NLO BFKL and anomalous dimensions of light-ray operators

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "NLO BFKL and anomalous dimensions of light-ray operators"

Transcript

1 NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June /

2 Outline Light-ray operators. Regge limit in the coordinate space. BFKL representation of 4-point correlation function in N = 4 SYM. DGLAP representation of 4-point correlation function. Anomalous dimensions from DGAP vs BFKL representations. (Non)Perturbative QFT 13 June 013 /

3 Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) (Non)Perturbative QFT 13 June /

4 Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) (Non)Perturbative QFT 13 June /

5 Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. (Non)Perturbative QFT 13 June /

6 Problem Gluon operators of leading twist O g n F i a n Fai Anomalous dimension (in gluodynamics) γ n = π α [ 1 sn c n(n 1) 1 (n + 1)(n + ) + ψ(n + 1) + γ E 11 ] + O(α 1 s ) BFKL gives γ(nα s ) at the non-physical point n 1 γ n = [ A LO BFKL n NLO BFKL + ωbn +... ] ( α s N c ) n ω n 1 πω LO: Jaroszewicz (1980), NLO: Lipatov, Fadin, Camici, Ciafaloni (1998) ω = n 1 0 corresponds to F i a ω 1 Fai - some non-local operator. Q: which one? A: gluon light-ray (LR) operator (Non)Perturbative QFT 13 June /

7 Light-ray operators and parton densities Gluon light-ray (LR) operator of twist F a i(x + + x )[x +, x + ] ab F b i (x + + x ) Forward matrix element - gluon parton density z µ z ν p Fµξ(z)[z, a 0] ab Fν bξ (0) p µ z =0 = (pz) dx B x B D g (x B, µ) cos(pz)x B Evolution equation (in gluodynamics) µ d dµ Fa i(x + + x )[x +, x + ] ab F b i (x + + x ) = x + x + dz + z + x + 0 dz + K(x +, x + ; z +, z + ; α s )F a i(z + + x )[z +, z + ] ab F b i (z + + x ) Forward LR operator F(L +, x ) = dx + F i(l a + + x + + x )[L + + x +, x + ] ab F (x bi + + x ) (Non)Perturbative QFT 13 June /

8 Light-ray operators and parton densities Expansion in ( forward ) local operators F(L +, x ) = n= Evolution equation for F(L +, x ) L n + (n )! Og n(x ), O g n dx + F i a n Fai (x +, x ) µ d dµ F(L +, x ) = γ n (α s ) = u 1 K gg - DGLAP kernel 0 0 du K gg (u, α s )F(uL +, x ) du u n K gg (u, α s ) µ d dµ Og n = γ n (α s )O g n u 1 K gg (u) = α ( [ sn c 1 ūu + π ūu] + 11 ) + 1 δ(ū) + higher orders in α s (Non)Perturbative QFT 13 June /

9 Light-ray operators Conformal LR operator (j = 1 + iν) F µ (L +, x ) = F µ j (x ) = 0 dν π (L +) 3 +iν F µ 1 dl + L 1 j + F µ (L +, x ) +iν(x ) Evolution equation for forward conformal light-ray operators µ d dµ F j(z ) = γ j (α s ) is an analytical continuation of γ n (α s ) 0 du K gg (u, α s )u j F j (z ) (Non)Perturbative QFT 13 June /

10 Conformal four-point amplitude in N = 4 SYM 4-point correlation function (CF) A(x, y, x, y ) = [(x y) (x y ) ] +γ k N c O(x)O(y)O(x )O(y ) O = φ a I φa I - Konishi operator (γ k - anomalous dimension) In a conformal theory the amplitude is a function of two conformal ratios A = F(R, R ) R = (x y) (x y ) (x x ) (y y ), R = (x y) (x y ) (x y ) (x y) At large N c A(x, y, x, y ) = A(g N c ) g N c = λ t Hooft coupling (Non)Perturbative QFT 13 June /

11 Regge limit in the coordinate space Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Full 4-dim conformal group: A = F(R, r) R = (x y) (x y ) (x x ) (y y ) ρ ρ x + x +y y (x x ) (y y ) r = [(x y) (x y ) (x y) (x y ) ] (x x ) (y y ) (x y) (x y ) [(x y ) x +y + x +y (x y) + x +y (x y) + x +y (x y ) ] (x x ) (y y ) x +x + y y (Non)Perturbative QFT 13 June /

12 4-dim conformal group versus SL(, C) Regge limit: x + ρx +, x + ρx +, y ρ y, y ρ y ρ, ρ z_ x +, x _, y _ y + z_ z + x, x _ y _, y _ Regge limit symmetry: -dim conformal group SL(, C) formed from P 1, P, M 1, D, K 1 and K which leave the plane (0, 0, z ) invariant. (Non)Perturbative QFT 13 June /

13 Pomeron in a conformal theory f + (ω) = eiπω 1 sin πω Ω(r, ν) = A(x, y; x, y ) s = i dν f + (ℵ(λ, ν))f(λ, ν)ω(r, ν)r ℵ(λ,ν)/ - signature factor sin νρ sinh ρ, cosh ρ = r - solution of the eqn ( H3 + ν + 1)Ω(r, ν) = 0 The dynamics is described by: ℵ(λ, ν) - pomeron intercept, and F(λ, ν) - pomeron residue. L. Cornalba (007) (Non)Perturbative QFT 13 June /

14 Pomeron in the conformal theory A(x, y; x, y ) s = i dν f + (ℵ(λ, ν))f(λ, ν)ω(r, ν)r ℵ(λ,ν)/ Pomeron intercept: ℵ(ν, λ) = λ [ λ χ(ν) + 4π 16π δ(ν)] + O(λ 3 ) χ(ν) = ψ(1) ψ( 1 + iν) ψ( 1 iν) = S 1( 1 + iν) + c.c. - BFKL intercept, δ(ν) = 3 ζ(3)+π ln + π 3 S 1( 1 +iν)+s 3( 1 +iν)+π S 1 ( 1 +iν) 4S,1( 1 +iν)+c.c. - NLO BFKL intercept S i (x) - harmonic sums Lipatov, Kotikov (000) Pomeron residue F(ν, λ): F 0 (ν) = π sinh πν 4ν cosh 3 πν F(ν, λ) = λ F 0 (ν) + λ 3 F 1 (ν) +... Cornalba, Costa, Penedones (007) F 1 (ν) = see below G. Chirilli and I.B. (009) (Non)Perturbative QFT 13 June /

15 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) a 0 = x+y+ (x y), b 0 = x y (x y ) impact factors do not scale with energy all energy dependence is contained in [DD] a0,b0 (a 0 b 0 = R) (Non)Perturbative QFT 13 June /

16 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Dipole-dipole scattering χ(γ) C ψ(γ) ψ(1 γ) ( z ) 1 1 [DD] = dν dz +iν ( z ) 1 1 iν 0 z 10 z 0 z D( 1 + iν; λ)rω(ν)/ 10 z 0 D(γ; λ) = Γ( γ)γ(γ 1) Γ(1 + γ)γ( γ) { 1 λ [ χ(γ) 4π γ(1 γ) π 3 ] } + O(λ ) (Non)Perturbative QFT 13 June /

17 NLO Amplitude in N =4 SYM theory: factorization in rapidity x y x y x y Y A Y B <Y< Y A Y B x y x y x y [(x y) (x y ) ] +γk T{Ô(x)Ô(y)Ô(x )Ô(y )} = d z 1 d z d z 1 d z IF a0 (x, y; z 1, z )[DD] a0,b0 (z 1, z ; z 1, z )IF b0 (x, y ; z 1, z ) Result : (G.A. Chirilli and I.B., 010) F(ν) = N c 4π 4 α { s Nc 1 cosh 1 + α [ sn c π πν π π cosh πν ν ] } + O(αs ) (Non)Perturbative QFT 13 June /

18 Light-cone OPE in Cornalba s formula [x1x 34] +γk O(x 1 )O(x )O(x 3 )O(x 4 ) = i dν tanh πν F(ν)Ω(r, ν)r 1 ℵ(ν) f + (ℵ(ν)) ν ℵ(ν) - pomeron intercept, f + (ω) = (e iπω 1)/ sin πω - signature factor Ω(r, ν) = ν sin νρ r π sinh ρ, cosh ρ = In the double limit (Regge) + (x 1 0) R = x 13 x x 1 x 34 x 1 + x + x 3 x 4 x 1 x 34 r x 1 + (x 3 x 14 x 4 x 13 ) x 1+ x + x 3 x 4 x 1 x 34 Ω(r, ν) ν ( r 1 π +iν r 1 iν) i (Non)Perturbative QFT 13 June /

19 Light-cone limit of Cornalba s formula Cornalba s formula as x 1 0 [x 1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π L + L 0 tanh πν ( x dudv dν 1 x 34 ūu vv ) 1 +iν ( L + L ūu vv ν cosh πν [x13 v + x 14 v] x 1 x 34 ) ℵ(ν)/f+ = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) = BFKL representation of the amplitude in the (Regge) + (x1 0) limit (Non)Perturbative QFT 13 June /

20 Supermultiplet of twist- operators SU 4 singlet operators. (Korchemsky et al, 003) S 1n (z) = Og(z) n + n 1 n(n 1) 8 On λ (z) Oφ n 8 (z) S n (z) = Og(z) n 1 n(n + 1) 8 On λ (z) + Oφ n (z) S 3n (z) = Og(z) n n + (n + 1)(n + ) 4 On λ (z) Oφ n 8 (z) Oλ n (x ) = dx + i λ a n 1 σ λ a (x +, x ) Oφ n (z) = dx φa,i + n φ a,i (x +, x ) All operators have the same anomalous dimension γ S 1 n (α s ) γ n (α s ) = α s π N c[ψ(n 1) + C] + O(α s ), γ S n = γ S 1 n+1, γs 3 n = γ S 1 n+ (Non)Perturbative QFT 13 June /

21 Supermultiplet of LR operators Gluino and scalar LR operators Λ(L +, x ) = i dx + [ λ a (L + + x + + x )[x + + x +, x + ] ab σ λ b (x + + x ) + c.c] Φ(L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Λ j (x ) = 0 SU 4 singlet LR operators. dl + L j+1 + Λ(L +, x ), Φ j (x ) = 0 dl + L j+1 + Φ(L +, x ) S 1j (x ) = F j (x ) + j 1 8 Λ j(j 1) j(x ) Φ j (x ) 8 S j (x ) = F j (x ) 1 8 Λ j(j + 1) j(x ) + Φ j (x ) S 3j (x ) = F j (x ) j + 4 Λ (j + 1)(j + ) j(x ) Φ j (x ) 8 All operators have the same anomalous dimension γ S 1 j (α s ) γ j (α s ) = α s π N c[ψ(j 1) + C] + O(αs ), γ S j = γ S 1 j+1, γs 3 j = γ S 1 j+ (Non)Perturbative QFT 13 June /

22 Three-point CF of LR operator and two locals Three-point correlation function of local operators (O = φ a I φa I - Konishi operator) (µ z 3) γ K S 1n (z 1 )O(z )O(z 3 ) = c n [1 + ( 1) n ] z 1 z 13 z 3 ( z1 z 1 z 13 z 13 x3 (µ x3 ) γ K dx 1+ S 1n (x 1+, x 1 )O(x, x )O(x 3, x 3 ) ) n ( µ z 3 z 1 z 13 ) 1 γ(n,αs) = πi c n[1 + ( 1) n ] Γ(1 + n + γ n ) ( x3 ) ( 1+ γn x 1 x3 4 Γ (1 + n + 1 γ + x ) 13 1 n γn n) x x 3 x x 3 CF of light-ray operator and two local operators x 3 (µ x 3 ) γ K S 1j (x 1 )O(x, x )O(x 3, x 3 ) = πi c j[1 + e iπj ] Γ(1 + j + γ j ) ( x3 ) γ 1+ j ( x x3 4 Γ (1 + j γ + x ) 13 1 j γj j) x x 3 x x 3 (Non)Perturbative QFT 13 June /

23 Three-point CF of LR operator and two locals Proof: compare conformal Ward identities for dx + S 1n (x +, x ) and S 1j (x ) i[d, dx + S 1n (x +, x )] = vs i[d, Φ(x +, x ) Φ(x +, x )] = i[d, Φ j (x )] = [ j (x x 0 ) i ( dx + x+ + n + + (x x 0 ) i x + [ 4 + x + + x + x + x i ] Φj (x ) x + x i + (x x 0 ) i ) S1n = (n + 1) dx + S 1n (x +, x ) x i ] Φ(x +, x ) Φ(x +, x ) Similarly i[k +, dx + Φ(x ) n Φ(x )] = 4 [ n + (x x 0 ) i x i ] dx + x + Φ(x ) n Φ(x ) vs i[k +, dx + ds + (s + ) j+1 Φ(x + + s x ) Φ(x + s + + x )] = 4 [ j + (x x 0 ) ] i dx + x + ds + (s + ) j+1 Φ(x + + s + + x )Φ(x + s + + x ) x i 0 (Non)Perturbative QFT 13 June /

24 Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] (Non)Perturbative QFT 13 June /

25 Light-cone OPE CF of light-ray operator and two local operators in forward kinematics x3 (µ x3 ) γ K dx 3 S µ j (x 1 )O(L + x 3, x )O(x 3, x 3 ) = 0 du c(j, α s)[1 + e iπj ]L j [ (ūu)j ( ūuµ x ) 1 3 γ(j,αs) x 1 u + x13 ū] 1+j [x1 u + x13 ū] Limit x 3 0 (µ ) γ K dx 3 S j + (x 1 )O(L + x 3, x )O(x 3, x 3 ) = Γ( 1 + j + γ ) c(j, α s )[1 + e iπj ]L j Γ( + j + γ) (x1 ) 1+j (µ x1 (µ )γ(j,αs) ) γ(j,αs) (Non)Perturbative QFT 13 June /

26 Light-cone OPE Light-ray operators in (+) and (-) directions: Φ + (L +, x ) = dx + φ a,i (L + + x + + x )[x + + x +, x + ] ab φ b,i (x + + x ) Φ + j (x ) = dl + L j+1 + Φ(L +, x ) 0 Φ (L, x ) = dx + φ a,i (L + x + x )[x + x, x ] ab + φ b,i (x + x ) Φ j (x ) = 0 dl L j+1 + Φ(L, x ) and similarly for Λ j s and G j s CF of two LRs : S + j= 3 +iν(x 1 )S j = 3 +iν (x 3 ) = δ(ν ν )a(j, α s ) (x 13 ) j+1 (x 13 µ ) γ(j,αs) (Non)Perturbative QFT 13 June /

27 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) (Non)Perturbative QFT 13 June /

28 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) (Non)Perturbative QFT 13 June /

29 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) (Non)Perturbative QFT 13 June /

30 DGLAP represenation of 4-point CFs Light-cone OPE x1 (µ x1 ) γk dx 1+ O(L + + x +, x 1 )O(x +, x ) = +i dj c(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) γ(j,αs) S j + (x 1 ) DGLAP result (at x 1 0) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = = +i dj C(j, α s )[1 + e iπj ]L+(µ j x 1 i 1 ) 1 +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j γ(j,αs) S µ j (x )O(L + x 4, x 3 )O(x 4, x 4 ) x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) (Non)Perturbative QFT 13 June /

31 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) (Non)Perturbative QFT 13 June 013 /

32 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] ℵ(ξ) (L + L ) 1+ℵ(ξ) (Non)Perturbative QFT 13 June 013 /

33 DGLAP vs BFKL for 4-point CFs DGLAP result (leading twist) µ 4 (µ 4 x 1x 34) +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 4, x 3 )O(x 4, x 4 ) = +i dj C(j, α s ) 1 i 0 dv [1 + eiπj ](L + L ) [ j ( x 1 v + x13 v] 1+j x 1 x 34 [x 13 v + x 14 v] ) 1 γ(j,αs) ( vv) j+ 1 γ(j,αs) BFKL result (ℵ(ξ, α s ) = αsnc π χ(ξ) pomeron intercept) [x1x 34] +γk dx + dx 3 O(L + + x +, x 1 )O(x +, x )O(L + x 3, x )O(x 3, x 3 ) = iα s 8 π +i dv dξ f ( ℵ(ξ) ) ξ i + iν ℵ(ξ) ( vv)1 ξ+ cos πξ B ( ξ + ℵ(ξ) ) ( x ) 1 x ξ 34 (ξ 1 ) sin3 πξ [x13 v + x 14 v]+ℵ(ξ) [x13 v + x 14 v] We compare these results around ξ j 1 0 ℵ(ξ) ℵ(ξ)ℵ (ξ) α sn c πξ +ζ(3)α s ξ 1 + ℵ(ξ, α s ) = j and γ(j, α s ) = ξ ℵ(ξ) +... γ j = α sn c π(j 1) ℵ(ξ) (L + L ) 1+ℵ(ξ) s N c α + [0 + ζ(3)(j 1)]( π(j 1) )) (Non)Perturbative QFT 13 June 013 /

34 Result s N c γ j = α sn c α + [0 + ζ(3)(j 1)]( π(j 1) π(j 1) )) is an anomalous dimension of light-ray operator F j F(x ) (Non)Perturbative QFT 13 June /

35 Conclusions and Outlook 1 Conclusions: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) (Non)Perturbative QFT 13 June 013 /

36 Conclusions and Outlook 1 Conclusions: NLO BFKL gives anomalous dimensions of light-ray operators F +i ω 1 F+ i as ω 0 (in all orders in α s ) Outlook In QCD 3-point CF of F ω1 1 F(x 1 ) F ω 1 F(x ) F ω3 1 F(x 3 ) as ω 1, ω, ω 3 0 (joint project with V. Kazakov and E. Sobko): (Non)Perturbative QFT 13 June 013 /

Structure constants of twist-2 light-ray operators in the triple Regge limit

Structure constants of twist-2 light-ray operators in the triple Regge limit Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators

Διαβάστε περισσότερα

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Solution of the NLO BFKL Equation and γ γ cross-section at NLO Solution of the NLO BFKL Equation and γ γ cross-section at NLO Giovanni Antonio Chirilli The Ohio State University Santa Fe - NM 13 May, 014 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Duality Symmetry in High Energy Scattering

Duality Symmetry in High Energy Scattering Duality Symmetry in High Energy Scattering Alex Prygarin Hamburg University 10 March 010 Outline Introduction BFKL Hamiltonian Duality symmetry of forward BFKL Duality symmetry of BK and non-forward BFKL

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Fourier Analysis of Waves

Fourier Analysis of Waves Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων ιονύσης Τριανταφυλλόπουλος ECT*, Τρέντο, Ιταλία.Ν. Τριανταφυλλόπουλος (ECT*) Κορεσμός παρτονίων στην QCD ΕΜΠ, Αθήνα, Οκτ. 2007 1 / 22 Σχεδιάγραμμα Βαθειά ανελαστική

Διαβάστε περισσότερα

d 2 y dt 2 xdy dt + d2 x

d 2 y dt 2 xdy dt + d2 x y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x) Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

= df. f (n) (x) = dn f dx n

= df. f (n) (x) = dn f dx n Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα