Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Solution of the NLO BFKL Equation and γ γ cross-section at NLO"

Transcript

1 Solution of the NLO BFKL Equation and γ γ cross-section at NLO Giovanni Antonio Chirilli The Ohio State University Santa Fe - NM 13 May, 014 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

2 Outline Leading-Log-Approximation at high-energy: general case. BFKL in N =4 SYM theory. Solution of the NLO BFKL equation in QCD. General Form of the Solution of Higher-Order BFKL equation. NLO photon impact factor and high-energy OPE γ γ cross section. Numerical results. Conclusions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, 014 / 8

3 Linear Evolution equations in QCD DGLAP evolution equation Resum α s ln Q Λ QCD Eigenfunctions at any order: Powers of x B G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

4 Linear Evolution equations in QCD DGLAP evolution equation Resum α s ln Q Λ QCD Eigenfunctions at any order: Powers of x B BFKL evolution equation LO: resum (α s ln s) n. NLO: resum α s (α s ln s) n Eigenfunctions: LO: (k ) γ 1 NLO and higher order: Perturbative eigenfunctions (G.A.C. and Kovchegov). G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

5 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

6 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

7 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. Resum α s (α s Y) n NLO BFKL eq. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

8 Balitsky-Fadin-Kuraev-Lipatov equation Y G(k, k, Y) = d q K(k, q) G(q, k, Y) G(k, k, Y = 0) = 1 πk δ(k k ) k k and k k Y = ln s k k and s = (q 1 + q ) Resum (α s Y) n LO BFKL eq. Resum α s (α s Y) n NLO BFKL eq. The kernel is real and symmetric: K(k, k ) = K(k, k) K(k, k ) is Hermitian and the eigenvalues are real. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

9 LO BFKL equation Y G(k, k, Y) = d q K LO (k, q) G(q, k, Y) d q K LO (k, q) (q ) 1+γ = ᾱ µ χ 0 (γ)(k ) 1+γ ᾱ µ α µn c π (k ) 1+γ are eigenfunctions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

10 LO BFKL equation Y G(k, k, Y) = d q K LO (k, q) G(q, k, Y) d q K LO (k, q) (q ) 1+γ = ᾱ µ χ 0 (γ)(k ) 1+γ ᾱ µ α µn c π (k ) 1+γ are eigenfunctions. For γ = 1 + iν and ν real parameter (k ) 1+γ form a complete set. LO eigenvalues χ 0 (ν) = ψ(1) ψ( 1 + iν) ψ( 1 iν) are real and sym. ν ν LO BFKL is Conformal invariant. G(k, k, Y) = dν π k k ( k k ) iν eᾱµχ 0(ν) Y G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

11 BFKL equation in the N =4 SYM case In N = 4 SYM theory the coupling constant does not run. (k ) 1 +iν are eigenfunctions at any order. K(q, k) = α SYM K LO (q, k) + α SYM KNLO (q, k) +... G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

12 BFKL equation in the N =4 SYM case In N = 4 SYM theory the coupling constant does not run. (k ) 1 +iν are eigenfunctions at any order. K(q, k) = α SYM K LO (q, k) + α SYM KNLO (q, k) +... d q K(q, k)(q ) 1 +iν = [α SYM χ 0 (ν) + α SYM χ 1(ν)...](k ) 1 +iν G(k, k, Y) = ( dν π k k e[α SYMχ 0 (ν)+α SYM χ 1(ν)...] k ) iν k The eigenvalues ν ν. ᾱ µ χ 0 (ν) + ᾱ µ χ SYM 1 (ν) +... are real and symmetric for G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

13 γ γ scattering cross-section at LO Y A Y B <Y< Y A Y B G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

14 γ γ scattering cross-section at LO Y A Y B <Y< Y A Y B x y j α (x)j β (y)j ρ (x )j λ (y ) I αβ A (x, y; z 1, z ) I ρλ B (x, y ; z 1, z ) tr{u z1 U z } Y A tr{u z3 U z 4 } Y B G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

15 γ γ scattering cross-section at LO Y A e s 0 ( ) Y B <Y< Y A Y B e s 0 ( ) j α (x)j β (y)j ρ (x )j λ (y ) I αβ A (x, y; z 1, z ) I ρλ B (x, y ; z 1, z ) tr{u z1 U z } Y A A tr{u z3 U z 4 } Y B A G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

16 γ γ scattering cross-section at LO { U x = Pexp ig + dx + A (x + + x ) } α s A αβ ρλ (q 1, q ) i Q 1 Q ( dν I αβ Q ) iν LO (ν) Iρλ LO (ν) 1 χ 0(ν)(Y A Y B ) Q eᾱµ Y A = 1 ln s Q, Y B = 1 1 ln s Q, s = (q 1 + q ) α s A αβ ρλ (q 1, q ) i Q 1 Q ( dν I αβ Q ) iν LO (ν) Iρλ LO (ν) 1 χ 0(ν) ln Q eᾱµ s Q 1 Q G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

17 What about NLO? Can we repit the steps performed at LO also at NLO? Problems to be solved: Solve NLO BFKL equation G.A.C and Yu. Kovchegov Calculate NLO Impact Factor I. Balitsky and G.A.C. NLO Impact Factor has to be conformal invariant; Energy dependence of NLO Impact Factor needs to be eliminated; Composite Wilson line operators I. Balisky and G.A.C. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

18 BFKL equation at NLO in QCD K LO+NLO (k, q) ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) d q K LO+NLO (k, q) q γ = [ᾱ µ χ 0 (γ) ᾱ µ β χ 0 (γ) ln k µ + ᾱ µ ] δ(γ) k γ 4 ᾱ µ = α µn c π, β = 11 N c N f 1 N c G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

19 BFKL equation at NLO in QCD K LO+NLO (k, q) ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) d q K LO+NLO (k, q) q γ = [ᾱ µ χ 0 (γ) ᾱ µ β χ 0 (γ) ln k µ + ᾱ µ ] δ(γ) k γ 4 ᾱ µ = α µn c π, β = 11 N c N f 1 N c ᾱ µ β χ 0 (γ) ln k µ 1-loop running coupling. δ(γ) = β χ 0 (γ) + 4χ 1(γ) NLO Conformal terms Fadin-Lipatov (1998) χ 1 (γ) Real and symmetric in γ 1 γ γ = 1 + iν. d dγ χ 0(γ) χ 0 (γ) imaginary and not symmetric. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

20 NLO BFKL eigenfunctions G.A.C. and Yu. Kovchegov Perturbative eigenfunctions H γ (k) = k γ + ᾱ µ F γ (k) we have to determine F γ (k) so that d q K LO+NLO (k, q) H γ (q) = (γ) H γ (k) (γ) eigenvalues to be determined. F γ (k) has to satisfy: χ 0 (γ) F γ (k) + d q K LO (k, q)f γ (q) β χ 0 (γ) H γ (k) ln k µ = c(γ) H γ(k) For some function c(γ). G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

21 NLO eigenfunctions ansatz At this order we can write the condition for F γ (k) as: χ 0 (γ)f γ (k) + d q K LO (k, q)f γ (q) β χ 0 (γ) k γ ln k = c(γ) kγ µ Ansatz [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ + c 3(γ) ln 3 k µ +... G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

22 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

23 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ For c (γ) = β χ 0 (γ) χ 0 (γ) and for any c 0 (γ) and c 1 (γ) the eigenfunction is [ ( )] H γ (k) = k γ β χ 0 (γ) k 1 + ᾱ µ ln (γ) µ + c 1(γ) ln k µ + c 0(γ) and eigenvalues (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 0 ( 1 β χ 0 (γ) + χ 1(γ) + c 1 (γ)χ 0 (γ) + β ) χ 0 (γ) χ 0 (γ) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

24 NLO eigenfunctions Truncate the series at n = [ ] F γ (k) = k γ c 0 (γ) + c 1 (γ) ln k µ + c (γ) ln k µ For c (γ) = β χ 0 (γ) χ 0 (γ) and for any c 0 (γ) and c 1 (γ) the eigenfunction is [ ( )] H γ (k) = k γ β χ 0 (γ) k 1 + ᾱ µ ln (γ) µ + c 1(γ) ln k µ + c 0(γ) and eigenvalues (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 0 ( 1 β χ 0(γ) + χ 1 (γ) + c 1 (γ)χ 0(γ) + β ) χ 0 (γ) χ 0 (γ) Next step is to impose Completeness relation. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

25 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

26 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. Completeness relation at LO is satisfied with σ = 1 γ = 1 + iν with ν real parameter. we have to impose α µ -order to be 0 and Re[c 1 (ν)] = β χ 0 (ν) ν χ 0 (ν) ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

27 Completeness of the NLO eigenfunctions σ+i σ i dγ πi H γ(k) H γ (k ) = δ(k k ) Completeness relation has to be satisfied order-by-order in α µ. Completeness relation at LO is satisfied with σ = 1 γ = 1 + iν with ν real parameter. we have to impose α µ -order to be 0 and Re[c 1 (ν)] = β χ 0 (ν) ν χ 0 (ν) ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 If completeness relation is satisfied then orthogonality relation is also satisfied. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

28 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

29 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] and the eigenvalues are real (Im[c 1 (ν)]χ 0 (ν) is real function of ν) (ν) = ᾱ µ χ 0 (ν) + ᾱ µ [ ] χ 1 (ν) + Im[c 1 (ν)]χ 0(ν) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

30 Completeness of the NLO H-eigenfunctions provided that H 1 +iν(k) = k 1+iν ν Im[c 1(ν)] + Re[c 0 (ν)] = 0 [1 + ᾱ µ ( i β χ 0 (ν) k χ ln 0 (ν) µ + β ( χ 0 (ν) ν χ 0 (ν) the eigenfunctions are ) )] ln k µ + iim[c 1(ν)] ln k µ + Re[c 0(ν)] and the eigenvalues are real (Im[c 1 (ν)]χ 0 (ν) is real function of ν) (ν) = ᾱ µ χ 0 (ν) + ᾱ µ [ ] χ 1 (ν) + Im[c 1 (ν)]χ 0(ν) The imaginary term β ᾱ µχ 0 (γ) has canceled. We have freedom to chose Re[c 0 (ν)] and Im[c 1 (ν)] This freedom will not affect the solution. It is just an artifact of the phase and ν-reparametrization freedom of the H 1 +iν function. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

31 Phase freedom and ν-reparametrization Phase freedom of the H-functions: H 1 +iν(k) e iᾱµ(im[c 0(ν)] Im[c 1 (ν)] ln µ ) H 1 +iν(k) ν-reparametrization: ν = ν + ᾱ µ Im[c 1 (ν)] The Phase freedom and ν-reparametrization allow us to put c 0 (ν) = 0 and Im[c 1 (ν)] = 0. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

32 Solution of NLO BFKL equation NLO eigenfunctions: perturbation around the conformal LO eigenfunctions ( i ν H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ 0 (ν) k ln (ν) µ + 1 χ 0 ( ν ) )] χ 0 (ν) χ 0 (ν) ln k µ NLO eigenvalues (ν) = ᾱ µ χ 0 (ν) + ᾱ µ χ 1(ν) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

33 Solution of NLO BFKL equation NLO eigenfunctions: perturbation around the conformal LO eigenfunctions ( i ν H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ 0 (ν) k ln (ν) µ + 1 χ 0 ( ν ) )] χ 0 (ν) χ 0 (ν) ln k µ NLO eigenvalues (ν) = ᾱ µ χ 0 (ν) + ᾱ µ χ 1(ν) Solution of NLO BFKL equation G.A.C. and Yu. Kovchegov G(k, k, Y) = dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] Y H 1 +i ν(k) H 1 +i ν(k ) The perturbative expansion is in both the exponent and in the eigenfunctions (contrary to DGLAP case and N =4 BFKL). G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

34 µ-independence of the NLO solution The H γ (k) eigenfunctions diagonalize the LO+NLO BFKL kernel ᾱ µ K LO (k, q) + ᾱ µ KNLO (k, q) = 1 +i 1 i dγ π i (γ) H γ(k)h γ (q) LO+NLO BFKL kernel is µ-independent up to O(α 3 µ ) So is its diagonalization through H γ (k) eigenfunctions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

35 µ-independence of the NLO solution G(k, k, Y) = = dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1 (ν)] Y H γ (k)h γ (q) dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1(ν)] Y ( k G(k, k, Y) is µ-independent up to order O(α 3 µ). k ) i ν ) (1 ᾱ µ β χ 0 (ν) Y ln kk µ G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

36 µ-independence of the NLO solution G(k, k, Y) = = dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1 (ν)] Y H γ (k)h γ (q) dν π k k e[ᾱµ χ 0(ν)+ᾱ µ χ 1(ν)] Y ( k G(k, k, Y) is µ-independent up to order O(α 3 µ). At NLO we may write the solution as k ) i ν ) (1 ᾱ µ β χ 0 (ν) Y ln kk µ G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k ) χ 1 (ν)] Y ( k k ) i ν At this order the scale ᾱ λ s (k ) ᾱ λ s (k )ᾱs 1 λ (k k ) (for real λ) works as well. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

37 General Form of the Solution of All-Order BFKL equation Ansatz G(k, k, Y) = dν π e[ᾱs(k k ) χ 0(ν)+ᾱ s (k k ) χ 1(ν)+ᾱ 3 s (k k ) χ (ν)+...] Y χ (ν) and higher-order coefficients indicated by the ellipsis in the exponent are the scale-invariant (conformal) (ν ν)-even (real-valued) parts of the prefactor function generated by the action of the next-to-next-to-leading-order (NNLO) (and higher-order) kernels on the LO eigenfunctions. ( k k ) i ν G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

38 General Form of the Solution of All-Order BFKL equation Ansatz G(k, k, Y) = dν π e[ᾱs(k k ) χ 0(ν)+ᾱ s (k k ) χ 1(ν)+ᾱ 3 s (k k ) χ (ν)+...] Y To check the ansatz we have to plug it in the evolution eq. and we need the two-loop beta-function β 3 : ( k k ) i ν and µ dᾱ µ dµ = β ᾱ µ + β 3ᾱ 3 µ { d q K LO+NLO+NNLO (k, q) q 1+iν = ᾱ µ χ 0 (ν) [1 ᾱ µ β ln k +ᾱ µ [ i β χ 0 (ν) + χ 1(ν) ] [1 ᾱ µ β ln k µ k ln µ + ᾱ µ β 3 ln k µ } µ + ᾱ µ β ] + ᾱ 3 µ [χ (ν) + iδ (ν)] ] k 1+iν G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

39 General Form of the Solution of All-Order BFKL equation The ansatz does not work, but it allows us to recover the structure of the NNLO solution G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k )χ 1 (ν)+ᾱ 3 s (k k ) χ (ν)]y {1 + (ᾱ µ β ) [ 1 4 (ᾱ µy) 3 χ 0 (ν) χ 0(ν) (ᾱ µy) χ 0 (ν) provided that the imaginary part iδ (γ) is ( k k ( χ 0 (ν) ) i ν χ 0 (ν) χ 0(ν) ) + ᾱ µ Y χ 0 (ν) 4 ] } iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β This solution satisfies also the initial condition: the solution is unique so it is the right one. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

40 General Form of the Solution of All-Order BFKL equation The ansatz does not work, but it allows us to recover the structure of the NNLO solution G(k, k, Y) = dν π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s (k k )χ 1 (ν)+ᾱ 3 s (k k ) χ (ν)]y {1 + (ᾱ µ β ) [ 1 4 (ᾱ µy) 3 χ 0 (ν) χ 0(ν) (ᾱ µy) χ 0 (ν) provided that the imaginary part iδ (γ) is ( k k ( χ 0 (ν) ) i ν χ 0 (ν) χ 0(ν) ) + ᾱ µ Y χ 0 (ν) 4 ] } iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β This solution satisfies also the initial condition: the solution is unique so it is the right one. The imaginary part iδ (ν) has to be confirmed from the explicit calculation of the NNLO eigenfunction. So, let us calculate explicitly the NNLO eigenfunction. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

41 General Form of the Solution of All-Order BFKL equation The eigenfunction of the NNLO BFKL equation is ( i ν χ 0 (ν) k H 1 +i ν(k) = k 1+ [1 + ᾱ µ β i χ ln 0 (ν) µ + 1 ( ) ] k + ᾱ µ f µ,ν +... ( ν ) ) χ 0 (ν) χ 0 (ν) ln k µ The function f (k/µ,ν) denotes the NNLO corrections to the eigenfunctions. Ansatz for f (k/µ,ν): f (k/µ,ν) = c () 0 k (ν) + c() 1 (ν) ln µ + c() k (ν) ln µ + c() 3 (ν) ln3 k µ +... We have completely determined the c () 0 (ν), c() 1 (ν), c() (ν), c() 3 (ν) and confirmed the ansatz for the structure of the NNLO solution of the NNLO BFKL equation. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, 014 / 8

42 γ γ scattering cross-section at NLO x y Y A Y B <Y< Y A x y Y B G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

43 γ γ scattering cross-section at NLO x y x y x y Y A Y B <Y< Y A Y B x y y x x y Using high-energy Operator Product Expansion in composite Wilson line operator we get NLO Impact Factor that does not scale with energy. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

44 γ γ scattering cross-section at NLO x y x y x y Y A Y B <Y< Y A Y B x y y x x y Composite Wilson line operators I. Balitsky and G.A.C. [tr{ûz η 1 Û z η } ] conf + α s 4π = tr{û η z 1 Û η z } d z 1 z 3 z [ 1 tr{û 13 z z η 3 N 1 Û z η 3 }tr{ûz η 3 Û z η } tr{ûz η 1 Û z η }] ln az 1 c z 13 z 3 + O(α s ) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

45 NLO Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. d 4 x e iq x p T{ĵ µ (x)ĵ ν (0)} p = s d k I µν (q, k )V a=xb (k ) k where the evolution of the dipole gluon distribution at NLO is a d da V a(k) = α sn c π ( 1 + α sb 4π [ Va (k ) (k k ) ln (k k ) + α sn c 4π d k {[ V a (k ) (k k ) (k, k )V a (k) ] k (k k ) [ ln µ k + N c(67 b 9 π 3 10n f ) ]) bα s 9N c 4π k V a (k) k k (k k ) ln (k k ) ] k [ ln (k /k ) (k k ) + F(k, k ) + Φ(k, k ) ] } V a (k ) + 3 α s N c π ζ(3)v a(k) V(k ) d z e i(k,z) V(z ) V(z ) = [1 1 N c Tr{U(z )U (0)}] G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

46 NLO Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. I µν (q, k ) = N c dν sinh πν 3 πν (1 + ν ) cosh πν ( ν)( 1 + α s ( k ) 1 iν{[( 9 Q ) ]} π + α sn c π F (ν) P µν 4 + ν)( 1 + α s π + α sn c ) π F 1(ν) P µν 1 P µν 1 = g µν q µq ν q P µν = 1 ( q q µ pµ q )( q ν pν q ) q p q p G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

47 NLO Photon Impact Factor for BFKL pomeron in momentum space k T -factorization form I. Balitsky and G.A.C. ( F 1() (ν) = Φ 1() (ν) + χ γ Ψ(ν), F 3 (ν) = F 6 (ν) + χ γ 1 ) Ψ(ν), γγ Ψ(ν) ψ( γ) + ψ( γ) ψ(4 γ) ψ( + γ), F 6 (γ) = F(γ) C γγ 1 γ γ 31 + χ γ 1 γ γ, + γγ Φ 1 (ν) = F(γ) + 3χ γ + γγ ( γ) + 1 γ 1 γ 7 18(1 + γ) (1 + γ) Φ (ν) = F(γ) + 3χ γ + γγ γγ 7 ( + 3 γγ) + χ γ 1 + γ + χ γ(1 + 3γ) + 3 γγ, F(γ) = π 3 π sin πγ Cχ γ + χ γ γγ γ = 1 + iν G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

48 γ γ scattering cross-section at NLO G.A.C. and Yu. Kovchegov * I Q 1 I * I Q G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

49 γ γ scattering cross-section at NLO G.A.C. and Yu. Kovchegov * I Q 1 I * I Q σ γ γ LO+NLO (TT) = 1 4 λ 1,λ =±1 [ dν ( Q 1 Q 3π 6 ε λ1 ρ 1 (q 1 )ε λ1 σ 1 (q 1 )ε λ (q )ε λ σ (q ) N c 1 ρ N c α s (Q 1 )α s(q ) Q 1 Q ) iν ( )ᾱs(q s 1Q ) χ 0(ν)+ᾱ s (Q1Q)χ1(ν) Ĩ ρ1σ1 LO+NLO Q 1 Q (q 1,ν)Ĩ ρσ LO+NLO (q, ν) ] 1 + ᾱ s (Q 1 Q )Re[F(ν)] Re[F(ν)] is the NLO dipole-dipole scattering projected on the LO eigenfunctions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

50 Numerical results ΣTT, GeV ΣLL, GeV Y Y NLO γ γ cross section with Q 1 = Q = 5 GeV (dashed line) and Q 1 = Q = 10 GeV (solid line) plotted as functions of rapidity Y. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

51 Numerical results Left panel depicts a Feynman diagram that contributes to the high-energy asymptotics of γ γ scattering. The right panel shows an example of the "box" diagram that are suppressed at high energies by a power of energy and, therefore, can be neglected. However, such types of diagrams become relevant, and therefore not anymore negligible at low rapidity where energy is not high enough to suppress such contributions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

52 Conclusions The NLO BFKL eigenfunctions have been constructed: they satisfy completeness and orthogonality condition NLO BFKL solution. NNLO Eigenfunctions has also been presented The structure of the NNLO solution has been found up to the still unknown conformal contribution χ (ν); but we predicted the imaginary part of the NNLO BFKL equation. Procedure to construct the solution of the BFKL equation to any order is now available. NLO γ γ cross-section using the solution of the NLO BFKL equation and the NLO impact factor calculated through the composite Wilson line operators. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

53 NNLO BFKL Solution: the NNLO eigenfunction This time we truncated the series up to c () 4 and proceeding similarly to the NLO case and we get ( Re[c () χ 1 ] = β 1 (ν)) χ 0 (ν) χ 1(ν)χ 0 (ν) χ 0 (ν) χ 1 (ν)χ 0 (ν) χ 0 (ν) + χ ) 0(ν)χ 1 (ν)χ 0 (ν) χ 3 0 ( (ν) 1 β 3 χ 0(ν)χ 0 (ν) ) χ 0 (ν) c () = β ( 5 χ 0 (ν)χ 0 (ν) 8 χ 4 0 (ν) χ0(ν)χ 0 (ν) 4χ 0 (ν) χ 0 (ν)χ 0 (ν) 4χ 3 0 (ν) 1 ) 8 ) χ 0 (ν) iβ 3 χ 0 (ν) ( χ1 (ν) +iβ χ 0 (ν) χ 0(ν)χ 1 (ν) χ 0 (ν) ( c () 3 = iβ 5 χ 0 (ν)χ 0 (ν) 1 χ 3 0 (ν) + χ ) 0(ν) 4χ 0 (ν) 4 = β χ 0 (ν) 8χ (ν) The Im[c () (ν)] is fixed to be 0 using again the ν-reparametrization. c () 1 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

54 Structure of the NNLO BFKL Solution From explicit calculation of f (γ) we not only confirm the imaginary part iδ (ν) = i χ 0 (ν)β 3 + iχ 1 (ν)β but also confirm the structure of the NNLO BFKL solution obtained above in an indirect way ( ) G(k, k dν, Y) = π k k e[ᾱs(k k ) χ 0 (ν)+ᾱ s(k k ) χ 1 (ν)+ᾱ 3 s(k k ) χ (ν)] Y k i ν k [ {1 + (ᾱ µ β ) 1 4 (ᾱ µ Y) 3 χ 0 (ν) χ 0 (ν) + 1 ( χ 4 (ᾱ µ Y) χ 0 (ν) 0 (ν) ) χ 0 (ν) χ 0 (ν) + ᾱ µ Y χ 0 (ν) ] } 4 It looks like QCD is not just conformal part and running coupling contributions. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

55 BFKL at NNLO and higher orders VS. At NNLO there are Pomeron loop contributions which are inevitable in the symmetric case of γ -γ case a simple generalization of BFKL at NNLO (and higher) does not exist unless we consider large N c limit. In the asymmetric case of DIS, there are no pomeron loops. Linearization (with large N c limit) of the Balitsky-Kovchegov equation at any order provides a systematic procedure to consistently define a BFKL type of evolution equation at any order. BFKL to all order: linearization of all order BK equation in large N c limit. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

56 BFKL equation in DIS case K BFKL is k k symmetric Y sym = ln s k k G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

57 BFKL equation in DIS case VS. K BFKL is k k symmetric Y sym = ln s k k NLO K DIS BFKL Y DIS = ln s k ln 1 x B is not Symmetric G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

58 BFKL equation in DIS case VS. K BFKL is k k symmetric Y sym = ln s k k KNLO DIS = Ksym NLO 1 d D q K LO (q 1, q ) ln q q K LO(q, q ) NLO K DIS BFKL Y DIS = ln s k ln 1 x B is not Symmetric Fadin Lipatov(1998) KBFKL DIS is not symmetric eigenvalues not γ 1 γ symmetric. Eigenvalues get an extra term: DIS (γ) = sym (γ) 1 ᾱ µ χ 0 (γ)χ (γ) Reproduced lower order and predicted (and later confirmed) the 3-loop DGLAP anomalous dimension (Fadin-Lipatov (1998)) G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

59 DGLAP anomalous dimension from NLO BFKL solution G(k, k, Y) = dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] (Y DIS +ln k k ) H 1 +i ν(k) H 1 +i ν(k ) dν [ ] χ 0(ν)+ᾱ π e[ᾱµ µ χ 1(ν)] Y DIS H 1 +i ν(k) H 1 +i ν(k ) (1 + ᾱ µ χ 0 (ν) ln k ) k perform partial integration and exponentiate the Y DIS -dependent terms [ )] G(k, k, Y DIS dν [ ] ) = π e ᾱ µ χ 0 (ν)+ᾱ µ (χ 1 (ν)+ i χ 0 (ν)χ 0 (ν) Y DIS H 1 +i ν(k) H 1 +i ν(k ) ( 1 + i ) ᾱµ χ 0(ν) DIS (γ) = ᾱ µ χ 0 (γ) + ᾱ µ χ 1 (γ) 1 ᾱ µ χ 0 (γ)χ 0 (γ) Agrees with DGLAP 3-loop anomalous dimension. G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ γ Santa Fe - NM May, / 8

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

NLO BFKL and anomalous dimensions of light-ray operators

NLO BFKL and anomalous dimensions of light-ray operators NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 / Outline Light-ray operators. Regge limit in the coordinate

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Tutorial problem set 6,

Tutorial problem set 6, GENERAL RELATIVITY Tutorial problem set 6, 01.11.2013. SOLUTIONS PROBLEM 1 Killing vectors. a Show that the commutator of two Killing vectors is a Killing vector. Show that a linear combination with constant

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Duality Symmetry in High Energy Scattering

Duality Symmetry in High Energy Scattering Duality Symmetry in High Energy Scattering Alex Prygarin Hamburg University 10 March 010 Outline Introduction BFKL Hamiltonian Duality symmetry of forward BFKL Duality symmetry of BK and non-forward BFKL

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Structure constants of twist-2 light-ray operators in the triple Regge limit

Structure constants of twist-2 light-ray operators in the triple Regge limit Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα