Minimum density power divergence estimator for diffusion processes

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Minimum density power divergence estimator for diffusion processes"

Transcript

1 A Ist Stat Math 3) 65:3 36 DOI.7/s Mmum desty power dvergece estmator for dffuso processes Sagyeol Lee Jumo Sog Receved: 3 March 7 / Revsed: Aprl / ublshed ole: July The Isttute of Statstcal Mathematcs, Tokyo Abstract I ths paper, we cosder the robust estmato for a certa class of dffuso processes cludg the Orste Uhlebeck process based o dscrete observatos. As a robust estmator, we cosder the mmum desty power dvergece estmator MDDE) proposed by Basu et al. Bometrka 85: , 998). It s show that the MDDE s cosstet ad asymptotcally ormal. A smulato study demostrates the strog robustess of the MDDE. Keywords Dffuso processes The Orste Uhlebeck process Mmum desty power dvergece estmator Dscretely observed sample Robustess Itroducto Let us cosder the dffuso process: dxt = ax t,θ)dt + σ dw t, X = x, ) where θ, σ ), a covex compact subset of R p R +, a s a kow real valued fucto defed o R R p, ad W s a -dmesoal stadard Weer process. The dffuso process has log bee popular aalyzg radom pheomea face, S. Lee B) Departmet of Statstcs, Seoul Natoal Uversty, Seoul 5-74, Korea e-mal: jpgrslee@yahoo.com; sylee@stats.su.ac.kr J. Sog Departmet of Computer Scece ad Statstcs, Jeju Natoal Uversty, Jeju , Korea 3

2 4 S. Lee, J. Sog egeerg, physcal ad medcal sceces. artcularly, the dffuso process gve by ) has wde applcatos ad cludes the Orste Uhlebeck process as a specal case. Statstcal ferece for ths process has bee studed by may authors, for stace, Flores-Zmrou 989), ad the asymptotc propertes for varous parameter estmators are well summarzed rakasa Rao 999, pp ad 53 58), Yoshda 99), Kessler 997), At-Sahala ) ad may other researchers studed the estmato problem for a more geeral class of dffuso processes. I those artcles, the estmato procedure s coducted based o dscretely observed sample. Statstcal ferece for cotuous samples ca be foud Kutoyats 4). I ths paper, we cosder a robust estmato of θ, σ ) the model ) based o dscretzed observatos. I the statstcal lterature, t s well kow that the estmators based o Gaussa lkelhood are severely flueced by outlers or extreme values. Thus, t ca be guessed that the smlar stuatos happe the estmato procedure, based o Gaussa approxmato method, for dffuso processes [for e.g., the Euler estmator rakasa Rao 999, p 55) ad Kessler 997) estmator]. I fact, our smulato study, the Euler estmator s observed to be severely damaged by outlers cf. Tables, 3). I order to costruct a robust estmator for process ), we adopt the dea of Basu et al. 998) BHHJ for abbrevato) whch troduces a robust estmato procedure to mmze a desty-based dvergece measures, called the desty power dvergeces: f +α z) + α ) gz) f α z) + α g+α z) dz, α >, d α g, f ) := ) gz) log gz) log f z)) dz, α =, where f ad g are desty fuctos. For a famly of parametrc dstrbutos F θ : θ R m possessg destes f θ ad for a dstrbuto G wth desty g, they defed the mmum desty power dvergece fuctoal T α ) by d α g, ftα g)) = m θ d αg, f θ ). Note that f G belogs to F θ, T α g) = θ for some θ. I ths case, gve radom sample X,...,X wth ukow desty g, the mmum desty power dvergece estmator MDDE) s defed by ˆθ α, = arg m θ V α, θ; X t ), t= where f +α θ z)dz + ) α f α θ X t ), α >, V α θ; X t ) := log f θ X t ), α =. 3

3 Mmum desty power dvergece estmator for dffuso processes 5 BHHJ showed that ˆθ α, s weakly cosstet for T α g) ad asymptotcally ormal, ad demostrated that the estmator has strog robust propertes agast outlers ad the msspecfcato of uderlyg models wth lttle loss asymptotc effcecy relatve to the maxmum lkelhood estmator. Ths approach ca be exteded to regresso models. Let f θ y x) be a parametrc famly of regresso models dexed by the parameter θ ad let gy x) be the true desty for Y gve X = x. Substtutg f ad g ) by f θ x) ad g x) respectvely, a famly of the x-codtoal versos of desty power dvergeces s obtaed as follows: arg m θ t= f +α θ y x t ) dy + ) α t= fθ αy t x t ), α >, t= log f θ Y t x t ), α =. 3) Ths dea wll be adopted later for our ow purpose. Compared to other exstg desty-based dvergece methods, such as Bera 977), Tamura ad Boos 986) ad Smpso 987), whch use the Hellger dstace, ad Basu ad Ldsay 994) ad Cao et al. 995), ths method s kow to have mert of ot requrg ay smoothg methods. I ths case, oe ca avod drawbacks ad dffcultes lke the selecto of badwdth that ecessarly follow from the kerel smoothg method. The orgazato of ths paper s as follows. I Sect., we costruct the robust estmator usg 3) ad address the asymptotc propertes of the proposed estmator. I Sect. 3, we perform a smulato study ad compare the proposed estmator wth the Euler estmator. The proofs for the results Sect. are provded Sect. 4. Fally, some auxlary lemmas are preseted Sect. 5. Ma results Let θ,σ ) be the true parameter for the dffuso process ). Suppose that X t,, are observed, where t = h, h, ad h. Applyg the Euler s approxmato to ), we have that X t = X t + ax t,θ )h + σ Z, h +,, where Z, = h W t W t ) ad, = t t ) ax s,θ ) a X t,θ ds. Let G deote the sgma feld geerated by W s : s t. If gorg, s actually, oe ca check that max, = o p h ). cf. Lemma ), by otcg that Z,,...,Z, are d N, ), we ca see that for large, X t G behave 3

4 6 S. Lee, J. Sog lke depedet r.v. s followg NX t + ax t,θ ), σ h ). Hece, vewg the observatos as regresso data pars X t, X t ) ad applyg 3) to them ths case the famly of parametrc dstrbutos s the ormal dstrbutos), we ca defe the MDDE as ˆθ α, ˆσ α ) = arg m θ,σ V, α θ, σ ), where V, α θ, σ ) = [ σ ) α + α) + α ) exp α X t a X t X t ) ) ] X t,θ h /σ h, α >, ) ) X t a X t,θ h /σ h + log σ, α =. Remark The MDDE wth α = cocdes wth the Euler estmator rakasa Rao 999, p 55). Also, ˆθ s the same as the least squares estmator ˆθ LSQ [see also Flores-Zmrou 989] ad ˆθ LF that maxmze the dscrete approxmate lkelhood fuctos, respectvely: ˆθ LSQ = arg m θ X t ) ) X t a X t,θ h, ad ˆθ LF = arg max θ ) ) ) a X t,θ X t X t a X t,θ h. Below we establsh the cosstecy ad asymptotc ormalty of the MDDE. For ths task, we set = f x,θ): f C + x ) C for some C, where C does ot deped o θ, ad assume the codtos as follows: A) There exsts a costat C such that for ay x, y, ax,θ ) ay,θ ) C x y. A) The process X from ) s ergodc for θ,σ ) wth ts varat measure μ such that x k dμ x) < for all k. A3) sup t E X t k < for all k. A4) The fucto a s cotuously dfferetable wth respect to x for all θ ad the dervatves belog to. 3

5 Mmum desty power dvergece estmator for dffuso processes 7 A5) The fucto a ad all ts x-dervatves are three tmes dfferetable wth respect to θ for all x. Moreover, these dervatves up to the thrd order wth respect to θ belog to. A6) If ax,θ)= ax,θ ) for μ a.s. all x, the θ = θ. A7) S := θ ax,θ ) θ T ax,θ )dμ x) s postve defte, where θ a = a/ θ. Here are the ma results of ths paper. Theorem Assume that A) A6) hold. For each α, fh, h ad h q for some q >, the ) ˆθ α, ˆσ α θ,σ ) probablty. Remark The codto that h q forsomeq > s ot ecessary for the case of α =. However, the other cases, ths codto s essetal to obta the weak cosstecy result cf. Lemma ). Theorem Assume that A) A7) hold ad θ,σ ) s the teror of. For each α,fh, h ad h, the h ˆθ α θ ) ) N ˆσ α p+, α ) dstrbuto, σ ) where α = σ +α +α ) 3 S +α) 3 +α) +α ) +α ) +α) +α +α α ). Remark 3 I actual practce, oe may rase a questo of how to choose a optmal α. I the stuato of o outlers, oe may select α to mmze the asymptotc varace Theorem.e., the case of α = ). However, wth ther exstece, the outlers wll damage ths procedure, so a optmal α s very hard to choose. Covetoally, takg accout of ths dffculty, oe employs a fxed α rather tha seek for a sutable α, whch rages [.5,.5] sce too a large α, whch would have strog robust propertes, may result a bg loss effcecy whe the porto of outlers s ot very large as speculated. We wll see ths pheomeo from the smulato result preseted the ext secto. So far, we have cosdered the case that the dffuso coeffcet s a costat. However, the MDDE ca be exteded to the followg dffuso process: dx t = ax t,θ)dt + σ bx t )dw t. 4) Sce by trasformg X t to Y t = GX t ), where G satsfes the relatoshp x Gx) = /bx), ad usg Itô s formula, we obta dy t = μy t,θ,σ)dt + σ dw t, 5) 3

6 8 S. Lee, J. Sog where μy,θ,σ)= a G y), θ ) b G y) ) σ xb G y), σ ), ad subsequetly, the estmato procedure for the process 4) s reduced to that for the dffuso process ). For a more geeral class of dffuso process, we may defe the MDDE usg the Euler approxmato ad the cotrast fuctos 3). However, there are some techcal dffcultes obtag the same asymptotc propertes of the estmator. We leave ths task as a future study. 3 Smulato study I ths secto, we compare the performace of the MDDE wth α.5,.,...,.95 ad the Euler estmator EE) for the Orste Uhlebeck process: dxt = θ X t dt + σ dw t X =. 6) I our smulato, the case θ,σ ) =, ) s cosdered, ad the sample X o,t s obtaed dscretely wth samplg terval h =.55. The comparso s based o the umbers defed by d = d α := r r ˆθ, ) α θ ) + ˆσ α d, σ, dr := d of EE, where r s the umber of repettos. I fact, d s the average dstace betwee the true parameter ad ts estmates, so the smaller d or d R ) dcates that the estmator s more effcet. Frst, we hadle the case that the observato s ot cotamated by outlers. Based o repettos, the mea, stadard devato, d ad d R are calculated for = 5, 8,. Fgure plots the calculated d α s, where d s the oe for the EE. The results preseted Table ad Fg. show that the EE outperforms the MDDE, d alpha Fg. d wthout outlers. Square, damod ad tragle represet for the case of = 5, 8,, respectvely 3

7 Mmum desty power dvergece estmator for dffuso processes 9 Table Mea SD) ad ddr) wthout outlers EE MDDE θ.9.46).9.48).89.53).87.64).84.83).8.).8.33) σ.983.).983.).983.).983.).983.3).983.6).983.7) ddr).96.).97.5).3.9).3.54).39.).35.86).37.49) 8 θ.68.).7.9).67.3).66.).66.34).65.54).64.7) σ.987.6).987.6).987.7).987.7).987.8).987.).987.) ddr).6.).59.99).64.).73.44).87.).37.76).34.4) θ.8.98).8.98).8.99).84.4).84.5).87.3).89.46) σ.988.5).988.5).988.5).988.5).988.6).987.7).987.8) ddr).44.).45.).47.).54.39).69.).89.86).36.55) 3

8 S. Lee, J. Sog ad the MDDE wth α close to performs smlarly to the EE. It s also see that the performace of the MDDE wth α ot close to, say α =.5.5, s ot very poor. Tables ad 3 ad Fgs., 3, 4, 5, 6, ad 7 summarze the results for the case that outlers are volved the data. Here, we cosder the stuato that the sample X o,t from 6) s cotamated by the outlers X c,t d N,σ V ) ad the observed r.v. s follow the scheme X t = p ) X o,t + p X c,t, where p are d Beroull r.v. s wth success probablty p. It s assumed that p, X o,t ad X c,t are all depedet. The mea, stadard devato, d ad d R based o X t are calculated out of repettos for =, p =.5 ad.. From Tables ad 3, we ca see that the d R teds to get smaller as ether σv or p creases except for some cases such as α =.5,.5 ad p =.. The bold phased fgures deote the α s that gve a mmal d R s. Fgures ad 5 show the plots of d R whe observatos are cotamated by 5 ad % outlers, respectvely. It ca be see that the MDDE s wth the α lyg.5.3 produce very small d R s. Fgures 3 ad 6 show the plots of the EE s ad the MDDE s producg the smallest d optmal MDDE s), ad Fgs. 4 ad 6 are the correspodg hstograms. The fgures show that the EE s scatter wdely whereas the optmal MDDE s le ear the true parameter. From these results, we ca coclude that the MDDE possesses much more robust propertes tha the EE. It ca be see that the α s yeldg mmal d vares wth the cases. Ths dcates that choosg a optmal α s ot a easy task actual usage. Covetoally, α [.,.] s recommeded sce the MDDE wth the α stll keeps the effcecy whe there are o outlers ad are robust agast outlers. The same ca be appled to our case, but our smulato study suggests to us that a broader rage of α s, say, [.5,.5] may be employed costructo of the MDDE. 4 roofs We wll provde the proof for the case of α> sce the proofs of the case of α = are smlar to that of α>. I what follows, we deote a θ) = ax t,θ), Z, = Z, = θ, σ ), = θ,σ ). Moreover, C > deotes a uversal costat. roof of Theorem Note that Uσ, σ ) := ) α σ + α + ) + α σ ) α σ, σ >, has a mmal value at σ = σ. Smlarly to the proof of Theorem of Kessler 997), Theorem s proved f we verfy that 3

9 Mmum desty power dvergece estmator for dffuso processes Table Mea SD), d ad dr wth 5 % outlers σ V EE MDDE θ ) ) )..67).79.6).67.6).58.6).5.63).3.7)..8) σ.6.869).99.68).5.8).6.).5.9).48.9).47.9).47.).5.).57.) d dr θ ) ).398.7).97.54).63.5).53.53).46.55).4.57).5.69).8.8) σ ).55.84).4.4).53.).45.9).44.9).44.9).45.9).5.).59.) d dr θ ) ) ).99.4).7.39).6.4).55.4).49.43).35.5).7.6) σ ).33.48).3.8).45.9).4.9).4.9).4.9).4.9).49.).58.) d dr

10 S. Lee, J. Sog Table 3 Mea SD), d ad dr wth % outlers σ V EE MDDE θ ) ) 3.3.8) ).35.7).89.).53.5).9.4)..4).94.7) σ ) ) ).77.5).39.7).8.5).6.5).3.5).35.6).45.7) d dr θ ) ) ) ).88.6).4.6).6.4).99.4).88.5).75.) σ 4.5.6) ).536.9).45.3)..7).7.6)..6).6.6).34.7).47.8) d dr θ ) ).8 3.8).38.89).3.7).93.66).7.66).56.67).45.7).35.75) σ ) ) ).6.8).9.4).9.3).4.4)..4).3.5).46.6) d dr

11 Mmum desty power dvergece estmator for dffuso processes 3 d_r..3.5 d_r Fg. d R versus α wth 5 % outlers. Square, damod ad tragle represet for the case of σv =,, 3, respectvely sgma EE) sgma MDDE) theta EE) theta MDDE) Fg. 3 lottg ˆθ, ˆσ)of the EE ad the optmal MDDE wth 5 % outlers whe σv = 3 Frequecy 6 Frequecy 4 8 Frequecy 6 Frequecy theta EE) theta MDDE) sgma EE) sgma MDDE) Fg. 4 Hstogram of the EE ad the optmal MDDE wth 5 % outlers whe σv = 3 ) ) ut V α, θ, σ ) Uσ, σ ) uformly. h V, α θ, σ ) h V, α θ,σ) + α) ) α+ σ + α σ uformly. ) 3 σ K θ, σ ) = K, θ, σ ) := α σ σ Z A θ) h + α + α σ σ Z h ax,θ) ax,θ ) dμ x) A θ) σ h + α A θ) σ + α σ, h 3

12 4 S. Lee, J. Sog d_r..4.8 d_r Fg. 5 d R versus α wth % outlers. Square, damod ad tragle represet for the case of σv =,, 3, respectvely sgma EE) sgma MDDE) theta EE) theta MDDE) Fg. 6 lottg ˆθ, ˆσ)of the EE ad the optmal MDDE wth % outlers whe σ V = 3 Frequecy 4 8 Frequecy 6 Frequecy 4 8 Frequecy theta EE) theta MDDE) sgma EE) sgma MDDE) Fg. 7 Hstogram of the EE ad the optmal MDDE wth % outlers whe σv = 3 where A θ) = A, θ) := a θ ) a θ). I vew of Lemma Sect. 5, we have sup max θ, σ ) =o p h γ ) for γ<. Thus, we have that sup 3 + ) α exp α ) α σ ) X t X t a θ)h σ h exp α σ σ Z )

13 Mmum desty power dvergece estmator for dffuso processes 5 = sup + ) α ) sup + α C α exp sup σ ) α e α σ ) σ σ Z e K θ,σ ) ) α max e K θ,σ ) ) max K θ, σ ) = o ). Usg ths ad Lemma 4, we have that uformly, + ) α σ ) ) α X exp α t X t a θ)h σ h + ) ) α + α σ ) α σ σ, whch establsh ). Next, we verfy ). Usg Taylor s theorem, we ca wrte that e K θ,σ ) e K θ,σ ) = α σ σ Z A θ) h + α A θ) σ h + α A θ) σ α σ σ 4 Z A θ) h + K θ, σ ) α σ σ 4 Z A θ) h + K θ,σ)! e ζ, + K θ, σ ) 3 3! σ = α σ σ Z A θ) h + α + K θ,σ)! e ζ, α σ σ Z e ζ, + K θ, σ ) 3 e ζ,, 3! ) A θ) h + H, where ζ, K θ,σ), ζ, K θ, σ ), ad H θ, σ ) = H, θ, σ ) := α A θ) σ K θ, σ ) α σ ) σ 4 Z A θ) h. 3

14 6 S. Lee, J. Sog Owg to Lemma, wehavethat ad sup sup sup max θ, σ ) =o p h r ), r <.5, sup max θ, σ ) 3 =o p h r ), r <.5, sup max θ,σ) =o p h r 3 ), r 3 <, max eζ, exp sup max K θ,σ) = O ), max eζ, exp sup max K θ, σ ) = O ). 7) 8) By 7) ad 8), we have that sup max R θ, σ ) := sup max H, θ, σ ) + K θ,σ)! e ζ, + K θ, σ ) 3 e ζ, 3! = o h r ) for r <.5. 9) Thus, by Lemmas 4 ad 5 ad 9), we have that uformly θ, σ ), V, α h θ, σ ) V, α h θ,σ) = + α ) α+ α σ ) σ σ Z A θ) e α σ σ Z + + α) σ σ Z A θ) e α σ σ Z + R θ, σ ) e α σ σ h α h Z ) α+ + α) + α σ ) 3 σ σ ax,θ) ax,θ ) dμ x). ) α+ Ths completes the proof. roof of Theorem Let ˆ α = ˆθ α, ˆσ α ), lα ) = V α, ), L α = h θ l α ) ) σ l α ) 3, ad C α ) = h θθ T l α ) h σθ T l α ) h θσ lα ) ) l α σ ),

15 Mmum desty power dvergece estmator for dffuso processes 7 where =, θθ T θ θ T θσ = θ σ. Usg Taylor s theorem, we have that = l α ) + from whch we ca wrte that l α L α = C α, + u ˆ α ) ) du We ted to show that L α + u ˆ α ) ) ˆθ du α θ ) ˆσ α σ, h ˆθ α θ ) ) ˆσ α. σ ) d L N,,α ), ) where,α = σ α+ +α) +α) 3 S ), +α) +α ) +α) +α +α α ad S s the oe defed A7). Let U α, ) := σ ) α + α + ) exp α α A θ)h + σ Z h ) σ h ), ) ad ζ = ζ, := h θ U, α ) ) σ U, α, ) the, due to Lemma 6, ) ca be verfed f we show that E ζ G ), ) E ζ ζ T ) G,α, 3) E ζ 4 ) G 4) 3

16 8 S. Lee, J. Sog [cf. Theorems 3. ad 3.4 of Hall ad Heyde 98)]. Note that ad θ U, α ) = + α h σ α+ Z θ a θ ) e α Z, 5) α σ U, α ) = + α σ α+ θ U, α θ T U, α + α) ) = h σ U α, ) ) = α + α σ α+ σ α+ + α) + σ α+ θ U, α σ U, α ) = α + α Utlzg the argumets: + + α ) σ α+ Z e α Z, 6) Z θa θ ) θ T a θ ) e αz, α + α σ α+ Z ) e αz, σ α+ θ U α, ) ) Z e α Z + α) h σ α+ Z Z ) θa θ ) e αz. E Z e αz / G =, E Z e αz G = + α) 3, ) E Z e α Z G = α + α) 3, E Z ) e αz G = + α ) + α) 5, ad ) E Z Z 3 e αz G =, by smple calculus, we ca readly check ) ad 3). Sce 4) holds due to the facts: E θ U, α ) 4 ) G h C α + X t C, ad ) s establshed. 3 E σ U α, ) 4 G C α,

17 Mmum desty power dvergece estmator for dffuso processes 9 Now, owg to ), the theorem s asserted f we verfy that C α, + u ˆ α ) ) du +α S σ α+ α + +α) 3. 7) For ths task, t suffces to show that C α, ) +α S σ α+ α + +α) 3, 8) ad sup Cα, + ) C α, ), 9) ε where ε s ay postve real sequece decayg to. We frst deal wth 8). ut J, ) = A θ) θθ T a θ) + α σ ) σ Z θ a θ) θ T a θ), J, ) = θθ T a θ) + α σ σ Z A θ)h 3 + σ Z h + A θ) h +A θ) h + θ a θ) θ T a θ), J 3, ) = 4 α σ σ Z K ) + 4 α K ), ad J 4, ) = σ Z K ) h + A θ)h + ) α + α σ ) σ Z K ). It s ot dffcult to see that J, ) ) Cα + Z + Also, vew of Lemma, we ca see that ) X t C. ) sup sup sup max,) =o p h r ), r <.5, max 3,) =o p h r ), r <.5, max 4,) =o p h r ), r <. ) 3

18 3 S. Lee, J. Sog Meawhle, we have that θθ T l α + α ) = σ α+ e α = + α σ α+ + α σ α+ + α σ α+ σ σ Z e K ) σ θθ T a θ)z h + J, )h + J, ) σ θθ T a θ)z h e α σ σ Z J, ) α σ σ θθ T a θ)z A θ) R, ), σ l α ) = α + α σ α+ + α σ α+ e α + + α σ α+ θσ lα ) = + α σ α α σ α+3 + α σ α+3 σ σ Z where ζ K ), ad + + α σ α+ h e α σ σ Z + α 3 + α) σ σ Z + α σ 4 σ 4 Z α) α K ) α J 3, ) e α σ σ Z R, ) e α σ σ Z K ) e ζ, θ a θ) α + α σ ) σ Z σ Z h e α θ a θ)j 4, ) e α σ σ Z θ a θ)r 3, ) e α σ σ Z K ) e ζ, M ) = σ θθ T a θ)z h + J, )h + J, ), R, ) = J, ) J, )h + J, ) ) α σ σ Z A θ) h +M ) α σ σ Z A θ) h K, ) + K ) eζ σ R, ) = + α 3 + α) σ Z + α K ) + α R 3, ) = σ α + α σ ) σ Z Z h + J 4, ). 3 σ σ Z e α σ σ Z, e α σ σ Z, σ 4 σ 4 Z 4 + J 3, ),

19 Mmum desty power dvergece estmator for dffuso processes 3 The, usg 8), ) ad Lemma, we ca have that sup sup sup max,) =o p h r ), r <.5, max,)k ) e ζ =o p h r ), r <.5, max 3,)K ) e ζ =o p h r ), r <. ) Therefore, by Lemmas 4 ad 5, ) ad ), h θθ T l α ) + α σ α+ + α σ ) 3/ σ S ax,θ ) ax,θ)) θθ T ax,θ)μ x), σ l α ) α + α σ α+ + α σ α+ + α) + α σ σ 3 + α) σ σ θσ h lα ) + α σ ) 3 σ + 3α σ 4 σ 4 ) + α σ ) 5 σ, uformly. Thus 8) s verfed. Sce the above lmts are cotuous by A) ad A5), we ca demostrate that 9) holds. Ths completes the proof. 5 Some Lemmas Lemma Suppose that A) holds. The, for k, E k G C k h 3 k ) + X t k. Sce the result of Lemma s well kow, we omt the proof. Lemma Suppose that f : R R belogs to. The f A) ad A3) hold ad h q for some q >, sup ) max f j X t, Z k l hm where j, k, l,,, ad m >.5 l. = o h r ) for r <.5 l + m, 3

20 3 S. Lee, J. Sog roof For ay teger p wth.5l + m r)p q, we have that max E ) + X t C Z k l p h m r)p Ch.5l+m r)p = o), whch establshes the lemma. Lemma 3 Suppose that A) ad A3) hold. The, for f : R R, f ) X t, = O ). 3) If addto, h, A) holds ad f s dfferetable wth respect to x ad whose dervatves also belog to, the f ) X t, f x,)dμ x) 4) uformly. Itseasytoprove3), so we omt the proof. The argumet 4) sduetolemma 8ofKessler 997). Lemma 4 Suppose that A) A3) hold. The f f : R R s dfferetable wth respect to x ad wth dervatves belogg to, f f f uformly. ) X t, e α σ σ Z ) X t, Z e α σ σ Z ) X t, Z 4 e α σ σ Z + α σ ) σ + α σ ) 3 σ 3 + α σ ) 5 σ f x,)dμ x), 5) f x,)dμ x), 6) f x,)dμ x) 7) roof Let h ) = ) X f t, e α σ σ Z. 3

21 Mmum desty power dvergece estmator for dffuso processes 33 I vew of Lemma 9 of Geo-Catalot ad Jacod 993), the covergece result for each s esured by the facts: E h ) G = + α σ ) / σ f X t,) + α σ ) / σ f x,)dμ x), ad E h )) G f X t,)= o ). To establsh the uform covergece, vew of Theorem of Ibragmov ad Has msk 98, p 378)), t suffces to verfy that d E h ) C for all, 8) ad E h ) d h ) C d for all,, 9) where d s the dmeso of. We oly prove 9) sce 8) ca be proved essetally the same way. Note that sup h ) C α ) + Z + X t C. The, usg Cauchy s equalty ad Jese s equalty, we have that d h ) h )) d E h ) ) C α d E + Z C + E C α d, ) X t C where les betwee ad. Ths asserts 9). I a smlar fasho, we ca verfy 6) ad 7). 3

22 34 S. Lee, J. Sog Lemma 5 Uder the codtos Lemma 4, fh, the ) f X t h, Z e α σ σ Z = o ) 3) uformly. roof Let From the facts: ad h ) = h f X t,)z e α σ σ Z. 3) E h ) G =, E h ) G h ) f X t, = o ), we ca see that 3) holds for each. Thus, as the proof of Lemma 4, the lemma s proved f we show that 8) ad 9) hold for 3). By applyg Burkhoder s equalty to a sequece of martgale dffereces h ), G, oe ca easly see that 8) holds. Also, applyg Burkhoder s equalty to a sequece of martgale dffereces h ) h ), G ad usg the facts: sup h ) C α Z + Z 3 ) + X t C h, Cauchy s equalty ad Jese s equalty, we have that E d h ) h )) d E h ) h )) d d E h ) d E C α d h d d. C α d h d Z + Z 3 C + ) X t C Ths etals 9) ad completes the proof. 3

23 Mmum desty power dvergece estmator for dffuso processes 35 Lemma 6 Let U, α ) be the oe defed ). Uder A), A3) ad A4), f h, the h θ V α, ) h σ V α, ) θ U, α ) = o ), 3) σ U, α ) = o ). 33) roof We oly deal wth 3) sce 33) ca be prove smlarly. Note that θ V, α ) = + α ) σ σ α+ Z h + θ a θ ) e α Z e K,, where K, = K, ). It follows from 5) that θ V, α ) h C α h C α h θ U, α ) ) + X t C σ Z h + ) K, e ζ ) σ Z h ) + X t C Z K, h e ζ + e K, C α e max K, h ) + X t C Z K, h +, ) where ζ K,. Usg the facts that E K, G ) C + X t C h ad ) E K, 4 G ) C + X t C h 4,wehave h ) E + X t C Z K, ) G h + C h C h ) + X t C E Z )E K, G ) h + E G ) ) + X t C h.5 = O h ) 3

24 36 S. Lee, J. Sog ad ) E + X t C h Z K, ) G h + C ) + X t C h h 3 = O h ). Sce e max K, = O ), vewoflemma9ofgeo-catalot ad Jacod 993), 3) s establshed. Ths completes the proof. Ackowledgmets We would lke to thak the Assocate Edtor ad referees for ther helpful commets. Refereces At-Sahala, Y. ). Maxmum lkelhood estmato of dscretely sampled dffusos: A closed-form approxmato approach. Ecoometrca, 7, 3 6. Basu, A., Harrs, I. R., Hjort, N. L., Joes, M. C., et al. 998). Robust ad effcet estmato by mmzg a desty power dvergece. Bometrka, 85, Basu, S., Ldsay, B. G. 994). Mmum dsparty estmato for cotuous models: Effcecy, dstrbutos ad robustess. Aals of the Isttute of Statstcal Mathematcs, 48, Bera, R. 977). Mmum hellger dstace estmates for parametrc models. Aals of Statstcs, 5, Cao, R., Cuevas, A., Frama, R., et al. 995). Mmum dstace desty-based estmato. Computatoal Statstcs ad Data Aalyss,, Dacuha-Castelle, D., Flores-Zmrou, D. 986). Estmato of the coeffcet of a dffuso from dscrete observatos. Stochastcs, 9, Flores-Zmrou, D. 989). Approxmate dscrete tme schemes for statstcs of dffuso processes. Statstcs,, Geo-Catalot, V., Jacod, J. 993). O the estmato of the dffuso coeffcet for multdmesoal dffuso processes. Aales de l Isttut Her ocaré-robabltés et Statstques, 9, 9 5. Hall, p., Heyde, C. 98). Martgale lmt theory ad ts applcatos. New York: Academc ress. Ibragmov, I. A., Has msk, R. Z. 98). Statstcal estmato-asymptotc theory. New York: Sprger. Kessler, M. 997). Estmato of a ergodc dffuso from dscrete observatos. Scadava Joural of Statstcs, 4, 9. Kutoyats, Y. 4). Statstcal ferece for ergodc dffuso processes. New York: Sprger. Lee, S., Na, O. 5). Test for parameter chage based o the estmator mmzg desty-based dvergece measures. Aals of the Isttute of Statstcal Mathematcs, 57, rakasa Rao, B. L. S. 999). Statstcal ferece for dffuso type processes. Lodo: Arold. Smpso, D. G. 987). Mmum hellger dstace estmato for the aalyss of cout data. Joural of the Amerca Statstcal Assocato, 8, Tamura, R. N., Boos, D. D. 986). Mmum hellger dstace estmato for multvarate locato ad covarace. Joural of the Amerca Statstcal Assocato, 8, Yoshda, N. 99). Estmato for dffuso processes from dscrete observatos. Joural of Multvarate Aalyss, 4, 4. 3

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Article Multivariate Extended Gamma Distribution

Article Multivariate Extended Gamma Distribution axoms Artcle Multvarate Exteded Gamma Dstrbuto Dhaya P. Joseph Departmet of Statstcs, Kurakose Elas College, Maaam, Kottayam, Kerala 686561, Ida; dhayapj@gmal.com; Tel.: +91-9400-733-065 Academc Edtor:

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N. Dscrete Fourer Trasform Refereces:. umercal Aalyss of Spectral Methods: Theory ad Applcatos, Davd Gottleb ad S.A. Orszag, Soc. for Idust. App. Math. 977.. umercal smulato of compressble flows wth smple

Διαβάστε περισσότερα

Optimal stopping under nonlinear expectation

Optimal stopping under nonlinear expectation Avalable ole at www.scecedrect.com SceceDrect Stochastc Processes ad ther Applcatos 124 (2014) 3277 3311 www.elsever.com/locate/spa Optmal stoppg uder olear expectato Ibrahm Ekre a, Nzar Touz b, Jafeg

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution Iteratoal Joural of Computer Applcatos (975 8887) Volume 5 No. September 5 Studes o Propertes ad Estmato Problems for odfed Exteso of Expoetal Dstrbuto.A. El-Damcese athematcs Departmet Faculty of Scece

Διαβάστε περισσότερα

Examples of Cost and Production Functions

Examples of Cost and Production Functions Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov rocesses ad Applcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Applcatos Queug theory erformace aalyss ΠΜΣ524: Μοντελοποίηση και Ανάλυση Απόδοσης Δικτύων (Ι. Σταυρακάκης - ΕΚΠΑ) Dscrete-Tme

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΕΚΤΟΠΩΝ ΜΕΤΡΗΣΕΩΝ, ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΑΝΘΕΚΤΙΚΗ ΕΚΤΙΜΗΣΗ: ΑΝΑΣΚΟΠΗΣΗ

ΑΝΙΧΝΕΥΣΗ ΕΚΤΟΠΩΝ ΜΕΤΡΗΣΕΩΝ, ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΑΝΘΕΚΤΙΚΗ ΕΚΤΙΜΗΣΗ: ΑΝΑΣΚΟΠΗΣΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 7 ου Πανελληνίου Συνεδρίου Στατιστικής (2004), σελ. 93-20 ΑΝΙΧΝΕΥΣΗ ΕΚΤΟΠΩΝ ΜΕΤΡΗΣΕΩΝ, ΙΑΓΝΩΣΤΙΚΗ ΚΑΙ ΑΝΘΕΚΤΙΚΗ ΕΚΤΙΜΗΣΗ: ΑΝΑΣΚΟΠΗΣΗ Ζαχαροπούλου Χριστίνα και Γεώργιος

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1 me Ivarat Regressor Nolear Pael Model wt Fxed ffects Jyog Ha UCLA February 26, 23 I am grateful to Da Ackerberg ad Jerry Hausma for elpful commets. Abstract s paper geeralzes Hausma ad aylor s (98) tuto,

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Markov Processes and Applications

Markov Processes and Applications Markov Processes ad Alcatos Dscrete-Tme Markov Chas Cotuous-Tme Markov Chas Alcatos Queug theory Performace aalyss Dscrete-Tme Markov Chas Books - Itroducto to Stochastc Processes (Erha Clar), Cha. 5,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Universal Levenshtein Automata. Building and Properties

Universal Levenshtein Automata. Building and Properties Sofa Uversty St. Klmet Ohrdsk Faculty of Mathematcs ad Iformatcs Departmet of Mathematcal Logc ad Applcatos Uversal Leveshte Automata. Buldg ad Propertes A thess submtted for the degree of Master of Computer

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field It J otem Mat Sceces Vo 7 0 o 9 99-98 O Hyersurface of Seca Fser Saces Admttg Metrc Lke Tesor Fed H Wosoug Deartmet of Matematcs Isamc Azad Uversty Babo Brac Ira md_vosog@yaoocom Abstract I te reset work

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ

ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 8 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.7-80 ΑΞΙΟΛΟΓΗΣΗ ΜΕΘΟΔΩΝ ΣΥΓΚΡΙΣΗΣ ΥΠΟΚΕΙΜΕΝΩΝ ΚΑΜΠΥΛΩΝ ΕΠΙΒΙΩΣΗΣ ΣΕ ΔΕΔΟΜΕΝΑ ΜΕ ΤΥΧΑΙΑ ΑΠΟΚΟΠΗ Αγγελική Αραπάκη,

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Choosing the Number of Moments in Conditional Moment Restriction Models

Choosing the Number of Moments in Conditional Moment Restriction Models Choosg the Number of Momets Codtoal Momet Restrcto Models Stephe G. Doald Departmet of Ecoomcs Uversty of Texas Whtey Newey Departmet of Ecoomcs MIT Frst Draft: Jauary 2002 Ths draft: October 2008 Gudo

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y) Statstcs et Y ~ p( ; ( ; ( ; ( ( ; ( p Y t p g t h Y suffcet statstc (for the parametrc faml p( ; s depedet of t Nema-Fsher factorzato: where g ad h are o-egatve fucto p( ; Smple bar hpotheses: {, } :

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Prescribing Morse scalar curvatures: subcritical blowing-up solutions

Prescribing Morse scalar curvatures: subcritical blowing-up solutions Prescrbg Morse scalar curvatures: subcrtcal blowg-up solutos Adrea Malchod ad Mart Mayer Scuola Normale Superore, Pazza de Cavaler 7, 506 Psa, ITALY adrea.malchod@ss.t, mart.mayer@ss.t arxv:8.0946v [math.ap]

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα