POSTUPCI PROIZVODNJE METALNIH I KERAMIČKIH KOMPOZITA
|
|
- Ἀναίτις Ζωγράφου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Prof.dr.sc. Tomislav Filetin, Doc.dr.sc. Gojko Marić Fakultet strojarstva i brodogradnje Sveučilišta u Zagrebu Zavod za materijale POSTUPCI PROIZVODNJE METALNIH I KERAMIČKIH KOMPOZITA Napredne tehnologije materijala, 2+2
2 KOMPOZITI S METALNOM MATRICOM MMC - Metal Matrix Composites Dobra svojstva: vrlo visoka spec. čvrstoća i spec. krutost, visoka topl. i električna vodljivost i niska topl. rastezljivost, vrlo dobra otpornost na trošenje, vrlo dobra mehanička i druga svojstva pri visokim temp. Loše strane: komplicirana proizvodnja, vrlo visoka cijena nedovoljno podataka o svojstvima materijala, još uvijek nema dovoljno smjernica za konstruiranje loša recikličnost. Al, Cu, Mg i Ti i superlegure s karbidnim, oksidnim ili nitridnim fazama.
3 Al - matrica Najveći udio na tržištu Udio ojačanja u matrici i do 70 % -čestice,viskeri, kratka vlakna, kontinuirana vlakna ili nešto deblje niti. Značajno se povećava E do čak 240 GPa, čvrstoća, krutost, otpornost na trošenje, snizuje se toplinska rastezljivost i do 70 %. Čestice: oksidi, karbidi ili boridi - Al 2 O 3, SiC (najčešće) ili TiB 2.
4 Mg - matrica Mg - mala gustoća (oko 1700 kg/m 3 ). Ojačanje C-vlaknima daje: - višu krutost, - višu čvrstoću, - malu toplinsku rastezljivost, - lošu otpornost na koroziju. Mg-legure sčesticama SiC: -mala gustoća, -mala toplinska rastezljivost i -visok modul elastičnosti.
5 Ti - matrica Izuzetno visoka mehanička svojstva, vrlo dobra otpornost pri visokim temp. i otpornost na koroziju. Najčešće SiC vlakna - u jednom smjeru
6 Cu - matrica Visoka toplinska vodljivost (> 500 W/mK) Mala toplinska rastezljivost ( /K) Cu-matrica s C-vlaknima ili W-vlaknima (za visoke temperature) Infiltracija tekućeg Cu između C-vlakana, metalurgija praha i prevlačenje C- vlakana s Cu. Cu matrica + 44 % C-vlakana
7 Matrica - superlegure i čelici Superlegure Ni i Co + Mo, W, Ti i Al. Kao ojačanja se koriste vlakna od W, Mo, Ta i Nb. Primjena pri ekstremno visokim temperaturama (i do 1400 C). Mikrostruktura kompozita nastalog kombiniranjem duplex čelika i 30 %Cr3C2. Mikrostruktura nehrđajućeg čelika AISI 316 s 20 %Al2O3čestica
8 POSTUPCI PROIZVODNJE MMC Postupci u tekućem stanju: lijevanje miješanjem lijevanje u poluskrućenom stanju oblikovanje u poluskrućenom stanju (thixo) infiltracija: spontana infiltracija prisilna infiltracija infiltracija pod tlakom vakuumska infiltracija infiltracija mehaničkim pritiskom centrifugalna ultrazvučna tlačno precizno lijevanje brzo skrućivanje oblikovanje naštrcavanjem
9 Postupci u čvrstom stanju: difuzijsko spajanje metalurgija praha hladno prešanje viskotemperaturna sinteza - vruće prešanje (HP) i vruće izostatičko prešanje (HIP) Postupci prevlačenja: prevlačenje naštrcavanjem taloženje iz parne faze (PVD) elektrolitičko
10 DIFUZIJSKO SPAJANJE (DIFFUSION BONDING) Koristi se za spajanje vlakana i matrice u obliku folije koja se slaže na vlakna. Nakon toga slijedi vruće prešanje u vakuumu ili inertnom plinu. Treba kontrolirati temperaturu i vrijeme difuzije zato što znatno utječu na svojstva dobivenog kompozita. Ne mogu proizvesti dijelovi složenih oblika.
11
12 METALURGIJA PRAHA (POWDER METALLURGY) Počinje miješanjem praha legure i ojačanja (čestica ili vlakana). Slijedi proces hladnog kompaktiranja, a sve završava vrućim izostatičkim prešanjem (HIP) i ekstrudiranjem. Jedan od mogućih problema: postizanje homogene mješavine. HIP postupkom se vrlo uspješno uklanjaju zaostale poroznosti, a da pritom ne dolazi niti do makroskopskih niti do mikroskopskih grešaka. Problem može predstavljati oksidna prevlaka preko čestica praha (Al ili Mg-legura). Ona se ne uklanja u HIP postupku što značajno može oslabiti vezu između čestica praha.
13
14 TALOŽENJE NAŠTRCAVANJEM Keramičke čestice ubacuju u sloj rastaljenog metala koji se naštrcava. Dobivaju se materijali s nejednolikim rasporedom keramičkih čestica u matrici. Poroznost ovako dobivenih kompozita iznosi 5-10 %.
15 PRIMJENA MMC Klipnjača od Al-legure ojačane s Al 2 O 3 česticama. Ima puno bolja mehanička svojstva i otpornost na umor od čelične klipnjače, a uz sve to ima i 42 % manju masu Profili od Al-legure ojačane s grafitnim vlaknima. Imaju jednaku krutost kao i čelik, a masu manju od aluminija Ventili automobilskog motora od kompozita s Ti-matricom koja je ojačana SiC česticama
16 Zamašnjak napravljen od kompozita s Al-matricom i vlaknastih Al 2 O 3 ojačanja Hondin blok motora od kompozita s Al-matricom i Saffil kratkih Al 2 O 3 vlakana Klip od kompozita Al-legura + Saffil vlakna
17 Dio konstrukcije Space Shuttle-a napravljen od B/Al kompozita kojim se postigla ušteda u masi od 45 % u odnosu na Al legure Al/SiC cilindar koji je ugrađen u bolide Formule 1 Umeci mjenjačke kutije koji služe za lokalno ojačanje, a napravljeni su od Mg-legure ojačane ugljičnim vlaknima
18 KOMPOZITI S KERAMIČKOM MATRICOM (CMC) Povećanje žilavosti keramičke osnove keramičkim ojačanjima. Svojstva: stabilnost na ekstremno visokim temperaturama, otpornost na toplinske šokove, iznimna otpornost na koroziju, velika tvrdoća i otpornost na trošenje, mala masa.
19 MATRICE Oksidna keramika: Al 2 O 3, SiO 2, mulit (Al 2 O 3 /SiO 2 ), Ba-, Lii Ca-aluminoslikati. Nešto bolja toplinska i kemijska stabilnost. Neoksidna keramika: SiC, Si 3 N 4, BC, AlN itd. Nešto bolja mehanička svojstva.
20 VRSTE OJAČANJA Diskontinuirana ojačanja: čestice, viskeri, sječeni komadići vlakana - SiC, Si 3 N 4, BC, TiB 2, AlN itd. Daju nešto niža mehanička svojstva, no mogu se proizvoditi nekim od klasičnih postupaka proizvodnje monolitne keramike (jeftinije). Kontinuirana vlakna - novije. Bolja mehanička svojstva, no dobivaju se složenijim postupcima - skuplje. Vlakna: Al 2 O 3, mulit (Al 2 O 3 /SiO 2 ), C, SiC (najčešće zbog visoke čvrstoće, krutosti i toplinske stabilnosti).
21 KOMPOZITI SA SiC MATRICOM Česti u industrijskoj primjeni. Kontinuirana SiC ili C-vlakna (novije) - problem prianjanje matrice i vlakana. Neka od svojstava: visoka toplinska vodljivost, mala toplinska rastezljivost, mala masa, vrlo dobra otpornost na koroziju i trošenje. Otpornost na ekstremno visoke temperature (1500 C) - dolazi do stvaranja tankog sloja oksida na površini.
22 Novije: ojačanja s SiC nanocijevčicama (udio oko 5 %). Značajno povećanje mehaničkih svojstava. Monokristalne β-sic nanocijevčice promjera nm. CVI proizvodni proces (Chemical Vapour Infiltration kemijska infiltracija u parnoj fazi). Svaka je nanocijevčica prevučena vrlo tankim ugljičnim slojem debljine 5 nm. SiC nanocijevčice prije infiltracije
23 OJAČANJE TiB 2 ČESTICAMA Kompozit se dobiva postupkom sinteriranja praha SiC-TiO 2- B 4 C-C bez tlaka. Slijedi vruće izostatičko prešanje. Vrlo visoka savojna čvrstoća (> 800 MPa) i lomna žilavost.
24 KOMPOZITI SA Si 3 N 4 MATRICOM Svojstva su vrlo slična svojstvima SiC. Lošije: manje su toplinski stabilne, manja toplinsku vodljivost. Ojačan sa SiC viskerima - vrlo visoka čvrstoća, modul elastičnosti, te kemijska inertnost pri visokim temperaturama, dobra lomna žilavost. Mikrostrukture kompozita sa Si3N4 matricom i SiC viskerima različitih sastava Ojačanje TiB 2 česticama: povišenje tvrdoće, čvrstoće, otpornosti na trošenje i električne vodljivosti matrice. Ojačanje W 2 C nanočesticama: povišenje otpornosti na trošenje
25 KOMPOZITI S Al 2 O 3 MATRICOM Visoka čvrstoća i tvrdoća, temperaturna stabilnost, otpornost na trošenje, otpornost na koroziju na povišenim temperaturama, povišena lomna žilavost itd. Vrlo često se za ojačanje Al 2 O 3 matrice koriste Al 2 O 3 vlakna. Prevlake na vlaknima su vrlo važne jer se njima znatno smanjuje krhkost. Neke prevlake: ugljične, BN, CeO 2, ZrO 2, LaPO 4, BaZrO 3 itd.
26 UGLJIČNA MATRICA EKSTREMNI OBLICI STRUKTURA UGLJIKA: GRAFIT - HEKSAGONSKA DVODIMENZIONALNA REŠETKA SLABE VEZE IZMEĐU KLIZNIH RAVNINA DIJAMANT - JAKE VEZE (KOVALETNE) IZMEĐU ATOMA U REALNOSTI SU PRISUTNE SVE MOGUĆE KOMBINACIJE IZMEĐU GRAFITA I DIJAMANTA - OD KRISTALNIH PA SVE DO AMORFNIH STRUKTURA FULERENI I UGLJIČNE NANOCIJEVČICE
27 PROIZVODNJA UGLJIČNIH VLAKANA Poliakrilnitril PA ili katran
28 SVOJSTVA C/C KOMPOZITA Visok vlačni modul elastičnosti Visoka vlačna čvrstoća ne mijenjaju se niti pri >2000 C, Otpornost na puzanje Relativno visoka lomna žilavost - širok raspon Nmm 3/2 Mala toplinska rastezljivost Velika toplinska vodljivost W/mK mala osjetljivosti prema toplinskom šoku Nedostatak: sklonost oksidaciji pri > 450 C Nužna je zaštita od oksidacije: modifikacija matrice dodavanjem različitih inhibitora oksidacije. Inhibitori mogu biti B, Si, Zr i nanošenje keramičkih prevlaka. To su najčešće višeslojne prevlake karbida, nitrida i oksida Si, Zr, Ta, Al itd.
29 C/C KOMPOZITI - PROIZVODNI POSTUPCI
30 PROIZVODNJA C/C KOMPOZITA: IMPREGNACIJA VRLO KOMPLICIRAN I SKUP PROCES PRIPREMA PREDOBLIKA VLAKANA - 2D ILI 3D IMPREGNACIJA S VRUĆOM SMOLOM POD VISOKIM TLAKOM PEČENJE (PIROLIZA) U PEĆI DA ISPARE IZ SMOLE SVI ELEMENTI OSIM UGLJIKA - KARBONIZACIJA UGRIJAVANJE > 3000 C ČIME SE STVARAJU MALA GRAFITNA PODRUČJA I POSTIŽE KONAČNA ČVRSTOĆA OSTAJU MNOGE PORE KOJE SE ISPUNJAVAJU PONOVNOM IMPREGNACIJOM S VRUĆOM SMOLOM VIŠEKRATNO PONAVLJANJE GORNJIH KORAKA SPORO I SKUPO ALTERNATIVNI PUT: CVD, ali vrlo skupo
31 PRIMJENA UGLJIK-UGLJIK KOMPOZITA Kočioni diskovi od ugljik-ugljik kompozita Proizvodi od C-C kompozita u ortopediji
32 Umeci mlaznica od C-C kompozita Cijevi od C-C kompozita
33 POSTUPCI PROIZVODNJE KOMPOZITA S KERAMIČKOM MATRICOM CVD (Chemical Vapour Deposition) USMJERENA OKSIDACIJA METALA PROIZVODNJA SIC/SIC KOMPOZITA IMPREGNACIJOM POLIMERA I PIROLIZOM INFILTRACIJA TALJEVINE
34 CVD (Chemical Vapour Deposition) Ojačanje kontinuiranim SiC vlaknima. Vezni sloj između vlakana i matrice, kao i sama matrica, nastaju taloženjem iz plinovitog prekursora pri povišenim temperaturama. Za postignuće što veće gustoće obično je potrebno 2 do 5 ciklusa. Prva faza je prevlačenje vlaknastih ojačanja, nakon čega slijedi infiltracija matrice, završna prevlaka ili obrada odvajanjem čestica.
35 USMJERENA OKSIDACIJA METALA Najprije se CVD nanosi prevlaka na ojačanja. Nakon toga se ojačanje s prevlakom stavlja u rastaljeni metal u reaktivnoj atmosferi kisika pri čemu dolazi do stvaranja Al-Al 2 O 3 matrice.
36 PROIZVODNJA SIC/SIC KOMPOZITA IMPREGNACIJOM POLIMERA I PIROLIZOM Suspenzija od PCS (Polikarbosilan) i PVS (Polivinilsilan) impregnira se u SiC tkaninu. Nakon toga polimerni materijal umrežava pod djelovanjem snopa elektrona. Pirolizom dolazi do transformacije polimera u keramiku.
37 INFILTRACIJA TALJEVINE U prvoj varijanti prvo slijedi slaganje slojeva vlakana, Nakon toga se tako složeni slojevi prevlače, te se na njih lijeva suspenzija materijala matrice. Završna faza je infiltracija suspenzije. U drugoj varijanti najprije se nanosi CVD postupkom prevlaka na vlakna. Zatim se vlakna uranjaju u suspenziju materijala matrice, nakon čega slijedi namotavanje, slaganje slojeva polaganjem i infiltracija.
38 PRIMJENE CMC Rezni alati napravljeni od kompozita s Al 2 O 3 matricom i SiC viskerima Glave izmjenjivača topline napravljene od kompozita s Al 2 O 3 matricom koji je ojačan kontinuiranim vlaknima Kočioni diskovi Porsche-a 911 Turbo napravljeni od kompozita sa SiC matricom koji je ojačan ugljičnim vlaknima
39 Ventilator za cirkulaciju vrućeg plina napravljen od kompozita sa SiC matricom koji je ojačan kontinuiranim vlaknima Usporedba dviju cijevi nakon eksploatacije. Lijeva je napravljena od kompozita s matricom i ojačanjima od oksidne keramike, a desna je metalna Dijelovi plinske turbine napravljeni od SiC/SiC kompozita
40
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Kompozitni materijali. Prof.dr Darko Bajić Mašinski fakultet Podgorica
Kompozitni Prof.dr Darko Bajić fakultet Podgorica darko@ac.me Mnoga tehnička rješenja zahtijevaju primjenu novih materijala od kojih se zahtijevaju svojstva koja ne posjeduje ni jedan metalni materijal
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Izbor materijala, 3+3, Prof. dr. sc. T. Filetin IZBOR MATERIJALA U UVJETIMA POVIŠENIH I VISOKIH TEMPERATURA
Izbor materijala, 3+3, 2012. Prof. dr. sc. T. Filetin IZBOR MATERIJALA U UVJETIMA POVIŠENIH I VISOKIH TEMPERATURA POJAVE PRI POVIŠENIM TEMPERATURAMA Promjena mehaničkih svojstava Puzanje Viskotemperaturna
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Tomislav Markač. Zagreb, 2016.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Tomislav Markač Zagreb, 2016. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Dr. sc. Lidija Ćurković
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
MATERIJALI TEHNIČKE KERAMIKE
2. dio: KERAMIKA, BETON I DRVO Prof.dr.sc. Lidija Ćurković MATERIJALI TEHNIČKE KERAMIKE POSTUPCI PROIZVODNJE I OBRADE TEHNIČKE KERAMIKE SVOJSTVA TEHNIČKE KERAMIKE PRIMJENA TEHNIČKE KERAMIKE 1 Oksidna keramika
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
konst. Električni otpor
Sveučilište J. J. Strossmayera u sijeku Elektrotehnički fakultet sijek Stručni studij Električni otpor hmov zakon Pri protjecanju struje kroz vodič pojavljuje se otpor. Georg Simon hm je ustanovio ovisnost
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
PT ISPITIVANJE PENETRANTIMA
FSB Sveučilišta u Zagrebu Zavod za kvalitetu Katedra za nerazorna ispitivanja PT ISPITIVANJE PENETRANTIMA Josip Stepanić SADRŽAJ kapilarni učinak metoda ispitivanja penetrantima uvjeti promatranja SADRŽAJ
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
NEKONVENCIONALNI POSTUPCI OBRADE (OBRADA ODNOŠENJEM) (DIREKTNO ENERGETSKI POSTUPCI OBRADE)
dr.sc. S. Škorić NEKONVENCIONALNE pojam NEKONVENCIONALNI POSTUPCI OBRADE (OBRADA ODNOŠENJEM) (DIREKTNO ENERGETSKI POSTUPCI OBRADE) alat za obradu ne mora biti tvrđi od obratka nema klina praktički nema
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Teorijske osnove informatike 1
Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
DINAMIČKA MEHANIČKA ANALIZA (DMA)
Karakterizacija materijala DINAMIČKA MEHANIČKA ANALIZA (DMA) Dr.sc.Emi Govorčin Bajsić,izv.prof. Zavod za polimerno inženjerstvo i organsku kemijsku tehnologiju Da li je DMA toplinska analiza ili reologija?
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Metastabilni Fe-C dijagram stanja
Sveučilište J.J. Strossmayera u Osijeku STROJARSKI FAKULTET U SLAVONSKOM BRODU Metastabilni Fe-C dijagram stanja Prof. dr. sc. Ivica Kladarić Plan predavanja 1. Uvod - Općenito o kemijskim elementima Fe
NIKAL (Ni) I NJEGOVE LEGURE
NIKAL (Ni) I NJEGOVE LEGURE FCC rešetka hladna oblikovljivost žilavost pri niskim temperaturama otpornost pri visokim temperaturama otpornost na koroziju 1 SVOJSTVA Ni- LEGURA Otpornost na koroziju i mehanička
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Obojeni metali I legure
Obojeni metali I legure Kada je reč o primeni metala, u savremenom građevinarstvu su najzastupljeniji crni metali (pre svega čelik) sa učešćem od oko 95%. Međutim, u pojedinim oblastima, u većoj ili manjoj
Opšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
NIKAL (Ni) I NJEGOVE LEGURE
NIKAL (Ni) I NJEGOVE LEGURE FCC rešetka hladna oblikovljivost žilavost pri niskim temperaturama otpornost pri visokim temperaturama 1 SVOJSTVA Ni- LEGURA Otpornost na koroziju i mehanička otpornost pri
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Mašinski materijali. Predavanje broj 10 Obojeni metali I legure
Mašinski materijali Predavanje broj 10 Obojeni metali I legure 1 Klasifikacija materijala 2 Aluminijum Aluminijum spada u grupu lakih metala(specifične mase 2,7g/cm 3 ) i pripada grupi materijala niske
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
KERAMIKA BETON I DRVO Podloge za vježbe
FAKULTET STROJARSTVA I BRODOGRADNJE SVEUČILIŠTE U ZAGREBU Zavod za materijale KERAMIKA BETON I DRVO Podloge za vježbe prof. dr. sc. Lidija Ćurković izv. prof. dr. sc. Vera Rede Marijana Majić Renjo, mag.
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
Numerička matematika 2. kolokvij (1. srpnja 2009.)
Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
Grafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Zavod za tehnologiju, Katedra za alatne strojeve: GLODANJE
Glodanje je postupak obrade odvajanjem čestica (rezanjem) obradnih površina proizvoljnih oblika. Izvodi se na alatnim strojevima, glodalicama, pri čemu je glavno (rezno) gibanje kružno kontinuirano i pridruženo
Riješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Cjenik građevinskih izolacija i folija Izolacija za bolje sutra
Cjenik građevinskih izolacija i folija 2018 Izolacija za bolje sutra Toplinska i zvučna izloacija za dugoročno održivu gradnju Odlična toplinska izolacija Odlična zvučna izolacija Negoriva - klasa A1 Paropropusna
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
5. PARCIJALNE DERIVACIJE
5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x
NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA
NOSIVI DIJELOVI MEHATRONIČKIH KONSTRUKCIJA Zavareni spojevi - I. dio 1 ZAVARENI SPOJEVI Nerastavljivi spojevi Upotrebljavaju se prije svega za spajanje nosivih mehatroničkih dijelova i konstrukcija 2 ŠTO
1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ
1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ ΓΕΝΙΚΑ Η στερεά, η υγρή και η αέρια κατάσταση αποτελούν τις τρεις, συνήθεις στο γήινο περιβάλλον, καταστάσεις της ύλης. ιαφέρουν η µία από την άλλη σε κάποια απλά γνωρίσµατα:
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM
LOGO ISPITIVANJE MATERIJALA ZATEZANJEM Vrste opterećenja Ispitivanje zatezanjem Svojstva otpornosti materijala Zatezna čvrstoća Granica tečenja Granica proporcionalnosti Granica elastičnosti Modul
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min
Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste
PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
TRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Ivan Šćurić. Zagreb, 2012.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Ivan Šćurić Zagreb, 2012. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Doc. dr. sc. Branko Bauer Student:
Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1
Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD. Iva Mikulić. Zagreb, 2015.
SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Iva Mikulić Zagreb, 2015. SVEUČILIŠTE U ZAGREBU FAKULTET STROJARSTVA I BRODOGRADNJE ZAVRŠNI RAD Mentor: Prof. dr. sc. Zdravko Schauperl,
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA
ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:
Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Αλληλεπίδραση ακτίνων-χ με την ύλη
Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Materijali za elektrotehničke proizvode
FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA ELEKTROTEHNIČKI SUSTAVI I TEHNOLOGIJA Materijali za elektrotehničke proizvode Aluminij i legure aluminija Željezo i čelik kao vodiči Vodiči i oblici vodiča Svjetlovodni
KERAMIKA, BETON I DRVO
KERAMIKA, BETON I DRVO Vježba 2. Keramografija 1 prof. dr. sc. Lidija Ćurković prof. dr. sc. Vera Rede dr. sc. Marijana Majić Renjo Početak Tijek priprave uzorka za keramografiju Rezanje uzorka Ulijevanje
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.
Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja