περισσότερα

!"#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή

!#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή L'ώ+8(0 J%(8(2=(ύ#:0, 7&!20ή4 8&')0)/&'ή ',& 9,6'ό"/&, 8&')0)/ί,!"#ά%&'( 19 ) *+&,-,+ό/'(0 1+(23'(+'24ό0 5(- 62(7-8ί(- 1%:+;4ώ/ =&' : >&=+(('=(/(4'=ή 1(%'5'=ή @5( ="#ά%&'( &-5ό "A'="/5+;/ό4&25" 2" 7:5ή4&5&

Διαβάστε περισσότερα

Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A.

Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A. Sur les articles de Henri Poincaré SUR LA DYNAMIQUE DE L ÉLECTRON Le texte fondateur de la Relativité en langage scientiþque moderne par Anatoly A. LOGUNOV Directeur de l'institut de Physique des Hautes

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ σχετικά με τα απαραίτητα παραστατικά που πρέπει να συνοδεύουν εισαγόμενα τρόφιμα για τη διεξαγωγή ελέγχων σχετικά με την παρουσία ΓΤΟ

ΟΔΗΓΙΕΣ σχετικά με τα απαραίτητα παραστατικά που πρέπει να συνοδεύουν εισαγόμενα τρόφιμα για τη διεξαγωγή ελέγχων σχετικά με την παρουσία ΓΤΟ 1 ΟΔΗΓΙΕΣ σχετικά με τα απαραίτητα παραστατικά που πρέπει να συνοδεύουν εισαγόμενα τρόφιμα για τη διεξαγωγή ελέγχων σχετικά με την παρουσία ΓΤΟ I. Κάθε παρτίδα τροφίμου που περιέχει συστατικά που παράγονται

Διαβάστε περισσότερα

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης Σηµειώσεις Μιαδικής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο 1. Εισαωικά 5 Η αλεβρική δοµή 5 Η τοπολοική δοµή τού 6 Το εκτεταµένο µιαδικό επίπεδο 7 Συνεκτικότητα

Διαβάστε περισσότερα

ΜΕΤΑΦΡΑΣΤΙΚΕΣ ΔΟΚΙΜΕΣ ΚΑΙ ΠΡΟΫΠΟΘΕΣΕΙΣ ΣΤΑ ΟΡΙΑ ΤΟΥ ΝΕΟΕΛΛΗΝΙΚΟΥ ΔΙΑΦΩΤΙΣΜΟΥ

ΜΕΤΑΦΡΑΣΤΙΚΕΣ ΔΟΚΙΜΕΣ ΚΑΙ ΠΡΟΫΠΟΘΕΣΕΙΣ ΣΤΑ ΟΡΙΑ ΤΟΥ ΝΕΟΕΛΛΗΝΙΚΟΥ ΔΙΑΦΩΤΙΣΜΟΥ ΜΕΤΑΦΡΑΣΤΙΚΕΣ ΔΟΚΙΜΕΣ ΚΑΙ ΠΡΟΫΠΟΘΕΣΕΙΣ ΣΤΑ ΟΡΙΑ ΤΟΥ ΝΕΟΕΛΛΗΝΙΚΟΥ ΔΙΑΦΩΤΙΣΜΟΥ Δ "ΤΟ ΕΙΣΙΝ ΑΙ ΠΗΓΑΙ, έξ ών τα βιβλία βρύοντα το πνεύμα των ανθρώπων άρδεύουσι, το Συγγράφειν δηλ. καί το Μεταφράζειν... Το

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΤΖΑΝΑΚΗΣ ΜΑΝΟΛΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΔΗΜΟΣΙΕΥΜΑΤΩΝ

ΤΖΑΝΑΚΗΣ ΜΑΝΟΛΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΔΗΜΟΣΙΕΥΜΑΤΩΝ ΤΖΑΝΑΚΗΣ ΜΑΝΟΛΗΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΚΑΙ ΑΝΑΛΥΤΙΚΟ ΥΠΟΜΝΗΜΑ ΕΠΙΣΤΗΜΟΝΙΚΩΝ ΔΗΜΟΣΙΕΥΜΑΤΩΝ ΡΕΘΥΜΝΟ 2014 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΩΤΟ ΜΕΡΟΣ ΓΕΝΙΚΑ ΒΙΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ, ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΠΟΥΔΕΣ ΚΑΙ ΥΠΟΤΡΟΦΙΕΣ 1. Προσωπικά

Διαβάστε περισσότερα

συναρτησιακό μοντέλο: Ax=l+v (γεωμετρική απόσταση δορυφόρων-δέκτη) μετρήσεις: l στοχαστικό μοντέλο: W=σ 02 V (ψευδοαποστάσεις) (σ i =c cosecφ i )

συναρτησιακό μοντέλο: Ax=l+v (γεωμετρική απόσταση δορυφόρων-δέκτη) μετρήσεις: l στοχαστικό μοντέλο: W=σ 02 V (ψευδοαποστάσεις) (σ i =c cosecφ i ) Τύποι μετρήεων μέθοδοι δορυφορικού εντοπιμού μετρήεις ψευδοαποτάεων μετρήεις φάεων ΑΚΡΙΒΙΑ απόλυτος εντοπιμός χετικός εντοπιμός τατικός εντοπιμός κινηματικός εντοπιμός εκ των υτέρων εντοπιμός εντοπιμός

Διαβάστε περισσότερα

Επιθεώρηση Κοινωνικών Ερευνών

Επιθεώρηση Κοινωνικών Ερευνών Επιθεώρηση Κοινωνικών Ερευνών Τομ. 75, 1989 Φυσικό δίκαιο και ανθρώπινα δικαιώματα Κοτρογιάννος Δημήτρης 10.12681/grsr.925 Copyright 1989 To cite this article: Κοτρογιάννος (1989). Φυσικό δίκαιο και ανθρώπινα

Διαβάστε περισσότερα

M14/1/AYMGR/HP1/GRE/TZ0/XX

M14/1/AYMGR/HP1/GRE/TZ0/XX M14/1/AYMGR/HP1/GRE/TZ0/XX 22142045 MODERN GREEK A: LANGUAGE AND LITERATURE HIGHER LEVEL PAPER 1 GREC MODERNE A : LANGUE ET LITTÉRATURE NIVEAU SUPÉRIEUR ÉPREUVE 1 GRIEGO MODERNO A: LENGUA Y LITERATURA

Διαβάστε περισσότερα

NIVEAUX C1&C2 sur l échelle proposée par le Conseil de l Europe

NIVEAUX C1&C2 sur l échelle proposée par le Conseil de l Europe ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΡΑΤΙΚΟ ΠΙΣΤΟΠΟΙΗΤΙΚΟ ΓΛΩΣΣΟΜΑΘΕΙΑΣ MINISTÈRE DE L ÉDUCATION ET DES CULTES CERTIFICATION EN LANGUE FRANÇAISE NIVEAUX C1&C2 sur l échelle proposée par le Conseil de l

Διαβάστε περισσότερα

Αντί-κείμενο: Μία αινιγματική ασύμμετρη δυάδα

Αντί-κείμενο: Μία αινιγματική ασύμμετρη δυάδα Απαρχές και Διαμόρφωση του Αντικειμένου Αντί-κείμενο: Μία αινιγματική ασύμμετρη δυάδα Βασίλης Δημόπουλος Εξετάζουμε το αντικείμενο ως το άλλο που κείται απέναντι στο «εγώ», κείμενο αντί αυτού, αλλά και

Διαβάστε περισσότερα

Φλώρα Στάμου, Τριαντάφυλλος Τρανός, Σωφρόνης Χατζησαββίδης

Φλώρα Στάμου, Τριαντάφυλλος Τρανός, Σωφρόνης Χατζησαββίδης Φλώρα Στάμου, Τριαντάφυλλος Τρανός, Σωφρόνης Χατζησαββίδης. H «ανάγνωση» και η «παραγωγή» πολυτροπικότητας σε μαθησιακό περιβάλλον: πρώτες διαπιστώσεις απο μια διδακτική εφαρμογή. Μελέτες για την ελληνική

Διαβάστε περισσότερα

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ

Ολοκληρώματα. ΗΥ111 Απειροστικός Λογισμός ΙΙ ΗΥ- Απειροστικός Λογισμός ΙΙ Ολοκληρώματα Εφαρμογές Ολοκληρωμάτων Υπολογισμός μήκους Υπολογισμός εμβαδού Υπολογισμός όγκου Χρήση σε Τύπους/Μετρικές Φυσική Πιθανότητες Γραφική Θέματα Αναγνώρισης προτύπων

Διαβάστε περισσότερα

MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές παραδόσεις)

MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές παραδόσεις) ΓΕΩΡΓΙΟΣ Δ ΑΚΡΙΒΗΣ Τμήμα Πληροφορικής Πανεπιστήμιο Ιωαννίνων e-mail: akrivis@csuoigr ΝΙΚΟΛΑΟΣ Δ ΑΛΙΚΑΚΟΣ Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών e-mail: nalikako@mathuoagr MΕΡΙΚΕΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ (πανεπιστημιακές

Διαβάστε περισσότερα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα

Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία

Διαβάστε περισσότερα

Βασιλική Σαμπάνη 2013. Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας

Βασιλική Σαμπάνη 2013. Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας Βασιλική Σαμπάνη 2013 Μαντάμ Μποβαρύ: Αναπαραστάσεις φύλου και σεξουαλικότητας 200 Διαγλωσσικές Θεωρήσεις μεταφρασεολογικός η-τόμος Interlingual Perspectives translation e-volume ΜΑΝΤΑΜ ΜΠΟΒΑΡΥ: ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ

Διαβάστε περισσότερα

Τεχνικές του δράματος και Διδακτική των ζωντανών γλωσσών. Η συμβολή τους στη διαμόρφωση διαπολιτισμικής συνείδησης

Τεχνικές του δράματος και Διδακτική των ζωντανών γλωσσών. Η συμβολή τους στη διαμόρφωση διαπολιτισμικής συνείδησης Αντώνης Χασάπης 839 Αντώνης Χασάπης Εκπαιδευτικός, Μεταπτυχιακός ΠΔΜ, Ελλάδα Résumé Dans le domaine de la didactique des langues vivantes l intérêt de la recherche scientifique se tourne vers le développement

Διαβάστε περισσότερα

Essais sur le crédit, les banques et l équilibre macroéconomique

Essais sur le crédit, les banques et l équilibre macroéconomique Essais sur le crédit, les banques et l équilibre macroéconomique Vincent Bouvatier To cite this version: Vincent Bouvatier. Essais sur le crédit, les banques et l équilibre macroéconomique. Economies and

Διαβάστε περισσότερα

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού ΜΟΥΡΑΤΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού Μεταπτυχιακή Εργασία Ειδίκευσης που υποβλήθηκε στο πλαίσιο του Προγράμματος

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Προβολές και Μετασχηματισμοί Παρατήρησης

Προβολές και Μετασχηματισμοί Παρατήρησης Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει

Διαβάστε περισσότερα

Διάδοση Κυμάτων στα Υλικά. Δ. Ευταξιόπουλος

Διάδοση Κυμάτων στα Υλικά. Δ. Ευταξιόπουλος Διάδοση Κυμάτων στα Υλικά Δ. Ευταξιόπουλος 14 Φεβρουαρίου 01 Περιεχόμενα 1 Διάδοση κυμάτων σε ελαστικό μέσο άπειρων διαστάσεων 5 1.1 Τάσεις και παραμορφώσεις...................... 5 1. Ο νόμος Hooke για

Διαβάστε περισσότερα

Μεταπτυχιακές σπουδές στη Γαλλία

Μεταπτυχιακές σπουδές στη Γαλλία Μεταπτυχιακές σπουδές στη Γαλλία Πανεπιστήμιο Στερεάς Ελλάδος Λιβαδειά 9 Μαΐου 2012 Σπουδές στη Γαλλία Πανεπιστήμια χωρίς δίδακτρα Άριστο ακαδημαϊκό επίπεδο Διεθνής αναγνώριση Επαγγελματικές προοπτικές

Διαβάστε περισσότερα

Θα προσπαθήσω λοιπόν να περιγράψω την περιοχή που συναντιόνται η Τέχνη, το παιδί, η τεχνολογία και η εκπαίδευση.

Θα προσπαθήσω λοιπόν να περιγράψω την περιοχή που συναντιόνται η Τέχνη, το παιδί, η τεχνολογία και η εκπαίδευση. «Η σύγχρονη τεχνολογία στη διδακτική της Τέχνης» Μάνθος Σαντοριναίος Εργαστήριο Πολυμέσων διαδραστικών μέσων και βίντεο Τέχνης ΑΝΩΤΑΤΗΣ ΣΧΟΛΗΣ ΚΑΛΩΝ ΤΕΧΝΩΝ «The modern technology in art education» Manthos

Διαβάστε περισσότερα

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ

ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Υ.ΠΕ.ΧΩ..Ε. ΠΡΟΣΩΡΙΝΕΣ ΕΘΝΙΚΕΣ ΤΕΧΝΙΚΕΣ ΠΡΟ ΙΑΓΡΑΦΕΣ ΠΕΤΕΠ 13-05-03-00 13 Κατασκευή φραγµάτων 05 Όργανα µετρήσεων και παρακολούθησης της συµπεριφοράς φραγµάτων 03 Κατασκευή βάθρων τριγωνοµετρικών

Διαβάστε περισσότερα

Ανάπυξη ενός αυτοματοποιημένου συστήματος διαχείρησης δικτύων τεχνητών δορυφόρων

Ανάπυξη ενός αυτοματοποιημένου συστήματος διαχείρησης δικτύων τεχνητών δορυφόρων Ανάπυξη ενός αυτοματοποιημένου συστήματος διαχείρησης δικτύων τεχνητών δορυφόρων Ιάσονας Κύτρος Χρήστος Πόριος Νικήτας Τερζούδης Βαρβάρα Χατζηπαύλου Επιβλέπων Καθηγητής: Σιτσανλής Ηλίας Φεβρουάριος 2013

Διαβάστε περισσότερα

ΥΠΕΡΕΙΑ ΤΟΜΟΣ ΕΚΤΟΣ. ΠΡΑΚΤΙΚΑ ΣΤ ΙΕΘΝΟΥΣ ΣΥΝΕ ΡΙΟΥ «ΦΕΡΑΙ-ΒΕΛΕΣΤΙΝΟ-ΡΗΓΑΣ» Βελεστίνο, 4-7 Οκτωβρίου 2012 MEΡΟΣ B ΡΗΓΑΣ

ΥΠΕΡΕΙΑ ΤΟΜΟΣ ΕΚΤΟΣ. ΠΡΑΚΤΙΚΑ ΣΤ ΙΕΘΝΟΥΣ ΣΥΝΕ ΡΙΟΥ «ΦΕΡΑΙ-ΒΕΛΕΣΤΙΝΟ-ΡΗΓΑΣ» Βελεστίνο, 4-7 Οκτωβρίου 2012 MEΡΟΣ B ΡΗΓΑΣ ΥΠΕΡΕΙΑ ΤΟΜΟΣ ΕΚΤΟΣ ΠΡΑΚΤΙΚΑ ΣΤ ΙΕΘΝΟΥΣ ΣΥΝΕ ΡΙΟΥ «ΦΕΡΑΙ-ΒΕΛΕΣΤΙΝΟ-ΡΗΓΑΣ» Βελεστίνο, 4-7 Οκτωβρίου 2012 MEΡΟΣ B ΡΗΓΑΣ ΕΠΙΜΕΛΕΙΑ: ρ. ΗΜΗΤΡΙΟΣ ΑΠ. ΚΑΡΑΜΠΕΡΟΠΟΥΛΟΣ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΤΑΙΡΕΙΑ ΜΕΛΕΤΗΣ ΦΕΡΩΝ-ΒΕΛΕΣΤΙΝΟΥ-ΡΗΓΑ

Διαβάστε περισσότερα

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b

ΜΑΣ 303: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. u bu au, u au bu. c U du 0, d a b ΜΑΣ 33: Μεπικέρ Διαφοπικέρ Εξισώσειρ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Σελ 4 Φξεζηκνπνηώληαο ηελ αιιαγή κεηαβιεηώλ u bu cu Λύση: Έρνπκε κε ηελ αιιαγή κεηαβιεηώλ Άξα ε δνζείζα ΜΔΕ γξάθεηαη σο ή b b u( U ( u bu U u U bu θαη

Διαβάστε περισσότερα

Αθ.Κεχαγιας. v. 0.95. Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων. Σηµειωσεις : Θ. Κεχαγιας.

Αθ.Κεχαγιας. v. 0.95. Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων. Σηµειωσεις : Θ. Κεχαγιας. Σηµειωσεις : Λογισµος Συναρτησεων Πολλων Μεταβλητων και ιανυσµατικων Συναρτησεων v..95 Θ. Κεχαγιας Σεπτεµβρης 1 Περιεχόµενα Προλογος 1 Οριο και Συνεχεια 1 1.1 Θεωρια....................................

Διαβάστε περισσότερα

ΖΑΡΙΔΗ (1996). ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ ΤΗ ΣΤΟΙΧΕΙΩΔΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΚΕΡΚΥΡΑ ΤΟΝ 16ο ΑΙΩΝΑ. Ἑῶα καὶ Ἑσπέρια, 2, 110-134.

ΖΑΡΙΔΗ (1996). ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ ΤΗ ΣΤΟΙΧΕΙΩΔΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΚΕΡΚΥΡΑ ΤΟΝ 16ο ΑΙΩΝΑ. Ἑῶα καὶ Ἑσπέρια, 2, 110-134. Ἑῶα καὶ Ἑσπέρια Τομ. 2, 1996 ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ ΤΗ ΣΤΟΙΧΕΙΩΔΗ ΕΚΠΑΙΔΕΥΣΗ ΣΤΗΝ ΚΕΡΚΥΡΑ ΤΟΝ 16ο ΑΙΩΝΑ ΖΑΡΙΔΗ ΚΑΤΕΡΙΝΑ 10.12681/eoaesperia.32 Copyright 1996 To cite this article: ΖΑΡΙΔΗ (1996). ΠΛΗΡΟΦΟΡΙΕΣ ΓΙΑ

Διαβάστε περισσότερα

Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP

Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP Η ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ERP 2 1 ΠΛΑΙΣΙΟ ΓΙΑΤΙ ΕΝΕΡΓΕΙΑΚΗ ΣΗΜΑΝΣΗ ΚΑΙ ErP? Αντιμετωπίζοντας την κλιματική αλλαγή, διασφαλίζοντας την ασφάλεια της παροχής ενέργειας2 και την αύξηση της ανταγωνιστικότητα

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ 1. Ειδικοί Σκοποί ΓΑΛΛΙΚΗΣ ΓΛΩΣΣΑΣ Με τη διδασκαλία της γαλλικής γλώσσας στο Γυµνάσιο επιδιώκεται οι µαθητές να αναπτύξουν την επικοινωνιακή ικανότητα, και ειδικότερα: Να κατανοούν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Θέμα Α ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Στις παρακάτω ερωτήσεις πολλαπλής επιλογής Α-Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΠΡΕΣΒΕΙΑ ΣΠΙΤΙ ΤΗΣ ΚΥΠΡΟΥ ΕΚ ΗΛΩΣΕΙΣ NOΕMBΡIOY/ EKEMΒΡIOY 2011

ΚΥΠΡΙΑΚΗ ΠΡΕΣΒΕΙΑ ΣΠΙΤΙ ΤΗΣ ΚΥΠΡΟΥ ΕΚ ΗΛΩΣΕΙΣ NOΕMBΡIOY/ EKEMΒΡIOY 2011 ΚΥΠΡΙΑΚΗ ΠΡΕΣΒΕΙΑ ΕΚ ΗΛΩΣΕΙΣ NOΕMBΡIOY/ EKEMΒΡIOY 2011 ΓΙΑ ΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΕΡΗ ΕΠΙΚΟΙΝΩΝΙΑ ΜΑΣ ΠΑΡΑΚΑΛΟΥΜΕ, ΑΝ ΕΠΙΘΥΜΕΙΤΕ, ΝΑ ΜΑΣ ΑΠΟΣΤΕΙΛΕΤΕ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΣΑΣ ΔΙΕΥΘΥΝΣΗ e-mail: spiticy@otenet.gr

Διαβάστε περισσότερα

ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ. Young 12.1-12.7 Ζήσος Κεφ.8

ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ. Young 12.1-12.7 Ζήσος Κεφ.8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ Young 1.1-1.7 Ζήσος Κεφ.8 ΒΑΡΥΤΙΚΟ ΠΕΔΙΟ ΠΕΔΙΟ ΕΝΤΑΣΗ ΠΕΔΙΟΥ ΔΥΝΑΜΗ ΔΥΝΑΜΙΚΗ ΕΝΕΡΓΕΙΑ ΔΥΝΑΜΙΚΟ ΠΩΣ ΔΙΑΜΟΡΦΩΝΟΝΤΑΙ ΟΙ ΣΧΕΣΕΙΣ ΟΤΑΝ ΕΧΟΥΜΕ ΚΑΤΑΝΟΜΕΣ ΜΑΖΑΣ- ΓΗ ΚΙΝΗΣΗ ΔΟΡΥΦΟΡΩΝ ΚΙΝΗΣΗ ΠΛΑΝΗΤΩΝ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ

Διαβάστε περισσότερα

Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ

Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ Η ΔΙΑΣΤΡΕΥΛΩΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΜΕΣΩ ΤΩΝ SOCIAL MEDIA ΤΗΝ ΤΕΛΕΥΤΑΙΑ ΠΕΝΤΑΕΤΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΗΣ ΑΝΑΣΤΑΣΙΑΣ-ΜΑΡΙΝΑΣ ΔΑΦΝΗ Τμήμα Δημοσίων Σχέσεων & Επικοινωνίας Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ιονίων

Διαβάστε περισσότερα

Monsieur Pierre Fabre Président Fondateur

Monsieur Pierre Fabre Président Fondateur Les Laboratoires Pierre Fabre, second groupe pharmaceutique indépendant francais, ont réalisé un chiffre d affaires de près de 2 milliards d euros en 2012, don t 54% à l international. Leurs activités

Διαβάστε περισσότερα

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν

Διαβάστε περισσότερα

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ

Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Αναλυτικός υπολογισµός των πεδίων τάσεων και παραµορφώσεων γύρω από τυπικές πεταλοειδείς διατοµές ΝΑΤΜ Ο. Αγγελοπούλου & Σ. Καρανάσιου Αγρονόµος Τοπογράφος Μηχανικός Ε.Μ.Π. Μ. Σακελλαρίου Αναπληρωτής Καθηγητής

Διαβάστε περισσότερα

L A TEX 2ε. mathematica 5.2

L A TEX 2ε. mathematica 5.2 Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica

Διαβάστε περισσότερα

Εργαστηριακή εισήγηση

Εργαστηριακή εισήγηση 2o Πανελλήνιο Εκπαιδευτικό Συνέδριο Ημαθίας ΠΡΑΚΤΙΚΑ Εργαστηριακή εισήγηση «Διδασκαλία της Γαλλικής Γλώσσας με τη χρήση ΤΠΕ και εκπαιδευτικού λογισμικού σε μαθητές Πρωτοβάθμιας και Δευτεροβάθμιας εκπαίδευσης»

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 1 Νόμος Coulomb, ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 21 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 1 Νόμος Coulomb, ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 21 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ Νόμος Coulomb, ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, Φεβρουαρίου 4 Ηλεκτρικό φορτίο Φόρτιση με τριβή Αρνητικά φορτισμένη λαστιχένια ράβδος απωθεί γυάλινη θετικά φορτισμένη ράβδο Δύο ειδών φορτία Τα

Διαβάστε περισσότερα

Βυζαντινός Κόσμος και Εννοιολογική Ιστορία

Βυζαντινός Κόσμος και Εννοιολογική Ιστορία Arabatzis, G., 2013. Βυζαντινός Κόσμος και Εννοιολογική Ιστορία. In M. Tsianikas, N. Maadad, G. Couvalis, and M. Palaktsoglou (eds.) "Greek Research in Australia: Proceedings of the Biennial International

Διαβάστε περισσότερα

Μεταπτυχιακές σπουδές στη Γαλλία. Πανεπιστήμιο Θεσσαλίας 1η Δεκεμβρίου 2010

Μεταπτυχιακές σπουδές στη Γαλλία. Πανεπιστήμιο Θεσσαλίας 1η Δεκεμβρίου 2010 Μεταπτυχιακές σπουδές στη Γαλλία Πανεπιστήμιο Θεσσαλίας 1η Δεκεμβρίου 2010 Σπουδέςανοικτέςσεόλους -2 200 000 φοιτητές στη Γαλλία -270.000 ξένοι φοιτητές (12% ) -4η χώρα υποδοχής ξένων φοιτητών Οι ξένοι

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΧΕ ΙΟ ΣΤΡΑΤΗΓΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ ΠΡΟΣ ΙΑΒΟΥΛΕΥΣΗ ΚΟΡΩΠΙ, ΜΑΡΤΙΟΣ 2008 ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΗ... 2 I. Σκοπός του Επιχειρησιακού Προγράµµατος...3 ii. Οµάδα Εργου...5 iii. Ενηµέρωση 12121212

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont

www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι

Διαβάστε περισσότερα

2.3. Ο ΦΥΓΙΚΟΣ ΡΕΑΛΙΣΜΟΣ ΤΟΥ M. PROUST ΚΑΙ Η ΑΙΣΘΗΤΙΚΗ ΤΩΝ «ΑΝΑΜΕΤΡΗΣΕΩΝ»

2.3. Ο ΦΥΓΙΚΟΣ ΡΕΑΛΙΣΜΟΣ ΤΟΥ M. PROUST ΚΑΙ Η ΑΙΣΘΗΤΙΚΗ ΤΩΝ «ΑΝΑΜΕΤΡΗΣΕΩΝ» 2.3. Ο ΦΥΓΙΚΟΣ ΡΕΑΛΙΣΜΟΣ ΤΟΥ M. PROUST ΚΑΙ Η ΑΙΣΘΗΤΙΚΗ ΤΩΝ «ΑΝΑΜΕΤΡΗΣΕΩΝ» Ο Μarcel Proust αναζητώντας τον «χαμένο χρόνο» 9 αναβιώνει θέματα των ιμπρεσσιονιστών ζωγράφων. Εδώ ευρίσκεται η ουσία ενός παραισθητικού

Διαβάστε περισσότερα

Βυζαντινά Σύμμεικτα. Τομ. 14, 2001

Βυζαντινά Σύμμεικτα. Τομ. 14, 2001 Βυζαντινά Σύμμεικτα Τομ. 14, 2001 Αναζητώντας την εικόνα του Ελκομένου της Μονεμβασίας. Το χαμένο παλλάδιο της πόλης και η επίδρασή του στα υστεροβυζαντινά μνημεία του νότιου ελλαδικού χώρου ΦΩΣΚΟΛΟΥ Βασιλική

Διαβάστε περισσότερα

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B

εάν F x, x οµόρροπα εάν F x, x αντίρροπα B = T W T = W B 4 Εργο και Ενέργεια 4.1 Εργο σε µία διάσταση Το έργο µιας σταθερής δύναµης F x, η οποία ασκείται σε ένα σώµα που κινείται σε µία διάσταση x, ορίζεται ως W = F x x Εργο ύναµης = ύναµη Μετατόπιση Εχουµε

Διαβάστε περισσότερα

Β. ΦΥΛΛΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ

Β. ΦΥΛΛΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ Β. ΦΥΛΛΟ ΟΔΗΓΙΩΝ ΧΡΗΣΗΣ Variation FR/H/100/01/II/039 approval 012016 1 Φύλλο οδηγιών χρήσης: Πληροφορίες για τον χρήστη Fludex 1,5 mg επικαλυμμένα με λεπτό υμένιο δισκία παρατεταμένης αποδέσμευσης Ινδαπαμίδη

Διαβάστε περισσότερα

Θέμα εργασίας: Η διάκριση των εξουσιών

Θέμα εργασίας: Η διάκριση των εξουσιών Μάθημα: Συνταγματικό Δίκαιο Εξάμηνο: Α Υπεύθυνος καθηγητής: κ. Δημητρόπουλος Ανδρέας Θέμα εργασίας: Η διάκριση των εξουσιών Ονοματεπώνυμο: Τζανετάκου Βασιλική Αριθμός μητρώου: 1340200400439 Εξάμηνο: Α

Διαβάστε περισσότερα

Θεσµοί και Ιδεολογία στη νεοελληνική κοινωνία 15 ος - 19 ος αι.

Θεσµοί και Ιδεολογία στη νεοελληνική κοινωνία 15 ος - 19 ος αι. ΕΘΝΙΚΟ Ι ΡΥΜΑ ΕΡΕΥΝΩΝ ΚΕΝΤΡΟ ΝΕΟΕΛΛΗΝΙΚΩΝ ΕΡΕΥΝΩΝ Θεσµοί και Ιδεολογία στη νεοελληνική κοινωνία 15 ος - 19 ος αι. ΠΡΩΤΟΣ ΑΠΟΛΟΓΙΣΜΟΣ ΕΝΟΣ ΕΡΕΥΝΗΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΘΗΝΑ 2004 Πρόλογος Το φθινόπωρο του 2000

Διαβάστε περισσότερα

Σύνταξη: Γκέσος Παύλος (ΣΣΕ 2002) Καθηγητής: Σαπουντζάκης Ευάγγελος Βοηθός: Λαγαρός Νικόλαος

Σύνταξη: Γκέσος Παύλος (ΣΣΕ 2002) Καθηγητής: Σαπουντζάκης Ευάγγελος Βοηθός: Λαγαρός Νικόλαος ΘΕΡΙΕΣ ΚΑΜΨΗΣ, ΔΙΑΜΗΣΗΣ ΚΑΙ ΣΡΕΨΗΣ ΔΟΚΟΥ Κάμψη Διάτμηση Timoshenko, Κάμψη Euler Bernoulli, Ελαστική Θεωρία Διάτμησης, Ανομοιόμορφη Στρέψη, Ανομοιόμορφη Στρέψη με γενείς Παραμορφώσεις ΜΕΑΔΟΣΗ ΗΣ ΣΡΕΒΛΣΗΣ

Διαβάστε περισσότερα

Ηαχόρταγη μικρή κάμπια. La chenille qui fait des trous. Ηαχόρταγη μικρή κάμπια. La chenille qui fait des trous

Ηαχόρταγη μικρή κάμπια. La chenille qui fait des trous. Ηαχόρταγη μικρή κάμπια. La chenille qui fait des trous Ηαχόρταγη μικρή κάμπια La chenille qui fait des trous Ηαχόρταγη μικρή κάμπια La chenille qui fait des trous Μια νύχτα με φεγγάρι κάποιο μικρό αυγoυλάκι ήταν ακουμπισμένο πάνω σ ένα φύλλο. Dans la lumière

Διαβάστε περισσότερα

Ένα κερδοφόρο επάγγελμα

Ένα κερδοφόρο επάγγελμα Ένα κερδοφόρο επάγγελμα Μόλις είχα κλείσει τα σαράντα και η πραγματική ζωή εξακολουθούσε για μένα να είναι ένας προορισμός: θα βρω μόνιμη δουλειά, θα αγοράσω σπίτι, θα κάνω παιδιά, θα ασφαλιστώ, θα πάρω

Διαβάστε περισσότερα

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ

ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των

Διαβάστε περισσότερα

Κεφάλαιο T1. Ταλαντώσεις

Κεφάλαιο T1. Ταλαντώσεις Κεφάλαιο T1 Ταλαντώσεις Ταλαντώσεις και µηχανικά κύµατα Η περιοδική κίνηση είναι η επαναλαµβανόµενη κίνηση ενός σώµατος, το οποίο επιστρέφει σε µια δεδοµένη θέση και µε την ίδια ταχύτητα µετά από ένα σταθερό

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Επιτραπέζιος Η/Υ K30AM / K30AM-J Εγχειρίδιο χρήστη

Επιτραπέζιος Η/Υ K30AM / K30AM-J Εγχειρίδιο χρήστη Επιτραπέζιος Η/Υ K30AM / K30AM-J Εγχειρίδιο χρήστη GK9380 Ελληνικα Πρώτη Έκδοση Μάιος 2014 Copyright 2014 ASUSTeK Computer Inc. Διατηρούνται όλα τα δικαιώματα. Απαγορεύεται η αναπαραγωγή οποιουδήποτε τμήματος

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΝΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΚΕΝΤΡΙΚΗΣ ΒΙΒΛΙΟΘΗΚΗΣ.Π.Θ. (OPAC) Ο ΗΓΙΕΣ ΑΝΑΖΗΤΗΣΗΣ

ΗΛΕΚΤΡΟΝΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΚΕΝΤΡΙΚΗΣ ΒΙΒΛΙΟΘΗΚΗΣ.Π.Θ. (OPAC) Ο ΗΓΙΕΣ ΑΝΑΖΗΤΗΣΗΣ ΗΛΕΚΤΡΟΝΙΚΟΣ ΚΑΤΑΛΟΓΟΣ ΚΕΝΤΡΙΚΗΣ ΒΙΒΛΙΟΘΗΚΗΣ.Π.Θ. (OPAC) Ο ΗΓΙΕΣ ΑΝΑΖΗΤΗΣΗΣ ΤΙ ΕΙΝΑΙ Ο ΗΛΕΚΤΡΟΝΙΚΟΣ ΚΑΤΑΛΟΓΟΣ OPAC - Online Public Access Catalogue Είναι µία ηλεκτρονική βάση δεδοµένων, στην οποία καταγράφεται

Διαβάστε περισσότερα

Περιεχόμενα. Εισαγωγή... 11

Περιεχόμενα. Εισαγωγή... 11 Περιεχόμενα Εισαγωγή........................................................... 11 1. Η πάλη των τάξεων............................................... 15 2. Ο πόλεμος των πόλεων............................................

Διαβάστε περισσότερα

A.G.M. Decisions. As per attachments. 0051/00008127/en General Meeting AIAS INVESTMENT PUBLIC LTD AIAS

A.G.M. Decisions. As per attachments. 0051/00008127/en General Meeting AIAS INVESTMENT PUBLIC LTD AIAS 0051/00008127/en General Meeting AIAS INVESTMENT PUBLIC LTD AIAS As per attachments A.G.M. Decisions Attachments: 1. Dilosi Katochis 2. Dilosi Katochis 3. Dilosi Katochis 4. Announcement Non Regulated

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Επιστήμη και Δημοσιογραφία. Δημοσιογραφία Επιστήμης Μπορούν να αποτυπωθούν δημοσιογραφικά τα αποτελέσματα της επιστήμης;

Επιστήμη και Δημοσιογραφία. Δημοσιογραφία Επιστήμης Μπορούν να αποτυπωθούν δημοσιογραφικά τα αποτελέσματα της επιστήμης; Δημοσιογραφία Μπορούν να αποτυπωθούν δημοσιογραφικά τα αποτελέσματα της επιστήμης; Μενέλαος Σωτηρίου 8ο Συνέδριο «Ελληνική Γλώσσα και Ορολογία», Αθήνα, 10-12 Νοεμβρίου 2011 Επιστήμη και Δημοσιογραφία «Η

Διαβάστε περισσότερα

Νόµοι του Νεύτωνα και εφαρµογή στην κίνηση των σωµάτων

Νόµοι του Νεύτωνα και εφαρµογή στην κίνηση των σωµάτων 2 Νόµοι του Νεύτωνα και εφαρµογή στην κίνηση των σωµάτων 2.1 Νόµοι του Νεύτωνα Πρώτος Νόµος του Νεύτωνα Ενα σώµα παραµένει στην ίδια κατάσταση ηρεµίας ή κίνησης µε σταερή ταχύτητα, εάν δεν ασκείται πάνω

Διαβάστε περισσότερα

Από την παρουσία-ση (présence-présentation) στην αναπαράσταση (re-présentation): οι δύο χρόνοι του επίκαιρου στην εισήγηση του Scarfone 1

Από την παρουσία-ση (présence-présentation) στην αναπαράσταση (re-présentation): οι δύο χρόνοι του επίκαιρου στην εισήγηση του Scarfone 1 Από την παρουσία-ση (présence-présentation) στην αναπαράσταση (re-présentation): οι δύο χρόνοι του επίκαιρου στην εισήγηση του Scarfone 1 Γιώργος ΣΤΑΘΟΠΟΥΛΟΣ Η ενδιαφέρουσα και πλούσια σε ιδέες εργασία

Διαβάστε περισσότερα

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ» I ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ «ΔΙΟΙΚΗΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΑ» ΚΑΤΕΥΘΥΝΣΗ: ΟΙΚΟΝΟΜΙΚΗ

Διαβάστε περισσότερα

ΠΩΣ ΣΥΚΡΙΝΟΝΤΑΙ ΤΑ ΤΡΑΠΕΖΙΚΑ ΜΕ ΤΑ ΑΣΦΑΛΙΣΤΙΚΑ ΑΠΟΤΑΜΙΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ.

ΠΩΣ ΣΥΚΡΙΝΟΝΤΑΙ ΤΑ ΤΡΑΠΕΖΙΚΑ ΜΕ ΤΑ ΑΣΦΑΛΙΣΤΙΚΑ ΑΠΟΤΑΜΙΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ. This paper has been published in University of Piraeus Volume of essays in Honor of Professor M. Raphael 2000, pp 347-372. ΠΩΣ ΣΥΚΡΙΝΟΝΤΑΙ ΤΑ ΤΡΑΠΕΖΙΚΑ ΜΕ ΤΑ ΑΣΦΑΛΙΣΤΙΚΑ ΑΠΟΤΑΜΙΕΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ. Καθ.

Διαβάστε περισσότερα

Ο ΠΥΡΓΟΣ. Εμμανουήλ Φαϊτός. Published by Emmanuel Phaetos at Smashwords. Copyright 2013 Emmanuel Phaetos. Smashwords Edition

Ο ΠΥΡΓΟΣ. Εμμανουήλ Φαϊτός. Published by Emmanuel Phaetos at Smashwords. Copyright 2013 Emmanuel Phaetos. Smashwords Edition Ο ΠΥΡΓΟΣ Εμμανουήλ Φαϊτός Published by Emmanuel Phaetos at Smashwords Copyright 2013 Emmanuel Phaetos Smashwords Edition Smashwords Edition, License Notes Thank you for downloading this free e-book. Although

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ! ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ! ΘΥΜΑΡΑ Μ. Μ. 11 Ο Γυμνάσιο Πειραιά, Δ/νση Β/Θμιας Εκπ/σης Πειραιά e-mail: margthym@yahoo.gr ΠΕΡΙΛΗΨΗ Το πρόγραμμα της διαμόρφωσης των σχολικών

Διαβάστε περισσότερα

Επιτραπέζιος Η/Υ ASUS M12AD and M52AD Εγχειρίδιο χρήστη

Επιτραπέζιος Η/Υ ASUS M12AD and M52AD Εγχειρίδιο χρήστη Επιτραπέζιος Η/Υ ASUS M12AD and M52AD Εγχειρίδιο χρήστη M12AD M52AD GK9559 Πρώτη Έκδοση Ιούλιος 2014 Copyright 2014 ASUSTeK Computer Inc. Διατηρούνται όλα τα δικαιώματα. Απαγορεύεται η αναπαραγωγή οποιουδήποτε

Διαβάστε περισσότερα

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*) Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*) Σ. Αναγνωστάκης 1, Α. Μαργετουσάκη 2, Π. Γ. Μιχαηλίδης 3 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστημίου Κρήτης 1 sanagn@edc.uoc.gr,

Διαβάστε περισσότερα

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis

Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3 Αδρανειακά συστήµατα αναφοράς, µετασχηµατισµός Γαλιλαίου. Περιστρεφόµενα συστήµατα αναφοράς, δύναµη Coriolis 3.1 Αδρανειακά και επιταχυνόµενα συστήµατα αναφοράς Οι δύο πρώτοι νόµοι του Νεύτνα ισχύουν

Διαβάστε περισσότερα

ΑΝΝΑ ΤΑΜΠΑΚΗ. Ιστορία και θεωρία της µετάφρασης 18 ος αιώνας Ο Διαφωτισµός

ΑΝΝΑ ΤΑΜΠΑΚΗ. Ιστορία και θεωρία της µετάφρασης 18 ος αιώνας Ο Διαφωτισµός ΑΝΝΑ ΤΑΜΠΑΚΗ Ιστορία και θεωρία της µετάφρασης 18 ος αιώνας Ο Διαφωτισµός Αθήνα 1995 Η εργασία αυτή εκπονήθηκε στο πλαίσιο του προγράµµατος του Κέντρου (τώρα Ινστιτούτου) Νεοελληνικών Ερευνών του Εθνικού

Διαβάστε περισσότερα