Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1"

Transcript

1 me Ivarat Regressor Nolear Pael Model wt Fxed ffects Jyog Ha UCLA February 26, 23 I am grateful to Da Ackerberg ad Jerry Hausma for elpful commets.

2 Abstract s paper geeralzes Hausma ad aylor s (98) tuto, ad develop a metod of dealg wt tme-varat regressor olear pael model wt Þxed effects. e metod requres large umber of observatos per dvdual ( ) as well as a large umber of dvduals ().

3 Itroducto Pael data allow te possblty of cotrollg for uobserved dvdual specþc effects, wc may be correlated wt observed explaatory varables. I lear models, suc Þxed effects are usually elmated by dfferecg, wc yelds a model free of suc cdetal parameter. A uteded cosequece of dfferecg s tat t also elmates tme-varat regressor, wc reders te coeffcet of te tmevarat regressor udetþed. Hausma ad aylor (98) used a strumetal varables approac to overcome suc problem. I ts paper, I geeralze ter tuto, ad develop a metod of dealg wt tme-varat regressor te olear framework. s metod requres large umber of observatos per dvdual ( ), so ts applcablty s lmted to te case were s large. Because te strumetal varables estmato requres a large umber of dvduals (), I adopt a asymptotc framework were bot ad grow to Þty at te same rate. s result s made possble by recet teccal progress of pael aalyss uder suc alteratve asymptotcs. See, e.g., Arellao (2), Ha ad Kuersteer (22, 23), Ha ad Newey (22), ad Wouterse (22). 2 Prelmares Suppose tat we are gve a set of momet restrctos [g (y t, γ wδ x tθ )] =, =,...,; t =,..., () for some vector-valued fucto g, were y t, x t,adw deote te depedet varable te tt perod, tme-varyg regressor te tt perod, ad tme-varat regressor. Uobserved dvdual specþc effects are summarzed by te scalar varable γ. Our prmary focus s to estmate te coeffcet δ of te tme-varat regressor w we γ s possbly correlated wt w ad x t. We ow dscuss ow te parameters ca be cosstetly estmated. If bot ad grow to Þty at te same rate, θ ca be -cosstetly estmated. Lettg α γ wδ we ca rewrte te model as [g (y t, α x tθ )] =, to wc we ca apply varats of recetly developed metods dscussed Arellao (2), Ha ad Kuersteer (22, 23), Ha ad Newey (22), ad Wouterse (22). erefore, te coceptual callege s to develop a cosstet estmator of δ. For ts purpose, we assume tat te data are..d. over : Codto ({y,y 2,...},{x,x 2,...},z,w, γ ) s..d. over. Suppose for a momet tat we observe α. Also suppose tat we observe a addtoal varable z wt dm (z )=dm(w ) adsuctat It s easy to geeralze te dscusso to te over-detþed case were dm (z ) > dm (w ). Because te prmary purpose of ts paper s detþcato ad cosstet estmato of δ, I focus o te exactly detþed case.

4 Codto 2 () [z γ ]=;()[z w ] s osgular It s clear tat we ca estmate δ by e δ ( P z w) ( P z α ). It s easy to see tat ts estmator s cosstet for δ as. Hausma ad aylor s (98) tuto was tat e δ would rema cosstet eve f we replace α by a ubased estmate. I te olear cotext, t seems dffcult to come up wt suc a ubased estmator for α. erefore, Hausma ad aylor s (98) metod caot be drectly appled. e basc tuto ts paper s tat, we bot ad grow to Þty at te same rate, we cacomeupwta -cosstet estmator for α,saybα. Because te estmato error becomes very smaller as te sample sze creases, te IV estmator b δ z w z bα wll be cosstet for δ geeral. 3 Cosstet stmato of α Let u (t ; θ, α ) g ( t ; θ, α ) v ( t ; θ, α ) were t (y,...,y,x,...,x ),adweredm (θ) =dm(u) =p ad dm (α) =dm(v) =. We assume tat [g ( t ; θ, α )] =, ad cosder te estmator tat solves = u ³ t ; b θ, bα = t= v ³ t ; bθ, bα t= s dcates tat we are separatg g to two compoets. e Þrst compoet u s used trougout te sample for estmato of θ. e secod compoet v s used oly for te t dvdual to estmate α. s separato was adopted because I wated to explot some recet teccal developmet Ha ad Kuersteer (23) or Ha ad Newey (22). I do ot expect ts separato to be costrag practce. For example, te case of lear models y t = α x tθ ε t (2) wt x t strctly exogeous, we may take u ( t ; θ, α ) = x t (y t α x tθ) v ( t ; θ, α ) = y t α x tθ 2

5 were y P t= y t ad x P t= x t. Note tat ts wll result te usual Þxed effects estmator of θ. We assume followg regularty codtos: Codto 3 () Gve tme-varat varables (α,z,w ), (y t,x t ) s..d. over t; () for every, G () (θ, α )=; () for eac η >, f f {(θ,α): (θ,α) (θ,α ) >η} G () (θ, α) >, were bg () (θ, α ) P t= g ( t; θ, α ), G () (θ, α ) [g ( t ; θ, α )]. Codto 4, suc tat ρ, were < ρ <. Codto 5 () e fucto g ( ; θ, α) s cotuous (θ, α) Υ; () e parameter space Υ s compact; () ere exsts a fucto M ( t ) suc tat mm2 g ( t ; θ, α ) m α m2 M ( t) m m 2,...,6 ad sup M ( t ) Q < for some Q>64. Codto 6 () m v ( t ; θ, α ) 2 > ; () lm P I >, were U ( t ; θ, α ) ³ u ( t ; θ, α ) ρ v ( t ; θ, α ), ρ v(t;θ,α ) α u(t;θ,α ) α,adi U(t;θ,α ). We ca sow tat bα are uformly cosstet for α. eorem Uder Codtos 3, 4, 5, ad 6, we ave (bα α )=λ κ, were µ λ vt /2 α t= v t = O p () ad Pr [ κ ]=o (). Here, v t v t ( t, θ, α ). Proof. See Appedx C. 4 IV stmato of δ Recall tat, f α s kow, we could ave estmate δ by e δ z w z α. (3) Because t s ot kow, we ca replace α by bα, ad cosder b δ z w z bα. (4) 3

6 eorem mples tat we ave ³ bδ δ = z w /2 z γ /2 /2 z λ o p () Note tat, f z λ = P t= z v t does ot ave a zero expectato, t would complcate asymptotc aalyss. We terefore assume tat te strumet z satsþes [z v t ]=. Codto 7 [v t z ]= Codto 7 guaratees tat te error estmato of α does ot complcate te ferece regardg bδ. Suc codto was adopted by Hausma ad aylor (98). We ave v t = ε t te lear model (2), ad Hausma ad aylor s strumet z for suc lear model s requred to satsfy [z ε t ]=. It turs out tat te substtuto of bα for α (3) does ot affect te asymptotc dstrbuto of te resultat estmator (4). It s because /2 /2 P z λ = o p () uder Codtos 3, ad 7. We terefore obta ³ bδ δ = z w /2 z γ o p () Note tat ³ eδ δ = z w /2 z γ o p () as well. s s a tutve result. Note tat b δ s a IV estmator of bα o w.becausebα s a proxy for α, ad because te measuremet error dsappears as, we sould expect tat te asymptotc dstrbuto of ³ bδ δ sould be detcal to tat of ³ eδ δ uder te large asymptotcs. As a cosequece, we obta eorem 2 Assume Codtos, 2, 3, 4, 5, 6, ad 7. Furter assume tat [ z w ] < ad γ 2 z z <. Weteave ³ ³ bδ δ N, ( [z w ]) γ 2 z z ]) ( [w z. 5 Summary ad Future Work I ts paper, I geeralzed Hausma ad aylor s (98) result to olear pael models wt Þxed effects. e result s expected to ave a mplcato for some olear models of socal teractos. ssbecausetemodel() could be uderstood as a model wt some partcular kds of socal effects. Followg te termology troduced by Mask (993), let y t deote te outcome of te tt dvdual of te t group. Also, let x t deote te dvdual level caracterstcs tat operate at te dvdual level oly. If w s equal to te group average [y t ] of y t, te te model cotas edogeous socal effects. If w s equal to te group average [x t ] of x t, te te model cotas exogeous (cotextual) socal effects. Fally γ, wc s ot observed by te ecoometrca, captures te presece of correlated 4

7 group effects. erefore, te result ts paper may be applcable to some partcular class of models of socal teractos. 2 2 IdetÞcato of δ wt varous kds of socal effects s expected to requre some more fuctoal restrcto, suc as te excluso restrcto cosdered by Graam ad Ha (23), or selecto effects as cosdered by Brock ad Durlauf (2). Nolear models of socal teracto are expected to be plagued by multple equlbra geeral. erefore, t s mportat tat te model () s ot uderstood as te Þrst order codto of te log lkelood. After all, textbook style lkelood may ot ext. e model () sould be uderstood as a set of momet restrctos tat are vald regardless of te potetal multplcty of equlbra.wt multple equlbra, te..d. assumpto Codto may soud puzzlg. Suc puzzle would dsappear f te equlbrum selecto s cosdered as a Þxed effect, altoug t does ot appear te model (). 5

8 Appedx A Cosstecy Lemma Assume tat W t are d wt [W t ]=ad Wt 2k <. e, ³P 2k t= W t = C(k) k o( k ) for some costat C(k). Proof. By adoptg a argumet te proof of Lemma 5. Lar (992), we ave ³P 2k t= W P t = 2k P C (α,..., α j ) P j= α I jq s= W α s t s, (5) were for eac Þxed j {,..., 2k}, P α exteds over all j-tuples of postve tegers (α,..., α j ) suc tat α... α j =2k ad P I exteds over all ordered j-tuples (t,..., t j ) of tegers suc tat t j. Also, C(α,..., α j ) stads for a bouded costat. Note, tat f j>kte at least oe of te dces Qj α j =. By depedece ad te fact tat [W t ]=tfollows tat s= W t αs s =weever j>k. ³P s sows tat t= W t 2k C (k) k Wt 2k for some costat C(k). Lemma 2 Suppose tat, for eac, {ξ t,t=, 2,...} s a sequece of zero mea..d. radom varables. We assume tat {ξ t,t=, 2, 3} are depedet across. We also assume tat ξ t 6 <. Fally, we assume tat = O ( ). Weteave Pr for every η >. ξ > η = o 2 t t= Proof. Usg Lemma, weobta 6 ξ C t 8 ξ 6 t, t= were C>s a costat. erefore, we ave 2 Pr ξ > η t 2 C8 6 η 6 ξ 6 t or t= 2 Pr ξ > η C t 6 η t= 6 ξ 6 t = o (). 6

9 Lemma 3 Suppose tat Codtos 4 ad 5 old. We te ave for all η > tat Pr sup bg () (θ, α) G () (θ, α) η = o (θ,α) Proof. Let η > be gve. We ote tat Pr sup bg () (θ, α) G () (θ, α) η (θ,α) Pr sup bg () (θ, α) G () (θ, α) η. (6) Let ε > be cose suc tat 2ε [M ( t )] < η 3. Dvde Υ to subsets Υ, Υ 2,...,Υ M(ε) suc tat (θ, α) θ, α < ε weever (θ, α) ad θ, α are te same subset. Let (θ j, α j ) deote some pot Υ j for eac j. e, sup bg () (θ, α) G () (θ, α) =sup bg () (θ, α) G () (θ, α), (θ,α) j Υ j ad terefore Pr sup bg M(ε) () (θ, α) G () (θ, α) η Pr sup bg () (θ, α) G () (θ, α) η (7) (θ,α) j= Υ j For (θ, α) Υ j,weave bg () (θ, α) G () (θ, α) bg () (θ j, α j ) G () (θ j, α j ) ε (M ( t ) [M ( t )]) 2ε [M ( t)] (θ,α) t= e, Pr sup bg () (θ, α) G () (θ, α) η Υ j Pr bg () (θ j, α j ) G () (θ j, α j ) η 3 = o 2 Pr (M ( t ) [M ( t )]) η 3ε t= (8) by Lemma 2. Combg (6), (7), (8), ad = O ( ), we obta te desred cocluso. eorem 3 Uder Codtos 4, 5, ad 3, Pr b θ θ η = o for every η >. ³ ³ Proof. It s useful to ote bθ, bα,...,bα solves bg () bθ, bα =for every. I oter words, ³ bθ, bα,...,bα solves m P bg () (θ, α ). Letη be gve, ad let ε f f (θ,α) (θ,α ) >η G() (θ, α). Note tat ε >. Wt probablty equal to o,weave m bg () (θ, α ) m θ θ >η,α,...,α (θ,α) (θ bg () (θ, α ),α ) >η > m (θ,α) (θ,α ) >η > 2 ε > = 7 bg () ³ bθ, bα, G() (θ, α ) 2 ε

10 were te secod ad fourt ³ equaltes are based o Lemma 3, ad te last equalty follows from te deþto of te estmators bθ, bα,...,bα. We ca terefore coclude tat Pr b θ θ η = o. eorem 4 Uder Codtos 4, 5, ad 3, Pr [ bα α η] =o for every η >. Proof. We Þrst prove tat Pr bg ³ () bθ, α G () (θ, α) η = o () (9) sup α for every η >. Notetat sup bg ³ () bθ, α G () (θ, α) α sup bg ³ ³ ³ () bθ, α G () bθ, α sup G () bθ, α G () (θ, α) α α sup bg () (θ, α) G () (θ, α) [M ( t)] bθ θ. erefore, (θ,α) Pr Pr sup α sup (θ,α) Pr b θ θ = o () bg ³ () bθ, α G () (θ, α) η bg () (θ, α) G () (θ, α) η 2 η 2( [M ( t )]) by Lemma 3 ad eorem 3. We ow get back to te proof of eorem 4. It suffces to prove tat Pr bα α η = o () for every η >. Let η be gve, ³ ad let ε f f {α: α α >η} G () (θ, α ) >. Codto o te evet sup α bg () bθ, α G () (θ, α) 3 o, ε wc as a probablty equal to o by (9). We te ave m α α >η bg ³ () bθ, α > m α α >η ad terefore, bα α η for every. G () (θ, α ) 2 ε > ³ 2 ε > = G() b bθ, bα, 8

11 B xpaso Lettg U ( t ; θ, α ) u ( t ; θ, α ) ρ v ( t ; θ, α ) µ u (t ; θ, α ) v (t ; θ, α ) ρ α v ( t ; θ, bα (θ)) t= V ( t ; θ, α ) v ( t ; θ, α ) we ca recogze tat b θ s a soluto to = U t= ³ ³ t ; bθ, bα b θ. ³ Let F (F,...,F ) deote te collecto of dstrbuto fuctos. Let bf F b,..., bf, were bf deotes te emprcal dstrbuto fucto for te stratum. DeÞe F (²) F ² ³ F b F for ², /2.ForeacÞxed θ ad ², letα (θ,f (²)) be te soluto to te estmatg equato = V [θ, α (θ,f (²))] df (²), α ad let θ (F (²)) be te soluto to te estmatg equato = U ( t ; θ (F (²)), α (θ (F (²)),F (²))) df (²). By aylor seres expaso, we ave ³ θ F b θ (F )= θ ² () µ 2 θ ²² () µ 3 θ ²²² (e²), 2 6 were θ ² (²) dθ (F (²))/ d², θ ²² (²) d 2 θ (F (²)) ± d² 2,...,ade² s somewere betwee ad /2. We terefore ave ³ ³ θ bf θ (F ) = θ ² () µ 2 θ ²² () r θ ²²² (e²). () 2 6 e last term () ca be sow to be o p () bytesamemetodashaadnewey(22). Let (,²) U ( ; θ (F (²)), α (θ (F (²)),F (²))) () e Þrst order codto may be wrtte as = (,²) df (²) (2) 9

12 Dfferetatg repeatedly wt respect to ², weobta = d (,²) df (²) (,²) d (3) d² = d 2 (,²) d² 2 df (²)2 d (,²) d (4) d² = d 3 (,²) d² 3 df (²)3 d 2 (,²) d² 2 d (5) were ³ F b F. B. θ ² () Because d (,²) d² = (,²) (,²) α α α we may rewrte (3) as = µ (,²) (,²) α valuatg at ² =, ad otg tat U =, we obta α θ ² () = We terefore ave θ ² () = I U d (,²) α α (,²) α I U t= N, lm I lm α df (²) Φ lm (,²) d (6) I (7) B.2 α θ ad α ² I te t stratum, α (θ,f (²)) solves te estmatg equato V ( ; θ, α (θ,f (²))) df (²) = (8) Dfferetatg te LHS wt respect to θ ad ², weobta µ V (, θ,²) V (, θ,²) α (θ,f (²)) = df (²) α df (²), µ V (, θ,²) α (θ,f (²)) = df (²) V (, θ,²) d. α

13 Observe tat α (θ,f (²)) = α (θ,f (²)) = µ V (, θ,²) α µ V (, θ,²) α µ V (, θ,²) df (²) µ df (²) df (²), V (, θ,²) d. quatg tese equatos to zero ad solvg for dervatves of α evaluated at ² =gves µ α θ V V () = α = O (), (9) µ α ² V () = V t = O p (), (2) were α t= α θ α (θ,f ()), α ² α (θ,f ()). B.3 θ ²² () Because d (,²) d² = k= (,²) l= k= (,²) α l α l l= (,²) α l α l we ave d 2 (,²) d² 2 = k= k = l= k= l= k= k = l= l = k= 2 (,²) 2 (,²) α l α l k= l= k= k = l= k= l= l = l= k= 2 (,²) α l 2 (,²) α l α l (,²) α l α l α l 2 α l l= k= k = 2 (,²) α l (,²) 2 θ k 2 α l (,²) α l 2 θ k α l 2 k= 2 (,²) α l α l α l k = (,²) 2 α l α l l= l= l = k= k = l= l= 2 (,²) α l α l l= l = k= (,²) 2 α l α l 2 (,²) α l α l α l 2 (,²) α l α l 2 α l 2 (,²) α l α l α l α l α l α l

14 valuatg (4) at ² =, ad otg tat [U α ]=,weobta = 2 U k 2 k= k = l= k= k = 2 2 U k α l k α l U l= k= k k= 2 U αl α l α l α l l= l = k= k = 2 2 U αl α l α l α l l= l = k= l= 2 µ U d θ k 2 µ U d k α k= l l= k= 2 µ U αl d α l l= Because 2 U αl α l α l α l l= l = α = 2 U () α α α. α 2 U (p) α α α ³ P ³ t= = V t V α ³ P ³ t= V t V α 2 U () α α. 2 U (p) α α ³ ³ V α V α 2 U α l 2 θ k 2 l = ³ ³ k α l 2 U αl α l α l α l αl P t= V t P t= V t 2 l= µ U αl d α l = 2 t= µ U α V α t= V t 2 k= 2 2 k= l= l = k= l= 2 U α l 2 U α l α l 2 k= l= αl αl α l µ U d µ U α l d αl µ µ µ = O p O p = O p µ µ µ = O p O p = O p µ µ µ θ k = O p O p = O p µ µ µ = O p O p = O p 2

15 ad 2 l= k= k = k= k = l= l = k= k = 2 U 2 U αl k α l 2 U αl α l α l α l we may wrte ³ P ³ t= I θ ²² () = V t V α ³ P ³ t= V t V α µ U 2 V α α t= µ µ µ = O () O p O p = O p µ µ µ = O () O p O p = O p µ µ µ = O () O p O p = O p 2 U () α α. 2 U (p) α α t= V t ³ ³ V α V α ³ ³ P t= V t P t= V t or Note tat ad = 2 O p µ µ 2 θ ²² () 2 r r = I I t= ( µ trace t= V t µ V α µ U () α ³ P ³ t= V ³ V α t P ³ t= V t t= 2 U () α l α l V α µ U α 2 U () α l α l V α V α V α µ V t= 2 U () α α. 2 U (p) α α t= ³ ³ µ V α V t = α ³ V α P t= V t ³ V P α t= V t V t o p () t= [V V ] ) o p () ( µ V trace α V t ) U V () α o p () It terefore follows tat 2 µ 2 θ ²² () = 2 r I Υ o p () 3

16 B.4 α θθ, α θ², ad α ²² ³ Secod order dfferetato = α 2 2, 2 2, 2 2 of (8) yelds 2 V (, θ,²) df (²) α µ (θ,f (²)) 2 V (, θ,²) α df (²) µ 2 µ V (, θ,²) α (θ,f (²)) V (, θ,²) 2 α (θ,f (²)) df (²) α df (²) α µ 2 V (, θ,²) α (θ,f (²)) α (θ,f (²)) df (²), ad = = µ 2 µ V (, θ,²) α (θ,f (²)) V (, θ,²) 2 α (θ,f (²)) df (²) df (²) α α µ 2 V (, θ,²) α (θ,f (²)) α (θ,f (²)) α 2 df (²) µ V (, θ,²) V (, θ,²) α (θ,f (²)) d d, α µ V (, θ,²) 2 µ α (θ,f (²)) 2 µ V (, θ,²) α (θ,f (²)) df (²) α 2 α 2 df (²) µ V (, θ,²) α (θ,f (²)) 2 d. α 2 ese tree equaltes caracterzes 2 α (θ,f (²)) Lemma 4 Pr b θ (²) θ η = o () ², 2 α (θ,f (²)),ad 2 α (θ,f (²)). 2 ad Pr ² bα (²) α η = o () for every η >. Proof. Oly te Þrst asserto s proved. e secod asserto ca be proved smlarly. Let η be gve, ad let ε f f {(θ,α): (θ,α) (θ,α ) >η} G() (θ, α) >. Recall tat F (²) F ² ³ bf F, ², We ave ³ g ( ; θ, α (θ)) df (²) = ² G () (θ, α )² G b () (θ, α ) ad ³ g ( ; θ, α (θ)) df (²) G () (θ, α ) ² bg () (θ, α) G () (θ, α) bg () (θ, α) G () (θ, α). 4

17 By Lemma 3, we ave Pr ² sup (θ,α) g ( ; θ, α (θ)) df (²) G () (θ, α) η = o erefore, for every ² wt probablty equal to o,weave m θ θ >η,α,...,α g ( ; θ, α (θ)) df (²) m (θ,α) (θ,α ) >η g ( ; θ, α (θ)) df (²) > m (θ,α) (θ,α ) >η > 2 ε > = We terefore obta tat Pr ² b θ (²) θ η = o. G () (θ, α ) 2 ε g ³ ; b ³ θ (²), α bθ (²) df (²) Lemma 5 Suppose tat, for eac, {ξ t (φ),t=, 2,...} sasequeceofzeromea..d. radom varables dexed by some parameter φ Φ. We assume tat {ξ t (φ),t=, 2, 3} are depedet across. We also assume tat sup φ Φ ξ t (φ) B t for some sequece of radom varables B t tat s..d. across t ad depedet across. Fally, we assume tat B t 64 <, ad = O ( ). We te ave µ Pr ξ t (φ ) > υ = o t= for every υ suc tat υ < 6. Here, {φ } s a arbtrary sequece Φ. Proof. By Markov s equalty, Pr sup ξ φ Φ t (φ ) > υ =Pr sup ξ t= φ Φ t (φ ) > 3 5 υ t= P sup φ Φ t= ξ t (φ ) 64 = υ η 64 were te last equalty s based o domated covergece. By Lemma, weave 64 ξ t (φ ) C 32 ξ t (φ ) C B t 64 t= for some C. erefore, we ave 2 Pr ξ t (φ ) > υ t= 2 C 32 ³ 64υ υ η = O 32 5, 64 P sup φ Φ t= ξ t (φ ) υ η 64, 5

18 ad Pr t= ξ t (φ ) > υ Pr t= ξ t (φ ) > υ = C υ η 64 = o (). Lemma 6 Suppose tat K ( ; θ (²), α (θ (²),²)) s equal to mm2 g ( t ; θ (²), α (θ (²),²)) m α m2 for some m m 2,...,5. e, for ay η >, weave Pr K ( ; θ (²), α (θ (²),²)) df (²) ² [K ( t ; θ, α )] > η = o ad Pr Also, Pr ² ² K ( ; θ (²), α (θ (²),²)) df (²) [K ( t ; θ, α )] > η = o. K ( ; θ (²), α (θ (²),²)) d >C υ = o for some costat C> ad υ < 6. Proof. Note tat we may wrte K ( ; θ (²), α (θ (²),²)) df (²) K ( ; θ (²), α (θ (²),²)) df K ( ; θ (²), α (θ (²),²)) df (²) K ( ; θ (), α (θ (), )) df (²) K ( ; θ (), α (θ (), )) df (²) K ( ; θ (), α (θ (), )) df M( t )(kθ(²) θk α (θ(²),²) α ) d F (²) ² ³ K ( ; θ (), α (θ (), )) d F b F. erefore, we ave K ( ; θ (²), α (θ (²),²)) df (²) [K ( t ; θ, α )] kθ (²) θk [M ( t )] /2 (α (θ (²),²) α ) 2 t= M ( t ) t= [M ( t )] 2 M ( t ) K ( t ; θ (), α (θ (), )) [K ( t ; θ (), α (θ (), ))], 6 t= /2

19 te RHS of wc ca be bouded by usg Lemmas?? ad 4 absolute value by some η > wt probablty o. Because K ( ; θ (²), α (θ (²),²)) df (²) [K ( t ; θ, α )] θ (²) θ [M ( t )] M ( t ) t= α (θ (²),²) α [M ( t )] M ( t ) t= M ( t ) [M ( t )], we ca boud ² t= K ( ; θ (²), α (θ (²),²)) df (²) [K ( t ; θ, α )] absolute value by some η > wt probablty o. Usg Lemma 5, we ca also sow tat K ( ; θ (²), α (θ (²),²)) d ca be bouded by absolute value by C υ for some costat C> ad υ suc tat υ < 6 wt probablty o. Lemma 7 Pr α θ ² (²) >C Pr α ² (²) >C υ ² = o = o for some costat C> ad υ < 6. Proof. From Appedx B.2, we obta µ µ α (θ,f (²)) V (, θ,²) V (, θ,²) = df (²) df (²), α µ µ α (θ,f (²)) V (, θ,²) = df (²) V (, θ,²) d. α ³ R Usg Lemma 6, we ca see tat V (,θ,²) α df (²) s uformly bouded away from zero wt probablty o. We ca also see tat, wt probablty o, R V (,θ,²) df (²) s uformly bouded by some costat C, ad R V (, θ,²) d s uformly bouded by C υ. 7

20 Lemma 8 Pr θ ² (²) >C υ = o ² for some costat C> ad υ < 6. Proof. From (6), we ave θ ² µ (,²) (²) = (,²) α α df (²) µ α (,²) df (²) (,²) d α Usg Lemmas 6, ad 7, we ca boud te deomator of θ ² (²) by some C>, ad te umerator by some C υ wt probablty o. Lemma 9 θ Pr α r θ r ² (²) >C θ Pr α r ² ² (²) >C υ Pr (²) >C ³ υ 2 α ²² ² = o = o = o for some costat C> ad υ < 6. Here, αθ rθ r 2 α r r. We smlarly deþe αθ r². Proof. Note tat 2 V (, θ,²) = df (²) α µ (θ,f (²)) 2 V (, θ,²) α df (²) µ 2 µ V (, θ,²) α (θ,f (²)) V (, θ,²) 2 α (θ,f (²)) df (²) α df (²) α µ 2 V (, θ,²) α (θ,f (²)) α (θ,f (²)) df (²), = α 2 µ 2 V (, θ,²) α (θ,f (²)) df (²) α µ V (, θ,²) 2 α (θ,f (²)) df (²) α µ V (, θ,²) V (, θ,²) d α µ 2 V (, θ,²) α 2 α (θ,f (²)) d α (θ,f (²)) df (²) ad µ V (, θ,²) 2 µ α (θ,f (²)) 2 µ V (, θ,²) α (θ,f (²)) = df (²) α 2 α 2 df (²) µ V (, θ,²) α (θ,f (²)) 2 d. α e result te follows by applyg te same argumet as te proof of Lemma 7. 8, α (θ,f (²)) 2

21 Lemma Pr ² θ ²² (²) >C ³ υ 2 = o for some costat C> ad υ < 6. Proof. e cocluso follows by usg te caracterzato of θ ²² (²) Appedx B.3, ad Lemmas 6, 7, 8, ad 9. Lemma θ Pr α r θ r θ r ² θ Pr α rθ r ² (²) Pr Pr ² θ α r²² (²) >C ² α ²²² ² (²) >C ³ (²) >C >C υ ³ υ 2 υ 3 = o = o = o = o for some costat C> ad υ < 6. Proof. It was see Appedx B.4 tat ad = = µ 2 V (, θ,²) α (θ,f (²)) df (²) r α µ V (, θ,²) 2 µ α (θ,f (²)) 2 V (, θ,²) α (θ,f (²)) α (θ,f (²)) df (²) α r α 2 df (²) r µ V (, θ,²) V (, θ,²) α (θ,f (²)) d d, r α r µ V (, θ,²) 2 µ α (θ,f (²)) 2 µ V (, θ,²) α (θ,f (²)) df (²) α 2 α 2 df (²) µ V (, θ,²) α (θ,f (²)) 2 d. α 2 9

22 We terefore obta 3 µ V (, θ,²) 3 V (, θ,²) α (θ,f (²)) = df (²) df (²) r r r α r r r µ 2 α (θ,f (²)) 2 V (, θ,²) df (²) α µ (θ,f (²)) 3 V (, θ,²) df (²) r r α r r α r r α µ (θ,f (²)) α (θ,f (²)) 3 V (, θ,²) r r α 2 df (²) r µ 3 µ V (, θ,²) α (θ,f (²)) 3 V (, θ,²) α (θ,f (²)) df (²) α r r r α 2 df (²) r r µ 2 V (, θ,²) 2 α (θ,f (²)) df (²) α r r r µ 2 V (, θ,²) 2 µ α (θ,f (²)) 2 V (, θ,²) α (θ,f (²)) df (²) α r r r α 2 df (²) r µ V (, θ,²) 3 α (θ,f (²)) df (²) α r r r µ 3 V (, θ,²) α (θ,f (²)) α (θ,f (²)) α 2 df (²) r r r µ 3 V (, θ,²) α (θ,f (²)) α (θ,f (²)) α (θ,f (²)) α 3 df (²) r r r µ 2 V (, θ,²) 2 α (θ,f (²)) α (θ,f (²)) α 2 df (²) r r r µ 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) df (²), r r r α 2 α (θ,f (²)) r 2 α (θ,f (²)) r r 2

23 wc caracterzes 3 α (θ,f (²)) r r r, = µ 3 µ V (, θ,²) α (θ,f (²)) 3 V (, θ,²) α (θ,f (²)) α (θ,f (²)) df (²) r r α r α 2 df (²) r µ 2 V (, θ,²) 2 α (θ,f (²)) df (²) r α r µ 2 V (, θ,²) 2 µ α (θ,f (²)) 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) df (²) r α r α 2 df (²) r r µ V (, θ,²) 3 α (θ,f (²)) df (²) α r r µ 3 V (, θ,²) α (θ,f (²)) α (θ,f (²)) r α 2 df (²) r µ 3 V (, θ,²) α (θ,f (²)) α (θ,f (²)) α (θ,f (²)) α 3 df (²) r r µ 2 V (, θ,²) 2 α (θ,f (²)) α (θ,f (²)) α 2 df (²) r r µ 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) α 2 df (²) r r 2 µ V (, θ,²) 2 V (, θ,²) α (θ,f (²)) d d r r r α r µ 2 µ V (, θ,²) α (θ,f (²)) 2 V (, θ,²) α (θ,f (²)) α (θ,f (²)) d r α r α 2 d r r µ V (, θ,²) 2 α (θ,f (²)) d, α r r wc caracterzes 3 α (θ,f (²)) r r, = µ 2 V (, θ,²) 2 µ α (θ,f (²)) 2 V (, θ,²) df (²) r α 2 α 2 µ V (, θ,²) 3 α (θ,f (²)) df (²) α r 2 µ 3 µ 2 µ V (, θ,²) α (θ,f (²)) 3 V (, θ,²) r α 2 df (²) α 3 µ 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) 2 α 2 df (²) r µ 2 µ V (, θ,²) α (θ,f (²)) 2 V (, θ,²) 2 d 2 r α α 2 µ V (, θ,²) 2 α (θ,f (²)) 2 d, α r α (θ,f (²)) 2 α (θ,f (²)) df (²) r 2 α (θ,f (²)) df (²) r µ α (θ,f (²)) α (θ,f (²)) α (θ,f (²)) d r 2 2

24 wc caracterzes 3 α (θ,f (²)) r,ad 2 µ 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) = α 2 df (²) 2 µ V (, θ,²) 3 α (θ,f (²)) df (²) α 3 µ 3 µ 3 V (, θ,²) α (θ,f (²)) α 3 df (²) µ 2 V (, θ,²) α (θ,f (²)) 2 α (θ,f (²)) 2 df (²) 2 α 2 µ 2 V (, θ,²) 2 α 2 d µ α (θ,f (²)) µ V (, θ,²) µ 2 V (, θ,²) α 2 2 µ V (, θ,²) 2 α α d 2 α (θ,f (²)) 2 µ 2 α (θ,f (²)) d d 2 α (θ,f (²)) 2, wc caracterzes 3 α (θ,f (²)) 3. Ispectg tese dervatves ad applyg Lemmas 6, 7, ad 9, we obta te desred result. Lemma 2 Pr ² θ ²²² (²) >C ³ υ 3 = o for some costat C> ad υ < 6. Proof. From (5), we ave = d 3 (,²) d² 3 df (²)3 d 2 (,²) d² 2 d CombgLemmas6,7,8,9,ad, we ca boud P R ³ d 2 (,²) d² d 2 by C υ 3 wt probablty o. It was see Appedx B.3 tat te r-t compoet d2 (r) (,²) d² of d2 (,²) 2 d² s equal 2 to d 2 (r) (,²) d² 2 = (,²) 2 (r) (,²) (,²) (r) (,²) 2 θ 2 2 (r) (,²) α µ (r) (,²) α 2 (r) (,²) α α α 2 (r) (,²) 2 α α (r) (,²) α 2 (r) µ (,²) α α 2 (r) (,²) α α α 2 (r) µ 2 (,²) α α 2 2 (r) µ (,²) α α α 2 2 α (r) (,²) 2 α α (r) (,²) α 2 θ α 2 2 (r) µ (,²) α α 2 (r) µ 2 (,²) α 2 α 2. α 2 R d 3 (,²) Usg Lemmas 6, 7, 8, 9, ad aga, we ca coclude tat P d² df 3 (²) s equal to ³ P R (,²) df (²) 3 θ plus terms tat ca all be bouded by P R d 2 (,²) 3 d² d 2 by C 22 ³ υ 3

25 wt probablty o ³ P. Because R (,²) df (²) s bouded away from by Lemma 6, we obta te desred cocluso. Lemma 3 ³ bθ θ = θ ² () 2 Proof. Follows from equato () ad Lemma 2. µ 2 θ ²² () o p () C Proof of eorem Let bα (²) be suc tat = V ³ ; b θ (²), bα (²) df (²) (Note slgt dfferece of deþto. I prevous sectos, bα (θ,²) was uderstood to be a soluto to R V ( ; θ, α (θ,f (²))) df (²) =.) Usg te same argumets as earler, we are lookg for te expaso bα (²) α = bα ² () for some ², /2. Let 2 bα²² v (,²) V (θ (F (²)), α (F (²))). ( ²) e Þrst order codto may be wrtte as = v (,²) df (²) Dfferetatg repeatedly wt respect to ², weobta dv (,²) = df (²) v (,²) d (2) d² d 2 v (,²) dv (,²) = d² 2 df (²)2 d (22) d² were ³ bf F. Because dv (,²) d² = v (,²) v (,²) α we may rewrte (2) as µ v (,²) = v (,²) α valuatg at ² =we obta bα ² () = ( [V α ]) µ α α df (²) P t= v (, θ, α ) V θ v (,²) d θ ² () (23) 23

26 were θ ² () s deþed(7). It also follows tat µ µ bα ² v (,²) v (,²) (²) = df (²) α df (²) θ ² (²) Next, cosder d 2 v (,²) d² 2 = ² [,/ ] v (,²) 2 v (,²) ( α ) 2 v (,²) 2 θ () 2 2 v (,²) α µ 2 α v (,²) 2 α α () 2 α v (,²) d. (24) suc tat bα ²² (²) s caracterzed by = θ ² (²) v (,²) df (²) θ ² v (,²) (²) df (²) θ ²² (²) v (,²) 2 df (²) θ ² (²) bα ² 2 α (²) v (,²) ( α ) 2 df (²)(bα ² (²))2 v (,²) df (²) bα ²² v (,²) (²) α d θ ² v (,²) (²) d ² bα (²) (25) α We ow sow tat Pr (bα α ) > υ = o, for ay υ < 6. For ts purpose, t suffces to prove Pr sup bα ² ² [,/ (²) > υ = o, ] Pr bα ² () > υ = o, Pr sup bα ²² (²) > ³ υ 2 = o. I order to prove te Þrst clam, we ote tat Pr sup θ ² (²) υ = o ² [,/ ] from Lemma (8). By Lemma (6), we also ave µ Pr sup v (,²) v (,²) ² [,/ ] df (²) > η = o, Pr sup v (,²) v (,²) df (²) α α > η = o. ² [,/ ] By Lemma (6) aga, t follows tat Pr sup v (,²) d > / υ = o. ² [,/ ] 24

27 s proves te result for bα ² (²) as well as bα (). Forbα ²² (²), te result follows from represetato (25) as well as Lemmas (6), (8), ad (). We ow prove eorem. For ts purpose, we combe bα (²) = α bα ² () 2 bα²² ( ²), bα ² () = ( [V α ]) µ θ ² () = P t= v (, θ, α ) V θ I t= U θ ² () ad obta µ (bα α ) = ( [V α ]) P t= v (, θ, α ) ( [V α ]) V θ I 2 bα²² ( ²), from wc te cocluso follows. t= U 25

28 Refereces [] Arellao, M. (2): Dscrete Coces wt Pael Data, Ivestgacoes coómcas Lecture, V Smposo de Aálss coómco, Bellaterra. [2] Brock, W. ad S. Durlauf (2): Iteractos-based Models, J. Heckma &. Leamer, ds. Hadbook of coometrcs 5, pp Amsterdam: Nort-Hollad. [3] Graam, B. S., ad J. Ha (23): IdetÞcato ad stmato of te Lear--Meas Model of Socal Iteractos, upublsed mauscrpt. [4] Ha, J. ad G. Kuersteer (22): Asymptotcally Ubased Iferece for a Dyamc Pael Model wt Fxed ffects We Bot ad are Large, coometrca, 7, [5] Ha, J. ad G. Kuersteer (23): Bas Reducto for Dyamc Nolear Pael Models wt Fxed ffects, upublsed mauscrpt. [6] Ha, J. ad W.K. Newey (22): Jackkfe ad Aalytcal Bas Reducto for Nolear Pael Models, upublsed mauscrpt. [7] Hausma, J., ad W. aylor (98), Pael Data ad Uobservable Idvdual ffects, coometrca 49, pp [8] Mask, C. (993): IdetÞcato of edogeous socal effects: te reßecto problem, Revew of coomc Studes 6, pp [9] Wouterse,. (22): Robustess agast Icdetal Parameters, upublsed mauscrpt. 26

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme

Διαβάστε περισσότερα

Optimal stopping under nonlinear expectation

Optimal stopping under nonlinear expectation Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Minimum density power divergence estimator for diffusion processes

Minimum density power divergence estimator for diffusion processes A Ist Stat Math 3) 65:3 36 DOI.7/s463--366-9 Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Choosing the Number of Moments in Conditional Moment Restriction Models

Choosing the Number of Moments in Conditional Moment Restriction Models Choosg the Number of Momets Codtoal Momet Restrcto Models Stephe G. Doald Departmet of Ecoomcs Uversty of Texas Whtey Newey Departmet of Ecoomcs MIT Frst Draft: Jauary 2002 Ths draft: October 2008 Gudo

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Prescribing Morse scalar curvatures: subcritical blowing-up solutions

Prescribing Morse scalar curvatures: subcritical blowing-up solutions Prescrbg Morse scalar curvatures: subcrtcal blowg-up solutos Adrea Malchod ad Mart Mayer Scuola Normale Superore, Pazza de Cavaler 7, 506 Psa, ITALY adrea.malchod@ss.t, mart.mayer@ss.t arxv:8.0946v [math.ap]

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution Iteratoal Joural of Computer Applcatos (975 8887) Volume 5 No. September 5 Studes o Propertes ad Estmato Problems for odfed Exteso of Expoetal Dstrbuto.A. El-Damcese athematcs Departmet Faculty of Scece

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y) Statstcs et Y ~ p( ; ( ; ( ; ( ( ; ( p Y t p g t h Y suffcet statstc (for the parametrc faml p( ; s depedet of t Nema-Fsher factorzato: where g ad h are o-egatve fucto p( ; Smple bar hpotheses: {, } :

Διαβάστε περισσότερα

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978)

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα