Real-Time, Finite-Temperature AdS/CFT

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Real-Time, Finite-Temperature AdS/CFT"

Transcript

1 Real-Time, Finite-Temperature AdS/CFT p. 1/34 Real-Time, Finite-Temperature AdS/CFT Chaolun Wu Physics Department, University of Virginia April 28, 2010

2 Real-Time, Finite-Temperature AdS/CFT p. 2/34 Real-Time, Finite-Temperature AdS/CFT Work done with Peter Arnold, Eddy Barnes & Diana Vaman e-print: arxiv: [hep-th]

3 Real-Time, Finite-Temperature AdS/CFT p. 3/34? Question? How to calculate n-point correlators like T O(x 1 )O(x 2 )O(x 3 ) in a Strongly Coupled, Finite Temperature field theory? Strong Coupling: AdS/CFT duality Finite Temperature: AdS-Schwarzschild/Thermal CFT duality QCD (Quark-Gluon Plasma) when g is large but slow-changing = N = 4, SU(N c ) Supersymmetric Yang-Mills (SYM) Field Theory

4 Real-Time, Finite-Temperature AdS/CFT p. 4/34 Outline A Brief Review CFT: N = 4 SU(N c ) Super-YM Field Theory AdS: Type IIB Supergravity in AdS 5 Space T = 0 Duality: AdS/CFT T = 0 Duality: AdS-Schwarzschild/Thermal CFT Scalar in AdS-Schwarzchild Bulk-to-Boundary Propagators 2-Point Functions 3-Point Functions related to Schwinger-Keldysh Formalism Summary & Outlook

5 Real-Time, Finite-Temperature AdS/CFT p. 5/34 { L = tr N = 4SU(N c ) Super-YM Field Theory 6 D μ φ i D μ φ i i=1 4 I=1 i ψ I γ μ D μ ψ I 1 2g 2 Y M d = 4 flat Minkowskian space Poincaré invariance (rotation and boost + translation) Symmetry group SO(1, 3) Maximal supersymmetry } F μν F μν + Bosons: φ i (x) (i = 1..6), A μ (x) Fermions: ψ I α(x) (I = 1..4) R-symmetry: mix same spin fields Symmetry group SO(6) β(g YM ) = 0 at quantum level Scale invariance Conformal field theory Symmetry group SO(2, 4) (together with Poincaré) Global symmetry: SO(2, 4) SO(6)

6 Real-Time, Finite-Temperature AdS/CFT p. 6/34 AdS 5 S 5 Geometry SO(6) = S 5 (5-d sphere) Embedding: X 2 1 +X 2 2 +X 2 3 +X 2 4 +X 2 5 +X 2 6 = R 2 Metric: ds 2 = R 2 dω 2 5 SO(2, 4) =?

7 Real-Time, Finite-Temperature AdS/CFT p. 7/34 AdS 5 S 5 Geometry SO(2,4) = AdS 5 (5-d Anti-de Sitter space) Embedding: X 2 1 X 2 0 +X 2 1 +X 2 2 +X 2 3 +X 2 4 = R 2 Metric: ds 2 = r2 R 2( dt2 +d x 2 )+ R2 r 2 dr2 = R2 z 2 ( dt2 +d x 2 +dz 2 ) Curvature: negative constant 2 Poincaré patches 1 boundary in each Poincaré patch: at r = or z = 0

8 Real-Time, Finite-Temperature AdS/CFT p. 8/34 S = 1 4πα + 1 4πα Type IIB Superstring Theory d 2 ξ { } γ [γ mn G μν (X)+ε mn B μν (X)] m X μ (ξ) n X ν (ξ)+α R (2) γ Φ(X) Σ d 2 ξ [ ] γg μν (X) ψ+(ξ)d z μ ψ+(ξ)+ψ ν (ξ)d μ z ψ (ξ) ν + Σ String 1 spatial dimension d = 2 worldsheet: ξ m = (τ,σ), (m = 0,1) Worldsheet metric: γ mn (ξ) Bosonic field: embedding space d = 10 spacetime: X μ = (t, x,r,...), (μ = 0..9) Target space metric: G μν (X) Fermionic field: ψ μ ±(ξ) Coupling constant: g s, string length: α = l 2 s AdS 5 S 5 is the backgound

9 Real-Time, Finite-Temperature AdS/CFT p. 9/34 Type IIB Supergravity (SUGRA): d = 10 S = 1 2κ 2 10 d 10 X } Ge {R Φ (10) +4 μ Φ(X) μ Φ(X) + where κ 10 = 8π 7 2g s l 4 s Low Energy (Point) limit of string: massive string modes decouple, only massless mode survives. l s R 0 d = 10 spacetime: X μ = (t, x,r,...), (μ = 0..9) Fields: metric G μν (X), scalar Φ(X),... G μν (X) = AdS 5 S 5 is a classical solution Classical limit: suppress quantum fluctuations g s 0

10 Real-Time, Finite-Temperature AdS/CFT p. 10/34 Classical Type IIB Supergravity: d = 5 Kaluza-Klein reduction from d = 10 to d = 5, eg: integrate over S 5 Φ(X) = φ(t, x,r)y lm... (Ω 5 ) Eigenvalue of Y lm... looks like a mass term in d = 5 5-d effective action S = N2 8π 2 R 3 d 5 x { g R (5) 1 2 S 5 = Δ(Δ 4) m 2 ( μ φ μ φ+m 2 φ 2) } R2 8 Fa μνf aμν + This is the starting point of an actual AdS calculation.

11 Real-Time, Finite-Temperature AdS/CFT p. 11/34 String/Gauge Duality 2 quite different theories: String/SUGRA vs. CFT Same global symmetry groups Prerequisite of forming a duality Duality: Mapping of everything Map of (coupling) constants Map of String fields CFT operators Map of String action CFT generating functional Map of correlation functions

12 Real-Time, Finite-Temperature AdS/CFT p. 12/34 AdS/CFT Duality: (Coupling) Constants Quantum IIB String in AdS 5 S 5 (g s,l s ) N = 4 SU(N c ) SYM (CFT) (N c,λ=g 2 YM N c) g s 0 l s R 0 4πg s = λ N c ( ) 4 R = λ λ N c λ l s Weakly coupled IIB SUGRA in AdS 5 Strongly coupled large N c Quantum CFT

13 Real-Time, Finite-Temperature AdS/CFT p. 13/34 AdS/CFT Duality: Fields / Operators AdS Fields CFT Operators φ L A a μ J a μ g μν T μν. m Δ

14 Real-Time, Finite-Temperature AdS/CFT p. 14/34 AdS/CFT Duality: Action & Correlators AdS (classical) CFT (strongly coupled) lim z 0 φ(x, z) z 2 Δ 2 = φ(x) φ(x) = J(x) J(x) O(x) S cl [ φ] = d 5 x g( φ) 2 + Z[J] = Dφe is+i d 4 xj(x)o(x) e is cl[ φ] = Z[J] δ n S cl [ φ] δ φ(x 1 )δ φ(x 2 )... φ 0 O(x 1 )O(x 2 )... δ n lnz[j] δj(x 1 )δj(x 2 )... J 0

15 Real-Time, Finite-Temperature AdS/CFT p. 15/34 AdS-Schwarzschild/CFT Duality: T = 0 Weakly coupled IIB SUGRA in AdS Schwarzschild 5 T H [Witten] Strongly coupled Quantum CFT at Finite Temperature T AdS 5 : AdS Schwarzschild 5 : ds 2 = r2 R 2( dt2 +d x 2 )+ R2 r 2 dr2 ds 2 = r2 R 2( fdt2 +d x 2 )+ R2 r 2 f dr2 f = 1 ( r 0 ) 4 r - Blackening function T H = r 0 - Hawking temperature πr 2

16 Real-Time, Finite-Temperature AdS/CFT p. 16/34 AdS-Sch/CFT Duality: Procedure & Complications 1. Solve EOM in AdS-Schwarzschild background ( m 2 )φ(t, x,r) = 0 with = 1 g μ gg μν ν Find 2 eigenfunctions AdS: 2 poles at r = 0 and r = = Bessel eq. AdS-Sch: 4 poles, 2 extra from f at r 2 = ±r0 2 =? Superposition by B.C. s =? 2. Calculate classical on-shell action S cl [ φ] = d 5 x g { μ φ μ φ+m 2 φ 2} global structure: 4 quadrants + 2 timelike boundaries, so d 5 x =? 3. Take functional derivative of S cl [ φ]

17 Real-Time, Finite-Temperature AdS/CFT p. 17/34 ODE with 4 Regular Poles: Heun s Equation d 2 φ(z) dz 2 + ( γ z + δ z 1 + ε ) dφ(z) z a dz 4 poles: z = 0, 1, a, + αβz q z(z 1)(z a) φ(z) = 0 Regularity at z = : ε = α+β γ δ +1 Solution: Heun s function in z [0, min{1, a }) Hl(a,q,α,β,γ,δ;z) = k=0 c k z k = 1+ q z + γa Recursion relation: c k+1 =...c k +...c k 1 2 independent solutions (eigenfunctions): φ 1 (z) = Hl(a,q,α,β,γ,δ;z) φ 2 (z) = z 1 γ Hl(a,q (γ 1)(aδ +ε),β γ +1,α γ +1,2 γ,δ;z) { or φ 3 (z) = lim φ 1 (z) c } 2(γ, ) γ 1 γ +1 φ 2(z)

18 Real-Time, Finite-Temperature AdS/CFT p. 18/34 { Solving Scalar EOM in AdS-Schwarzschild ( m 2 )φ(t, x,r) = 0 with = 1 g μ gg μν ν F w.r.t. (t, x) φ(t, x,r) φ(ω, k;u) ω= E 2πT, k= p 2πT u = ( r 0 ) 2 r f = 1 u 2 boundary: u = 0 horizon: u = 1 2 u 2 + u2 +1 u(u 2 1) u + ω 2 u(u 2 1) + k 2 2 u(u 2 1) + m 2 R 2 4u 2 (u 2 1) } φ(ω, k;u) = 0 φ(ω, k;u) = F(ω, k;u) φ(ω, k) F(ω, k;u) = 1 u 0 u 2 Δ 2 F(u): bulk-to-boundary propagator φ(ω, k): boundary field

19 Real-Time, Finite-Temperature AdS/CFT p. 19/34 AdS-Schwarzschild: Bulk-to-Boundary Propagators (1) i.e., 2 independent solutions of the EOM: [Starinets] F(ω, k;u) = N ω, k u 2 Δ 2 (1+u) ω 2 (1 u) iω 2 Hl(a,q,α,β,γ,δ;1 u) with α = β = ( 2 Δ 2 γ = 1 iω δ = 3 Δ a = 2 ( ) q = 4 2Δ+ Δ2 4 ) + 1 i 2 ω + [ 1 2 +( ) ] Δ 7 2 i ω i 2 ω2 ω 2 + k 2 The other is F (ω, k;u).

20 Real-Time, Finite-Temperature AdS/CFT p. 20/34 What isf(ω, k;u)? F(ω, k;u) F(ω +iε, k;u): = Retarded propagator analytic in UHP of ω Near-horizon u 1 behavior inside the F.T. F(ω, k;u) (1 u) iω 2 e iet F(ω, R2 ie(t+ 4r ln k;u) e r r 0 0 r ) 0 V iω = F(ω, incoming wave in R k;u) is outgoing wave in L F(ω, k;u) has supports only inside the future light-cone = Retarded propagator

21 Real-Time, Finite-Temperature AdS/CFT p. 21/34 Global Structure of AdS-Schwarzschild Poincaré (local) ds 2 = r2 f R 2 dt2 + R2 r 2 f dr2 Coordinate transformation: t K = βe αr2 2r r 0 sinhαt in R r K = βe αr2 2r r 0 coshαt t K = βe αr2 2r r 0 sinhαt in L r K = βe αr2 2r r 0 coshαt r = arctan ( ) ( r r 0 arctanh r0 ) r t K = V +U r K = V U Kruskal (global) ds 2 = e Λ(t K,r K ) ( dt 2 K +drk) 2 AdS-Sch Penrose diagram F U=0 L R P V=0

22 Real-Time, Finite-Temperature AdS/CFT p. 22/34 Prescriptions & Boundary Conditions Defined in Kruskal (global) coordinates Action integral: only in L & R quadrants, minus R L [Frolov & Martinez] Continuity across the horizon: [Unruh] f(u,v = 0) f(u = 0,V) Frequency selection: [Son & Herzog] Physical particles R: incoming L: outgoing

23 Real-Time, Finite-Temperature AdS/CFT p. 23/34 AdS-Schwarzschild: Bulk-to-Boundary Propagators (2) Bulk field (globally defined): φ R (t, x,r) in R φ(t K, x K,r k ) = φ L (t, x,r) in L d 4 { } p φ R (t, x,r) = f RR (ω, k;u) φ R (ω, k)+f RL (ω, k;u) φ L (ω, k) φ L (t, x,r) = (2π) 4eipx d 4 { } p f (2π) 4eipx LR (ω, k;u) φ R (ω, k)+f LL (ω, k;u) φ L (ω, k) Bulk-to-boundary propagators: Feynman & Wightman f RR (ω, k;u) = e2πω e 2πω 1 F(ω, k;u) 1 e 2πω 1 F (ω, k;u) f RL (ω, [ k;u) = eπω e 2πω 1 F(ω, k;u)+f (ω, ] k;u) f LR (ω, [ k;u) = eπω e 2πω 1 F(ω, k;u) F (ω, ] k;u) f LL (ω, k;u) = 1 e 2πω 1 F(ω, k;u)+ e2πω e 2πω 1 F (ω, k;u) where e 2πω = e E/T - Boltzman factor [Son & Herzog]

24 Real-Time, Finite-Temperature AdS/CFT p. 24/34 S[φ] = Structure of On-Shell Action d 5 x gl[φ] R L d 5 x gl[φ] L 0 = μ φ μ φ+m 2 φ 2, L pert = λ 3! φ3 Substitute 0 th order EOM solution into the action S cl [φ] = d 4 x gg uu φ u φ + λ dud 4 x gφ 3 R L u 0 3! R L S cl [ φ] = d 4 p 1 d 4 p 2 δ (4) (p 1 +p 2 ) f ij1 (p 1 ;u) gg uu u f ij2 (p 2 ;u) (p 1 ) φ j2 (p 2 ) ij u 0 φj1 + λ 1 du g d 4 p 1 d 4 p 2 d 4 p 3 δ (4) (p 1 +p 2 +p 3 ) f ij1 (p 1 ;u)f ij2 (p 2 ;u) 3! 0 ij f ij3 (p 3 ;u) φ j1 (p 1 ) φ j2 (p 2 ) φ j3 (p 3 ) where i,j = R,L Next: to take functional derivative w.r.t. φ.

25 Real-Time, Finite-Temperature AdS/CFT p. 25/34 AdS-Schwarzschid: 2-Point Functions Define: G ij (p 1,p 2 ) = ( ) i+j δ 2 S cl [ φ] δ φ i (p 1 )δ φ j (p 2 ) φ 0 where i,j = 1,2 (1 R, 2 L) 2-point functions: F(u) F(p;u) = F(ω, k;u) [Son & Herzog] [ G 11 (p) = N2 8π 2 R gg uu e 2πω 3 e 2πω 1 F(u) uf(u) 1 e 2πω 1 F (u) u F (u)] G 12 (p) = N2 8π 2 R gg uu e πω 3 e 2πω 1 [ F(u) uf(u)+f (u) u F (u)] u 0 u 0 G 21 (p) = G 12 (p) G 22 (p) = N2 8π 2 R gg uu 3 [ 1 e 2πω 1 F(u) uf(u) e2πω e 2πω 1 F (u) u F (u)] u 0 Same structure as the propagators: Retarded vs. Feynman & Wightman?

26 Real-Time, Finite-Temperature AdS/CFT p. 26/34 AdS-Schwarzschid: 3-Point Functions Define: G ijk (p 1,p 2,p 3 ) = ( ) i+j+k δ 3 S cl [ φ] δ φ i (p 1 )δ φ j (p 2 )δ φ k (p 3 ) φ 0 where i,j,k = 1,2; (1 R, 2 L) 3-point functions: G ijk (p 1,p 2,p 3 ) = ( ) i+j+k N 2 16π 2 R 3λδ(4) (p 1 +p 2 p 3 ) du g 0 [ ] f Ri (p 1 ;u)f Rj (p 2 ;u)f Rk (p 3 ;u) f Li (p 1 ;u)f Lj (p 2 ;u)f Lk (p 3 ;u) 1 1 = ( ) i+j+k N 2 16π 2 R 3λδ(4) (p 1 +p 2 p 3 ) du g 0 [ n ( e 2πω 1,e 2πω 2,e ) ] 2πω 3 F(p 1 ;u)f(p 2 ;u)f(p 3 ;u)+ Tree-level diagrams & Circling rules

27 Real-Time, Finite-Temperature AdS/CFT p. 27/34 Schwinger-Keldysh Formalism for Field Theory at T = 0 Real-time formalism Complex t-contour C, doubler fields S = dtl C e β ˆH it ˆH e Generating function Z[J 1,J 2 ] = Dφe is+i d 4 xj 1 O 1 i d 4 xj 2 O 2 n-point functions G (n) ab... ({x i}) = ( i) n 1 δ n lnz[j 1,J 2 ] δj a (x 1 )δj b (x 2 )... (a,b... = 1,2)

28 Real-Time, Finite-Temperature AdS/CFT p. 28/34 Mapping AdS-Sch Structure to Schwinger-Keldysh L & R structure S-K contour 2 boundaries 2 real time paths R = 1, L = 2 Fields: right real, left doubler φ R = J 1, φl = J 2 φ R = O 1, φ L = O 2 n-point function n n matrices match, e.g.: G RLRR... = G Hawking temperature imaginary contour period σ = β 2

29 Real-Time, Finite-Temperature AdS/CFT p. 29/34 2-Point Function: Matrix & Causal Schwinger-Keldysh 2-point function marix has the following properties: KMS (Kubo-Martin-Schwinger) relation G 11(p) = G 22 (p), G 12(p) = G 21 (p) Largest time identity (πω = E 2T ) G 11 e πω G 12 e πω G 21 +G 22 = 0 Feynman, Wightman & Causal G 11 (p) = G F (p), G 12 (p) = e πω G (p), G R (p) = G 11 e πω G 12 G 11 (p) = RG R (p)+icoth(πω)ig R (p) G 12 (p) = icsch(πω)ig R (p) G R (p) = N2 gg uu 8π 2 R 3 F(ω, k;u) u F(ω, k;u) u 0

30 Real-Time, Finite-Temperature AdS/CFT p. 30/34 3-Point Function: Matrix & Causal Schwinger-Keldysh 3-point function marix has the following properties: KMS relation G 111(p) = G 222 (p), G 121(p) = G 212 (p) Largest time identity (p 3 = p 1 +p 2 ) G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 +e πω 1 G 122 +e πω 2 G 212 e πω 3 G 112 G 222 = 0 Feynman & Wightman G 111 ({x}) = G F ({x}) = T e β ˆHO(x 1 )O(x 2 )O(x 3 ), Causal [Kobes] G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 G R ({x}) = θ(t 3 > t 2 > t 1 ) e β ˆH[[O(x 3 ),O(x 2 )],O(x 1 )] θ(t 3 > t 1 > t 2 ) e β ˆH[[O(x 3 ),O(x 1 )],O(x 2 )]

31 Real-Time, Finite-Temperature AdS/CFT p. 31/34 Causal 3-Point Function G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 =? G 111 ( ( G 121 e ω 2 π ( (? G e (ω 1 + ω 2 ) π 221 G211 e ω π 1

32 Real-Time, Finite-Temperature AdS/CFT p. 32/34 Causal 3-Point Function G R ({p}) = G 111 e πω 1 G 211 e πω 2 G 121 +e πω 3 G 221 ( ( 1 2 G 111 G 121 e ω 2 π λ ( ( 3 G e (ω 1 + ω 2 ) π 221 G211 e ω π 1 1 G R ({p}) = λn2 16π 2 R 3δ(4) (p 1 +p 2 p 3 ) du gf(p 1 ;u)f(p 2 ;u)f(p 3 ;u) 0 G R ({x}) λ dud 4 y gf(x 1 y;u)f(x 2 y;u)f (x 3 y;u)

33 Real-Time, Finite-Temperature AdS/CFT p. 33/34 Conclusions & Outlook Conclusions Strongly-coupled FT Weakly-coupled gravity Finite-temperature Black Hole in gravity Mapping of everything: built & checked 2-pt & 3-pt functions: calculated (in terms of Heun s function) Causal correlators: very simple structures in gravity dual Future Work More realistic calculations (such as T μν ) Non-relativistic, scale-invariant FT gravity dual

34 Real-Time, Finite-Temperature AdS/CFT p. 34/34

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Higher spin gauge theories and their CFT duals

Higher spin gauge theories and their CFT duals Higher spin gauge theories and their CFT duals E-mail: hikida@phys-h.keio.ac.jp 2 AdS Vasiliev AdS/CFT 4 Vasiliev 3 O(N) 3 Vasiliev 2 W N 1 AdS/CFT g µν Vasiliev AdS [1] AdS/CFT anti-de Sitter (AdS) (CFT)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Probing the AdS/CFT Plasma with Heavy Quarks

Probing the AdS/CFT Plasma with Heavy Quarks Probing the AdS/CFT Plasma with Heavy Quarks Jorge Casalderrey-Solana LBNL Work in collaboration with Derek Teaney Heavy Quarks at RHIC Heavy Quarks are suppressed and participate on collective motion

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics Dmitry Bagrets Nucl. Phys. B 9, 9 (06) arxiv: 607.00694 Alexander Altland Univ. zu Köln Alex Kamenev Univ. of Minnesota PCS IBS Workshop, Daejeon,

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

SPONTANEOUS GENERATION OF GEOMETRY IN 4D SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Aspects of the BMS/CFT correspondence

Aspects of the BMS/CFT correspondence DAMTP, Cambridge. February 17, 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et mathématique Université Libre de Bruxelles & International Solvay Institutes Overview Classical

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability A. Cisterna 1 M. Cruz 2 T. Delsate 3 J. Saavedra 4 1 Universidad Austral de Chile 2 Facultad de

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar Homework 3 Solutions 3.1: U(1) symmetry for complex scalar 1 3.: Two complex scalars The Lagrangian for two complex scalar fields is given by, L µ φ 1 µ φ 1 m φ 1φ 1 + µ φ µ φ m φ φ (1) This can be written

Διαβάστε περισσότερα

Structure constants of twist-2 light-ray operators in the triple Regge limit

Structure constants of twist-2 light-ray operators in the triple Regge limit Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian Revisiting the S-matrix approach to the open superstring low energy eective lagrangian IX Simposio Latino Americano de Altas Energías Memorial da América Latina, São Paulo. Diciembre de 2012. L. A. Barreiro

Διαβάστε περισσότερα

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors BYU PHYS 73 Statistical Mechanics Chapter 7: Sethna Professor Manuel Berrondo Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids,

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Linearized Conformal gravity

Linearized Conformal gravity Utah State University From the SelectedWors of James Thomas Wheeler Winter January 28, 206 Linearized Conformal gravity James Thomas Wheeler Available at: https://wors.bepress.com/james_wheeler/8/ Linearized

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

A manifestly scale-invariant regularization and quantum effective operators

A manifestly scale-invariant regularization and quantum effective operators A manifestly scale-invariant regularization and quantum effective operators D. Ghilencea Corfu Summer Institute, Greece - 8 Sep 2015 E-print: arxiv:1508.00595 sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Mode Antonio Pich IFIC, CSIC Univ. Vaencia Gauge Invariance: QED, QCD Eectroweak Uniication: SU() Symmetry Breaking: Higgs Mechanism Eectroweak Phenomenoogy Favour

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Aspects of the BMS/CFT correspondence

Aspects of the BMS/CFT correspondence International Conference on Strings, M-Theory and Quantum Gravity Centro Stefano Franscini, Monte Verita, Ascona, 27 July 2010 Aspects of the BMS/CFT correspondence Glenn Barnich Physique théorique et

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Physics 554: HW#1 Solutions

Physics 554: HW#1 Solutions Physics 554: HW#1 Solutions Katrin Schenk 7 Feb 2001 Problem 1.Properties of linearized Riemann tensor: Part a: We want to show that the expression for the linearized Riemann tensor, given by R αβγδ =

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Magnetic bubble refraction in inhomogeneous antiferromagnets

Magnetic bubble refraction in inhomogeneous antiferromagnets Magnetic bubble refraction in inhomogeneous antiferromagnets Martin Speight University of Leeds Nonlinearity 19 (006) 1565-1579 Plan Planar isotropic inhomogeneous antiferromagnetic spin lattices Continuum

Διαβάστε περισσότερα

3.5 - Boundary Conditions for Potential Flow

3.5 - Boundary Conditions for Potential Flow 13.021 Marine Hydrodynamics, Fall 2004 Lecture 10 Copyright c 2004 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hydrodynamics Lecture 10 3.5 - Boundary Conditions for Potential

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Constitutive Relations in Chiral Media

Constitutive Relations in Chiral Media Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization

Διαβάστε περισσότερα

BLACK HOLES AND UNITARITY GEORGE SIOPSIS. The University of Tennessee. G.S., Class. Quant. Grav. 22 (2005) 1425; hep-th/

BLACK HOLES AND UNITARITY GEORGE SIOPSIS. The University of Tennessee. G.S., Class. Quant. Grav. 22 (2005) 1425; hep-th/ Κολυµπάρι - Κρήτη 2005 BLACK HOLES AND UNITARITY GEORGE SIOPSIS The University of Tennessee OUTLINE Information loss paradox Black hole perturbations AdS 3 /CFT 2 correspondence t Hooft s brick wall Solodukhin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

NLO BFKL and anomalous dimensions of light-ray operators

NLO BFKL and anomalous dimensions of light-ray operators NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 / Outline Light-ray operators. Regge limit in the coordinate

Διαβάστε περισσότερα

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time Commun. Theor. Phys. (Beijing, China 44 (005 pp. 83 87 c International Academic Publishers Vol. 44, No., August 5, 005 Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Διαβάστε περισσότερα

Geometry of the 2-sphere

Geometry of the 2-sphere Geometry of the 2-sphere October 28, 2 The metric The easiest way to find the metric of the 2-sphere (or the sphere in any dimension is to picture it as embedded in one higher dimension of Euclidean space,

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Symmetry. March 31, 2013

Symmetry. March 31, 2013 Symmetry March 3, 203 The Lie Derivative With or without the covariant derivative, which requires a connection on all of spacetime, there is another sort of derivation called the Lie derivative, which

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Gravitational Waves in any dimension

Gravitational Waves in any dimension How is an EFT for Gravitational Waves in any dimension like a bead on a string? with S. Hadar and B. Kol O.B., S.H. & B.K., Phys. Rev. D 88, 104037 (2013) O.B. & S.H., Phys. Rev. D 89, 045003 (2014) O.B.,

Διαβάστε περισσότερα