INDUCIRANA NAPETOST (11)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "INDUCIRANA NAPETOST (11)"

Transcript

1 INDUCIRANA NAPETOST_1(11d).doc 1/ INDUCIRANA NAPETOST (11) V tem poglavju bomo nadgradili spoznanja o magnetnih pojavih v stacionarnih razmerah (pri konstantnem toku) z analizo razmer pri časovno spremenljivih signalih. Ugotovili bomo, da pri časovno spremenljivih signalih pride do pojavov, ki jih v enosmernih razmerah nismo opazili. Najpomembnejša ugotovitev bo, da pri časovni spremembi fluksa skozi tuljavo na priključkih tuljave zaznamo (izmerimo) napetost, ki jo bomo poimenovali inducirana napetost. Časovno spreminjajoči fluks v tuljavi povzroči inducirano napetost. Michael Faraday je prvi ugotovil, da tedaj dobimo napetost na sponkah tuljave, ki je enaka časovni spremembi fluksa skozi tuljavo pomnoženem s številom ovojev tuljave, matematično torej dφ N. d t Michael Faraday ( ): en največjih znanstvenikov in izumiteljev: elektromagnetna indukcija, dinamo, elektroliza, odkril vrsto kemijskih substanc, vpeljal pojme anoda, katoda, elektroda, ion, Faraday Napetosti, ki se ob spremembi časovni fluksa skozi tuljavo pojavi na priključnih sponkah imenujemo inducirana napetost. Je takega predznaka, da bi po sklenjeni zanki (kratko sklenjeni tuljavi) pognala tok, katerega fluks bi nasprotoval prvotnemu fluksu skozi zanko. Temu»pravilu«rečemo tudi Lentzovo pravilo, ki ga matematično upoštevamo s predznakom minus: u i dφ N =. (11.1) Predavanja Faradaya so bila izredno priljubjena tudi med širšo množico. Pogosto produkt števila ovojev in fluksa skozi ovoje označimo z novo veličino, ki jo imenujemo magnetni sklep: Ψ = NΦ. V tem smislu lahko enačbo za inducirano napetost zapišemo v obliki u i dψ =. (11.2)

2 INDUCIRANA NAPETOST_1(11d).doc 2/ SLIKA: Eksperimenti z inducirano napetostjo: a) premikanje trajnega magneta v tuljavi, b) premikanje tuljave pri mirujočem magnetu, c) s spreminjanjem fluksa skozi tuljavo ustvarimo inducirano napetost, ki požene tok skozi žarnico. SLIKA: Zanka znotraj katere fluks s časom narašča v določeni smeri. V vodniku, ki objema fluks inducira tako električno polje, ki bi v primeru sklenjenega vodnika v njem povzročilo (induciran) tok, ki bi s svojim fluksom nasprotoval osnovnemu. Inducirana napetost v zanki pri znani spremembi magnetnega pretoka skozi zanko. Oglejmo si primer, ko se v tuljavi časovno spreminja gostota magnetnega pretoka zaradi zunanje spremembe polja. Primer: Tuljavica z N=100 ovoji površine A = 2 cm 2 je postavljena pravokotno na smer polja, ki se spreminja harmonično po enačbi napetost na sponkah tuljave. B t = B t, kjer je B o = 50 mt. Določimo inducirano 3-1 () o sin(10s ) Izračun: Gre za krajevno homogeno polje, zato je fluks skozi tuljavico enak kar Φ = = =. Inducirana napetost je ( t) B( t) A Bo Asin(10 s t) 10sin(10 s t) µvs Φ () t d ui = Ν = ( t ) == t = t sin(10 s ) µvs cos(10 s ) µv 1cos(10 s ) V

3 INDUCIRANA NAPETOST_1(11d).doc 3/ SLIKA: Tuljavica v homogenem časovno spreminjajočem polju. Ugotovili smo, da se v tuljavi inducira napetost, če se znotraj tuljave časovno spreminja magnetno polje. V izračunanem primeru je bil fluks skozi ovoje tuljave posledica spreminjanja magnetnega polja, ki ni bil posledica toka skozi ovoje tuljave. Ali se na sponkah tuljave pojavi napetost tudi v primeru, da je povzročitelj spremembe fluksa v tuljavi lasten tok v tuljavi? Odgovor je pozitiven. Inducirana napetosti na tuljavi pri znanem toku skozi ovoje tuljave in padec napetosti na tuljavi. Pri računanju fluksa skozi tuljavo smo ugotavljali, da je le ta odvisen od toka v ovojih tuljave. V primeru, da ni posredi feromagnetnih materialov velja linearna zveza med magnetnim sklepom in tokom skozi tuljavo Ψ =ΝΦ= LI, od koder je lastni induktivnost tuljave Ψ NΦ L = =. I I Ta povzroči na sponkah tuljave inducirano napetost ( ) dψ d Li di ui = = = L. Pri tem pa je potrebno opozoriti na pravilno razumevanje predznaka inducirane napetosti. Ta predznak je uveden zato, da se pravilno interpretira učinek spreminjanja fluksa pri nastanku inducirane napetosti, ki je tak, da se v zanki generira taka notranja (generatorska) napetost, ki z lastnim induciranim tokom nasprotuje spremembam fluksa v zanki. Gledano na tuljavo s stališča bremena (ki ga v smislu koncentriranega elementa shematično predstavimo z nekaj narisanimi ovoji), je padec (bremenske) napetosti ravno nasproten (generatorski) inducirani napetosti di = =. (11.3) ul uil L V prvem primeru opazujemo pojav inducirane napetosti z vidika vira napetosti,v drugem pa z vidika bremena.

4 INDUCIRANA NAPETOST_1(11d).doc 4/ SLIKA: Tuljava z induktivnostjo kot koncentriran element. Smer padca (zunanje) napetosti je nasprotna smeri inducirane (notranje) napetosti in je v smeri vzbujalnega toka. Primer: Tok skozi tuljavo z induktivnostjo L = 2 mh se spreminja harmonično, z amplitudo I 0 = 0,5 A in periodo T = 5 ms. Določimo padec napetosti na tuljavi. Izračun: Najprej moramo tokovni signal zapisati v matematični obliki. Zagotoviti moramo it ( ) = 0,5sin ωt A = I sin( ωt), kjer ponovitev signala na vsakih 5 ms, zato tok zapišemo v obliki 1 ( ) 0 je frekvenca signala enaka f 1 1 T 5ms = = = s = 200 Hz ), kotna frekvenca ω pa je ω = 2πf = 2π200 Hz 1, s 3-1!. Odvajamo tok: I0ωcos( ωt) di = in ga pomnožimo z di 3-1 induktivnostjo in dobimo ul = L = LI0ωcos( ωt) 1,26cos(1,26 10 s t)v. Rezultat lahko π zapišemo tudi kot 1, 26 sin ωt + V. 2 Iz rezultata ugotovimo, da se napetost na tuljavi spreminja z enako frekvenco kot tok, vendar je napetostni signal časovno zamaknjen glede na tokovnega za kot 90 0 : cos( ωt) π = sin ωt+ 2. Če oba signala narišemo v časovnem diagramu, ugotovimo, da doseže napetostni signal maksimalno amplitudo za četrtino periode pred tokovnim signalom. To običajno opišemo kot prehitevanje napetosti na tuljavi za tokom za kot π /2. Enakovredno lahko rečemo tudi, da tok na tuljavi zaostaja za napetostjo za kot π /2. Kako si razložimo ta zamik? Če si zamislimo harmonično spreminjajoč se tok skozi tuljavo, ugotovimo, da bo časovna sprememba toka največja tedaj, ko tok zamenja predznak, tedaj pa bo 1 Za osnovo bi lahko vzeli tudi kosinusni tokovni signal.

5 INDUCIRANA NAPETOST_1(11d).doc 5/ tudi padec napetosti na tuljavi zaradi največje spremembe fluksa največji. Ko bo tok okoli ničle, bo napetost maksimalna, kar opišemo s sinusnim potekom toka in s kosinusnim potekom napetosti. Kako se spreminja amplituda napetosti glede na frekvenco signala? Ugotovimo, da bo amplituda večja pri višji frekvenci in sicer se linearno veča s frekvenco signala: u = U cos( ωt), kjer je U m = LI ω. To je tudi razumljivo, saj zaradi časovno hitrejšega spreminjanja toka zvečuje tudi o največja sprememba toka in s tem napetost. L m SLIKA: Napetost na tuljavi (črtkano) prehiteva tok (pikčasto) za četrtino periode signala π 2. Poglejmo si še primer, ko se fluks v eni tuljavi spreminja kot posledica fluksa v drugi tuljavi. Inducirana napetost v tuljavi zaradi spremembe fluksa v drugi tuljavi. Primer: Tuljava dolžine 15 cm premera 3,2 cm ima 30 ovojev na centimeter. V njeno sredino postavimo manjšo tuljavo dolžine 2 cm premera 2,1 cm s 60 ovoji. Tok v večji tuljavi se od časa t = 0 s linearno manjša od 1.5 A in doseže -0.5 A v času 25 ms. Nato ostane konstanten. Kolikšna je inducirana napetost v manjši tuljavi? Predpostavimo homogeno polje v večji tuljavi, ki ga izračunamo z aproksimativno formulo.

6 INDUCIRANA NAPETOST_1(11d).doc 6/ SLIKA: Sprememba toka v večji tuljavi povzroča inducirano napetost v manjši tuljavi. Inducirana napetost je odvisna od hitrosti spreminjanja toka v večji tuljavi oziroma od spreminjanja hitrosti magnetnega pretoka skozi manjšo tuljavo. Izračun: Inducirano napetost bomo dobili z uporabo enačbe (11.1), torej moramo izračunati fluks, ki gre skozi manjšo tuljavico v času spremembe toka v večji. Izračun razdelimo na dve fazi. V prvi se tok linearno manjša, v drugi pa ostane konstanten. Označimo z indeksom 1 večjo tuljavo, z 2 pa manjšo tuljavo. Ker gre za linearne spremembe, lahko namesto odvajanja uporabimo diference Φ Φ 21 Φkončna Φ začetna (rezultat bo enak) ui 2 = N2 = N2 = N2. (11.4) t 2 t tkončna tzačetna Začetni fluks izračunamo iz začetne gostote pretoka v tuljavi, končnega pa iz končnega pretoka. µ Ni Polje znotraj tuljave določimo iz poenostavljene formule B =. Dobimo l B µ Ni l N l Vs Am 0 začetni začetni = = µ 0 izačetni = 4π m 1,5A 5,7mT. Pri izračunu fluksa skozi tuljavico moramo upoštevati površino manjše tuljavice in ne večje: Φ začetni začetni 2 začetni 2 2 2,1 10 m = B A = B π 1, 96 µwb. Na enak način bi dobili z upoštevanjem 2 toka 0,5 A končni pretok Φ = 0,653 µwb. končni Uporabimo še enačbo (11.4) in z njeno pomočjo določimo inducirano napetost v času od t = 0 s do t = 25 ms: u i 6 6 0, Wb 1,96 10 Wb = 60 6, 27mV. To napetost bi lahko izmerili, če bi 25ms 0ms na zunanje sponke tuljave priključili sondo osciloskopa. (Zaradi poenostavitev s homogenostjo polja bi meritev pokazala seveda nekoliko različno vrednost.). Ta napetost je konstantna ves čas spreminjanja toka v veliki tuljavi. V drugi fazi, ko bo tok skozi večjo tuljavo konstanten, v manjši tuljavi ne bo spremembe magnetnega pretoka in s tem bo inducirana napetost enaka 0. SLIKA: Graf spremembe toka v mali tuljavi, spodaj graf inducirane napetosti v večji tuljavi.

7 INDUCIRANA NAPETOST_1(11d).doc 7/ Medsebojna induktivnost. O lastni induktivnosti smo že govorili. Povezana je s fluksom, ki gre skozi tuljavo zaradi toka v lastni tuljavi. Če pa nas zanima fluks v navitju, ki je posledica vzbujanja v drugem (ne lastnem) navitju, govorimo o medsebojni induktivnosti. Definiramo jo kot M Ψ N Φ = =, (11.5) I1 I1 kjer je Φ 21 fluks skozi drugo tuljavo zaradi toka I 1 skozi prvo tuljavo. Na isti način lahko Ψ12 N1 Φ12 definiramo M 12 kot M12 = =. Poglejmo si razmere na sliki. I I 2 2 SLIKA: Medsebojna induktivnost določa zvezo med tokom v drugem navitju in fluksom, ki ga ta tok povzroča v lastnem navitju. Če imamo opravka z linearnimi magnetnimi materiali (če je µ r konstanten), sta M 21 in M 12 kar enaka, torej M = M21 = M12. Inducirana napetost izražena z medsebojno induktivnostjo tuljave. V prejšnjem razdelku smo obravnavali primer, ko je šel en del fluksa prve tuljave skozi drugo tuljavo in v slednji povzročil inducirano napetost. Izračunali smo fluks skozi drugo tuljavo zaradi spreminjanja toka v prvi tuljavi. Sedaj smo ugotovili, da to zvezo lahko opišemo z medsebojno induktivnostjo, kjer je magnetni sklep v drugi tuljavi zaradi toka v prvi določen z Ψ = M I = MI. Torej lahko inducirano napetost v drugi tuljavi izrazimo kot u im 21 ( ) dψ d Mi di = = = M.

8 INDUCIRANA NAPETOST_1(11d).doc 8/ Ponovno lahko ugotovimo, da je predznak le posledica zapisa z upoštevanjem Lentzovega pravila. Če pa upoštevamo, da je zunanja napetost ravno nasprotna notranji (gonilni), bomo zopet dobili di = =. 1 um u 21 im M 21 Primer: Določimo inducirano napetost v manjši tuljavi iz prejšnjega primera s pomočjo medsebojne induktivnosti. Za določitev medsebojne induktivnosti moramo poiskati fluks skozi drugo tuljavo ki ga povzroča tok skozi prvo tuljavo. Fluks je Ψ M µ N I = N Φ = NBA= N A l1 Ψ µ NN = = A 78,35 µh I1 l1, kjer smo z indeksom 1 označili veliko tuljavo, z 2 pa manjšo tuljavo. Sprememba toka v času 25 ms 2A di1 bo = 80 A/s, inducirana napetost pa um 25 ms 21 = M = 78,35 mh ( 80 A/s) = 6,3 mv. Razlika v končnem rezultatu glede na primer 1 je izključno posledica različnega zaokroževanja v prvem in drugem primeru. Natančnejši rezultat je slednji. Preverite še sami. Realna tuljava ohmska in induktivna upornost. Nobena tuljava ni idealna (razen, če jo ohladimo blizu absolutne ničle, ko pade ohmska upornost ovojev na nič) pač pa ima tudi neko ohmsko upornost. Ta je v osnovi odvisna od specifične l prevodnosti materiala (pri navitjih običajno kar baker), preseka in dolžine: R =. V realni tuljavi γ A tako lahko ločimo dva padca napetosti: zaradi padca napetosti na ohmski upornosti (Ohmov zakon) in padca napetosti na t.i. induktivni upornosti 2. Matematično bi za napetost na tuljavi zapisali di = + = +. (11.6) u ur ul ir L 2 V resnici dveh padcev napetosti na tuljavi ne moremo»fizično«ločiti, saj nastopata hkrati in na zunanjih sponkah opazujemo skupen učinek. Lahko pa ju ločeno obravnavamo v matematičnem smislu.

9 INDUCIRANA NAPETOST_1(11d).doc 9/ Primer: Vzemimo, da upoštevamo poleg induktivnosti tuljave iz drugega primera (Tok skozi tuljavo z induktivnostjo L = 2 mh se spreminja harmonično, z amplitudo I 0 = 0,5 A in periodo T = 5 ms.) še njeno upornost, ki naj bo 1 Ω. Kolikšna bo sedaj napetost na tuljavi? Izračun: V skladu z enačbo (11.6) bo napetost na tuljavi enaka u = RI0sin( ωt) + L d ( I0sin( ωt) ) = RI0sin( ωt) + LI0ωcos( ωt). Amplituda padca napetosti zaradi induktivnosti bo 1,26 V (kot smo že izračunali), zaradi ohmske upornosti pa 0,5 A 1 Ω= 0,5 V. Ali bo skupna napetost 1,26 V + 0,5 V? Ne. Napetost na tuljavi je vsota dveh napetosti, ki pa sta časovno zamaknjeni za četrtino periode signala. Zato amplitude ne moremo preprosto sešteti. Lahko pa ugotovimo, da je dobljeni napetosti signal zopet sinusne oblike in da je amplituda in faza signala v skladu z matematično zvezo 2 2 asin( ωt) + bcos( ωt) = a + b sin( ωt+ ϕ) = Asin( ωt+ ϕ). A je amplituda signala in je enaka 2 2 = + = 1,36 V, ϕ pa je fazni kot in označuje prehitevanje ali zaostajanje signala za A a b prvotnim signalom. Določimo ga kot b o ϕ = arctan = 68,36. V našem primeru bo rezultat a u ,36 sin(1,26 10 s t+ 68,36 ) V. Predznak plus predstavlja prehitevanje napetostnega signala pred tokovnim, ki pa v primeru realne tuljave ni 90 0, pač pa nek manjši kot, pač v skladu z velikostjo padcev napetosti na idealni tuljavi in na ohmski upornosti tuljave. SLIKA: Tokovno vzbujanje (pikčasto). Napetost na induktivnosti tuljave (črtkano), napetost na ohmski upornosti tuljave (pikčasto, po obliki in vrednosti enako tokovnemu signalu) in skupna 0 0 napetost na tuljavi (polna črta). Napetost na realni tuljavi prehiteva tok tuljave za kot 90 < ϕ < 0.

10 INDUCIRANA NAPETOST_1(11d).doc 10/ Induktivna upornost - reaktanca. Kot smo ugotovili, je amplituda padca napetosti na tuljavi pri vzbujanju s harmoničnim signalom sorazmerna produktu amplitude toka in produkta ωl. Slednji predstavlja upornost tuljave pri izmeničnih signalih in jo imenujemo induktivna upornost ali reaktanca in uporabimo simbol XL linearno veča z večanjem frekvence vzbujalnega signala. = ωl. Ponovno lahko ugotovimo, da se induktivna upornost SLIKA: Večanje induktivne upornosti reaktance s frekvenco vzbujanja. Kazalci. Pogosto si pri izračunu zvez med tokom in napetostjo olajšamo delo z grafičnim prikazom le teh s t.i. kazalci. Vsak kazalec predstavlja eno od veličin, ki se vrti okoli izhodišča glede na kotno hitrost pri čemer upoštevamo še fazo signala. Zveza med tokom in napetostjo na ohmski upornosti tuljave bi bila preprosta, saj se»vrtita«skladno, v isti legi. Rečemo tudi, da sta tok in napetost v fazi. Kazalec napetosti idealne tuljave pa je premaknjen glede na tokovnega za kot Skupen padec napetosti bo vsota obeh kazalcev, ki ju grafično seštejemo. Dobimo amplitudo napetosti kot vsoto kvadratov in določimo še zamik med kazalcema napetosti in toka fazni kot. Tangens tega kota je enak razmerju velikosti kazalcev ali pa kar razmerju induktivne in ohmske upornosti. 3 3 Tak način obravnave je bil običajen v srednješolskem izobraževanju. V nadaljevanju bomo spoznali, da je mnogo bolj učinkovit, pa tudi korekten, zapis kazalcev v t.i. kompleksni ravnini.

11 INDUCIRANA NAPETOST_1(11d).doc 11/ SLIKA: Prikaz padcev napetosti na ohmskem in induktivnem delu tuljave s pomočjo kazalcev. Faktor sklopa. Če je magnetna povezava med dvema tuljavama (1 in 2) linearna, ima smisel določiti faktor sklopa. Če sta magnetni sklep skozi lastno tuljavo in sosednjo določena z linearno zvezo Ψ 21 = kψ 11, Ψ = kψ kjer sta Ψ 11 in Ψ 22 fluksa skozi lastno tuljavo pomnožena s številom ovojev lastne tuljave. Velja Ψ Ψ k Ψ k Ψ M M = M = = = k LL I1 I2 I1 I2 in iz tega ali faktor sklopa M k =. L L 1 2 M = k LL 1 2 (11.7) Označitev medsebojne induktivnosti v smislu koncentriranega elementa. Kako označimo medsebojno induktivnost kot koncentriran element? V osnovi enako kot dve navadni tuljavi z lastno induktivnostjo, ki pa ju povežemo z linijo in puščicama, s čimer prikažemo, da je med njima magnetni sklep. Pri tem pa je zopet potrebno paziti na predznak padca napetosti zaradi medsebojne induktivnosti, saj je predznak odvisen od lege posameznih tuljav. Predznak je tako lahko pozitiven ali pa negativen, kar mora biti v sami električni shemi razvidno. To označujemo s pikami na začetku ali konce vsake tuljave (glede na smer toka) odvisno od tega, če se magnetna pretoka tuljav med seboj podpirata ali ne. Dogovor je tak, da postavimo piki na začetek obeh tuljav (ali pa obe na konec) glede na smer toka, če se magnetni pretok druge tuljave skozi prvo tuljavo podpira z lastnim pretokom skozi prvo tuljavo.

12 INDUCIRANA NAPETOST_1(11d).doc 12/ SLIKA: Dve tuljavi z medsebojno induktivnostjo. Podpiranje fluksov označimo s piko ta tisti strani tuljave, kjer vstopa ali izstopa tok. Splošen zapis zveze med dvema tuljavama z diferencialno enačbo. Če imamo dve sklopljeni navitji, potem tok skozi eno navitje povzroča padec napetosti v lastnem, pa tudi v drugem navitju. Slednji je proporcionalen spremembi toka in medsebojni induktivnosti. Vpliv pa je v obe smeri. Torej, če spreminjajoči fluks v drugi tuljavi povzroča tok v drugem navitju, pride do vzajemnega učinka. Napetost na prvi tuljavi je di di u R i L M = + 1 ± 2, na drugi pa di di u R i L M = + 2 ± Dobimo sistem dveh (linearnih) diferencialnih enačb, ki ga je potrebno reševati s primerno metodo. Ugotovili bomo, da nam za obravnavo izmeničnih signalov lahko analizo bistveno olajša uporaba kompleksnega računa. SLIKA: Nariši vezje s koncentriranimi elementi in povezavo med tuljavama z medsebojno induktivnostjo.

13 INDUCIRANA NAPETOST_1(11d).doc 13/ Inducirana napetost - drugič Ugotovili smo že, da je inducirana napetost v zanki določena s časovno spremembo fluksa skozi zanko, kar smo v matematični obliki zapisali kot dψ ui =, (11.8) kjer je predznak minus posledica upoštevanja Lentzovega pravila, da je predznak inducirane napetosti v zanki tak, da induciran tok v zanki povzroča fluks, ki nasprotuje spremembi fluksa skozi zanko. Ugotovili smo tudi, da gre pri inducirani napetosti za notranjo, generatorsko napetost, ki je porazdeljena po zanki. Lahko bi v osnovi govorili tudi o induciranju električne poljske jakosti, ki v zanki požene inducirani tok. Če se spomnimo definicije električne napetosti kot integrala električne poljske jakosti, lahko tudi sedaj pogledamo, kaj dobimo z integracijo inducirane električne poljske jakosti po poti zanke. Zanima nas torej E i "# dl #. V elektrostatiki smo ugotovili, da je ta integral po L zaključeni poti enak nič (dobimo kot razliko dveh elektrostatičnih potencialov v isti točki), iz česar je tudi sledila definicija električne poljske jakosti kot gradienta potenciala. Pri izmeničnih signalih ta integral očitno ne bo enak nič, pač pa bo enak inducirani napetosti i $ "# E dl # = ui (11.9) L "# "# "# Celotna električna poljska jakost je vsota elektrostatične in inducirane jakosti E = Ees + Ei, kar pa enačbo (11.9) spremeni le v toliko, da velja še bolj splošno $ "# E dl # = ui. (11.10) L Če upoštevamo v enačbi (11.10) še enačbo (11.8) in to, da lahko fluks zapišemo kot integral Bja po preseku zanke Φ = "# B da "#, dobimo splošen zapis A L "# # d "# "# E dl = B da $. (11.11) To je pomembna enačba, ki jo v elektrotehniki poznamo kot 2. Maxwellova enačba. V osnovi gre za Faradayevo enačbo, ki pa jo je Maxwell pravilno uvrstil v sistem osnovnih enačb za opis elektromagnetnega polja. A

14 INDUCIRANA NAPETOST_1(11d).doc 14/ Dva tipa inducirane napetosti: transformatorska in gibalna. V osnovi lahko ločimo dva različna tipa induciranja napetosti: v prvem primeru, ki smo za že spoznali, se inducirana napetost v zanki pojavi kot posledica časovne spremembe fluksa v zanki. Tej napetosti pogosto rečemo transformatorska inducirana napetost. Drugi tip induciranja pa nastopi kot posledica gibanja prevodnika v časovno konstantnem ali spremenljivem magnetnem polju. Tej inducirani napetosti rečemo tudi gibalna ali rezalna inducirana napetost. Gibalna (rezalna) inducirana napetost. Poglejmo si primer prevodne palice, ki se premika v prečnem polju gostote B. V prevodniku je zelo ""# # "# veliko prostih nosilcev naboja (elektronov) na katere deluje magnetna sila Fm = Qv B. V polju bo na naboje delovala magnetna sila, oziroma (inducirana) električna poljska jakost E mind,, ki bo "# "# F # "# E m,ind = = v B. (11.12) Q Integral jakosti polja vzdolž palice pa dá napetost gibalno inducirano napetost: L 0 ( ) ui = v # "# B dl # (11.13) Tej napetosti rečemo tudi rezalna napetost, saj nastane tedaj, ko prevodnik reže magnetno polje Primer: Prevodna palica dolžine l = 5 cm je postavljena vzdolž Y osi in se giblje s hitrostjo # # # # v = e x 2 m/s v homogenem polju B = e z 5 mt. Določite inducirano napetost med koncema palice. Izračun: # # # # v B = e vb = e 2 y y10 T m/s l= 5cm # # u = e vb e dy = vbl = =,. ( ) i y y V 05mV Dodatno: Hitro lahko pokažemo, da do enakega rezultata pridemo tudi iz enačbe za časovno spremembo fluksa skozi zanko, če si pač zamislimo, da je palica del stranice zanke, ki se veča v smeri X osi. Ker se s časom povečuje površina zanke, se veča tudi fluks skozi zanko. Dobimo Φ (t) = B A(t) = B lx= B lvt, inducirana napetost v zanki (med koncema potujoče palice) pa je dφ ui = = Blv = 05mV,.

15 INDUCIRANA NAPETOST_1(11d).doc 15/ SLIKA: a) premikanje vodnika v magnetnem polju. Na koncih premikajoče se prevodne palice v prečnem magnetnem polju se pojavi (inducira) napetost. b) Časovno večanje površine zanke zaradi premikanja stranice zanke povzroči povečanje fluksa in posledično inducirno napetost. Skupna transformatorska in gibalna inducirana napetost. Kakšna pa je zveza med tem zapisom inducirane napetosti in tistim s časovno spremenljivim fluksom? Na tem primeru lahko pokažemo, da bi z uporabo osnovnega zapisa dobili enak rezultat. Le zamisliti bi si morali virtualno zanko, katere fluks se veča ali zmanjšuje s časom. Z drugačnim zapisom enačbe (11.11) lahko upoštevamo tako inducirano napetost, ki je posledica časovne spremembe gostote pretoka v mirujoči zanki in inducirano napetost, ki je posledica gibanja v časovno konstantnem polju: "# # "# "# # "# E dl = B da+ v B t $ $ (11.14) L A L Prvi člen imenujemo transformatorska, drugega pa gibalna ali rezalna inducirana napetost. Odvisno od primer moramo upoštevati prvo, drugo ali pa kar obe hkrati. Faradayev homopolarni generator. Je naprava, ki proizvaja enosmerno napetost pri vrtenju prevodnega diska v magnetnem polju. Prvi jo je opisal že leta 1831 Michael Faraday. Deluje tudi v obratnem režimu, kot motor in se smatra kot prvi enosmerni električni motor. SLIKA: Vrteči prevodni disk v prečnem magnetnem polju. Med osjo in obodom priključimo kontaktorje in na sponkah se pojavi napetost inducirana napetost. Izračun generatorske (inducirane) napatosti: med kontaktoma si zamislimo prevodno progo. Na # # # naboje v disku, ki se vrtijo s hitrostjo v = ωrdeluje magnetna sila F m = Qv B, ki premakne (pozitivne) naboje v smeri vektorskega produkta. Pojavi se torej inducirana električna poljska

16 INDUCIRANA NAPETOST_1(11d).doc 16/ jakosti # # # E = v B, ki je v smeri radija od osi proti zunanjemu kontaktu. Med kontaktoma se i inducira napetost R R # # 2 R ui = Edl = ωrbdr= ω B. 2 i 0 0 Primer: Prevodni disk polmera R = 10 cm se vrti s hitrostjo 1000 obr/min v prečnem homogenem magnetnem polju 200 mt. Določimo inducirano napetost med osjo in obodom diska. Izračun: R R # # 2 2 R 1000 (0, 1 m) ui = Edl = ωrbdr= ω B = 2π 0, 2 T = 104, 8 mv. 2 60s 2 i 0 0 Napetost ni velika, je pa zato lahko zelo velik tok, ki steče v zanki, saj je ohmska upornost izredno majhna. Zato dejansko lahko pričakujemo izredno velike toke. Problem se pojavi v kontaktih, kjer se pojavi pri zelo velikih tokih SLIKA: Homopolarni generator. Več: Ključne besede na internetu: homopolar, generator, motor, Faraday Generator izmenične napetosti z vrtenjem tuljave v magnetnem polju. Tuljavo postavimo v enosmerno homogeno magnetno polje in jo vrtimo s kotno hitrostjo ω. Pojavi inducirane napetosti v zanki lahko razložimo na oba načina: kot posledico časovne spremembe fluksa skozi zanko (transformatorska napetost) ali pa kot posledico sile na gibajoče naboje (rezalna napetost). V prvem primeru opazujemo časovno spreminjanje fluksa skozi zanko, ki bo enako Φ = B A( t ) = B b acos( ωt), inducirana napetost pa bo dφ dcos( ωt) ui = N = Bab = Babωsin( ωt) = Umsin( ωt). Amplituda inducirane napetosti je odvisna od površine zanke (ne od oblike, ki je lahko tudi trikotna), velikosti magnetnega polja in kotne frekvence. Izhodna (inducirana) napetost je sinusne oblike. SLIKA: a) Vrtenje pravokotne tuljave v homogenem magnetnem polju. b) Izhodna napetost je sinusne oblike.

17 INDUCIRANA NAPETOST_1(11d).doc 17/ Primer 3. Vrtenje zanke v magnetnem polju: izpit, 5. septembra 2002 MALO ZA ZABAVO MALO ZARES: Izdelajte in raziščite delovanje homopolarnega motorja sestavljenega iz baterije, vijaka, žičke in trajnega magneta. Primeri kolokvijev in izpitov: kolokvij, 3. maj kolokvij, izpit, 16. april 2002 izpit, 8. april 2002 izpit, Izpit, izpit, 5. septembra 2002 S pomočjo induktivnosti: Izpit, Izpit,

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

MAGNETNI PRETOK FLUKS

MAGNETNI PRETOK FLUKS MGNETNI PRETOK FLUKS Equation Section 4 Vsebina poglavja: Določitev magnetnega pretoka, brezizvornost magnetnega polja, upodobitev polja z gostotnicami, induktivnost, lastna induktivnost, magnetni sklep.

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa.

3. AMPEROV ZAKON. SLIKA: Zanka v magnetnem polju. Integral komponente magnetnega polja v smeri zanke je sorazmeren toku, ki ga zanka oklepa. 3. AMPEROV ZAKON Equation Section 3 Vsebina poglavja: Integral polja po zaključeni zanki je sorazmeren toku, ki ga zanka objame. Izračuni polja s pomočjo Amperovega zakona za: tokovno premico, solenoid,

Διαβάστε περισσότερα

1. Enosmerna vezja. = 0, kar zaključena

1. Enosmerna vezja. = 0, kar zaključena 1. Enosmerna vezja Vsebina polavja: Kirchoffova zakona, Ohmov zakon, električni viri (idealni realni, karakteristika vira, karakteristika bremena matematično in rafično, delovna točka). V enosmernih vezjih

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA

Državni izpitni center *M * JESENSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 27. avgust 2009 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M097711* ELEKTROTEHNIKA JESENSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Četrtek, 7. avgust 009 SPLOŠNA MATURA RIC 009 M09-771-1- A01 Z galvanizacijskim

Διαβάστε περισσότερα

Transformator. Izmenični signali, transformator 22.

Transformator. Izmenični signali, transformator 22. zmenični signali, transformator. Transformator Vsebina: Zapis enačb transformatorja kot dveh sklopljenih tuljav, napetostna prestava, povezava medd maksimalnim fluksom in napetostjo, neobremenjen transformator

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Osnovni pojmi pri obravnavi periodičnih signalov

Osnovni pojmi pri obravnavi periodičnih signalov Periodični signali, osnovni poji 7. Osnovni poji pri obravnavi periodičnih signalov Vsebina: Opis periodičnih signalov z periodo, frekvenco, krožno frekvenco. Razlaga pojov aplituda, faza, haronični signal.

Διαβάστε περισσότερα

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka:

3. Uporaba Biot-Savartovega zakona. Tokovna daljica: Premica: Tokovna zanka: 1. Magnetostatika 1. Amperov zakon magnetne sile (med tokovnima elementoma) Pravilno predvideva, da če električni tok povzroča magnetno polje in s tem odklon magnetne igle, mora obstajati tudi sila med

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,...

Električno polje. Na principu električnega polja deluje npr. LCD zaslon, fotokopirni stroj, digitalna vezja, osciloskop, TV,... 1 Električno polje Vemo že, da: med elektrinami delujejo električne sile prevodniki vsebujejo gibljive nosilce elektrine navzven so snovi praviloma nevtralne če ima telo presežek ene vrste elektrine, je

Διαβάστε περισσότερα

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA

Državni izpitni center *M * SPOMLADANSKI IZPITNI ROK ELEKTROTEHNIKA NAVODILA ZA OCENJEVANJE. Četrtek, 29. maj 2008 SPLOŠNA MATURA Š i f r a k a n d i d a t a : Državni izpitni center *M877* SPOMLADANSK ZPTN ROK ELEKTROTEHNKA NAVODLA ZA OCENJEVANJE Četrtek, 9 maj 8 SPLOŠNA MATRA RC 8 M8-77-- A zračunajte gostoto toka v vodniku s presekom

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič

Elektrotehnika. Študijsko gradivo za študente Pedagoške fakultete UL. Študijsko leto 2009/2010. Slavko Kocijančič Elektrotehnika Študijsko gradivo za študente Pedagoške fakultete UL Slavko Kocijančič Študijsko leto 2009/2010 Ljubljana, marec 2010 Vsebina 1. OSNOVE ELEKTROTEHNIKE...1 OHMOV ZAKON...1 PRVI KIRCHHOFFOV

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Analiza 2 Rešitve 14. sklopa nalog

Analiza 2 Rešitve 14. sklopa nalog Analiza Rešitve 1 sklopa nalog Navadne diferencialne enačbe višjih redov in sistemi diferencialnih enačb (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) 6 + 8 0, (b)

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Izmenični signali kompleksni račun

Izmenični signali kompleksni račun zenicni_signali-kopleksni_racun(8).doc /7.6.6 zenični signali kopleksni račun Kopleksni račun e poebno orode za analizo vezi z izeničnii haroničnii signali. V osnovi diferencialne enačbe lahko z uporabo

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE II. Magnetostatika. Dejan Križaj

OSNOVE ELEKTROTEHNIKE II. Magnetostatika. Dejan Križaj OSNOVE ELEKTROTEHNIKE II Magnetostatika Dejan Križaj 11 Section 1 KRATKO KAZALO (GLAVNA POGLAVJA) UVOD - ZGODOVINA MAGNETIKE 1. SILA NA (TOKO)VODNIK V MAGNETNEM POLJU. BIOT-SAVARTOV ZAKON Magnetno polje

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje

) produkta toka z vektorjem diferen razdalje v smeri. d - Sila je pravokotna na tokovni element in mag.polje 1.MAGNETOSTATIKA 1.1 Amperov zakon mag.sile: Sila med dvema vzporednima vodnikoma je sorazmerna produktu toka v obeh vodnikih in njuni dolžini in nasprotno sorazmerna razdalji med vodnikoma - Tokovni element

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant.

V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant. Poglavje IV Determinanta matrike V tem poglavju bomo vpeljali pojem determinante matrike, spoznali bomo njene lastnosti in nekaj metod za računanje determinant 1 Definicija Preden definiramo determinanto,

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Navadne diferencialne enačbe

Navadne diferencialne enačbe Navadne diferencialne enačbe Navadne diferencialne enačbe prvega reda V celotnem poglavju bo y = dy dx. Diferencialne enačbe z ločljivima spremeljivkama Diferencialna enačba z ločljivima spremeljivkama

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

, kjer je t čas opravljanja dela.

, kjer je t čas opravljanja dela. 3. Moč Vseina polavja: definicija moči, delo, moč na remenu, maksimalna moč, izkoristek. Moč (simol ) je definirana kot produkt napetosti in toka: = UI. V primeru, da se moč troši na linearnem uporu (na

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Merilniki gostote magnetnega polja na osnovi Lorentzove sile

Merilniki gostote magnetnega polja na osnovi Lorentzove sile Merilniki gostote magnetnega polja na osnovi Lorentzove sile Lorentzova sila je temelj tako allovega kot tudi magnetoupornostnega efekta v polprevodniških strukturah. Zgradba in osnovni princip delovanja

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Izmenični signali metode reševanja vezij (21)

Izmenični signali metode reševanja vezij (21) Izmenični sinali_metode_resevanja (21b).doc 1/8 03/06/2006 Izmenični sinali metode reševanja vezij (21) Načine reševanja enosmernih vezij smo že spoznali. Pri vezjih z izmeničnimi sinali lahko uotovimo,

Διαβάστε περισσότερα

TEHNOLOGIJA MATERIALOV

TEHNOLOGIJA MATERIALOV Naslov vaje: Nastavljanje delovne točke trajnega magneta Pri vaji boste podrobneje spoznali enega od možnih postopkov nastavljanja delovne točke trajnega magneta. Trajne magnete uporabljamo v različnih

Διαβάστε περισσότερα

LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF

LASTNOSTI FERITNEGA LONČKA. 330 kω. 3400pF Ime in priimek: Šolsko leto: Datum: ASTNOSTI FEITNEGA ONČKA Za tuljavo s feritnim lončkom določite: a) faktor induktivnosti A in kvaliteto izdelane tuljave z meritvijo resonance nihajnega kroga. b) vrednosti

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

17. Električni dipol

17. Električni dipol 17 Električni dipol Vsebina poglavja: polarizacija prevodnika (snovi) v električnem polju, električni dipolni moment, polarne in nepolarne snovi, dipol v homogenem in nehomogenem polju, potencial in polje

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

PROCESIRANJE SIGNALOV

PROCESIRANJE SIGNALOV Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:

Διαβάστε περισσότερα

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno

Električni potencial in električna napetost Ker deluje na električni naboj, ki se nahaja v električnem polju, sila, opravi električno FIZIKA 3. poglavje: Elektrika in magnetizem - B. Borštnik 1 ELEKTRIKA IN MAGNETIZEM Elektrostatika Snov je sestavljena iz atomov in molekul. Atome si lahko predstavljamo kot kroglice s premerom nekaj desetink

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

2. BIOT-SAVARTOV ZAKON

2. BIOT-SAVARTOV ZAKON iot-savartov akon.. IOT-SAVARTOV ZAKON Equation Section Vsebina poglavja: apis iot-savartovega akona, iračuni magnetnega polja v okolici osnovnih oblik tokovodnikov: premice, daljice, anke in solenoida.

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:

Najprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki: NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

5.6 Ostale lastnosti feromagnetnih materialov

5.6 Ostale lastnosti feromagnetnih materialov 5.6 Ostale lastnosti feromagnetnih materialov Pri izdelavi magnetnih materialov imajo pomembno vlogo tudi nepravilnosti v njihovi strukturi. Če je material izdelan brez nepravilnosti, premikanje Blochovih

Διαβάστε περισσότερα

Izmenični signali. Dejan Križaj

Izmenični signali. Dejan Križaj Izenični signali Dejan Križaj . . KAZALO 6. PREHODNI POJAVI... 4 PREHODNI POJAVI... 5 ZVEZE MED TOKOM IN NAPETOSTJO NA ELEMENTIH VEZJA... 6 ZAČETNI POGOJI... 6 POLNJENJE KONDENZATORJA... 7 PRAZNENJE KONDENZATORJA...

Διαβάστε περισσότερα

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen

March 6, tuljava in električna. napetost in. padanjem. Potrebujete. torej 8,8µF. priključen. napetosti. in ustrezen DELAVNICA SSS: POSKUSI Z NIHANJEM V ELEKTRONIKI March 6, 2009 DUŠAN PONIKVAR: POSKUSI Z NIHANJEM V ELEKTROTEHNIKI Vsi smo poznamo električni nihajni krog. Sestavljataa ga tuljava in kondenzator po sliki

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut

Državni izpitni center. Izpitna pola 2. Četrtek, 2. junij 2016 / 90 minut Š i f r a k a n d i d a t a : Državni izpitni center *M1617711* SPOMLADANSKI IZPITNI ROK Izpitna pola Četrtek,. junij 016 / 90 minut Dovoljeno gradivo in pripomočki: Kandidat prinese nalivno pero ali kemični

Διαβάστε περισσότερα

Transformatorji in dušilke

Transformatorji in dušilke Univerza v Ljubljani Fakulteta za elektrotehniko Danilo Makuc Transformatorji in dušilke Zbirka nalog z rešitvami Danilo Makuc, FE UN LJ, januar 011 Predgovor Zbirka vsebuje rešene naloge iz preteklih

Διαβάστε περισσότερα

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut

Državni izpitni center ELEKTROTEHNIKA. Izpitna pola. Petek, 31. avgust 2007 / 180 minut Š i f r a k a n d i d a t a : Državni izpitni center *M0777111* JESENSKI ROK ELEKTROTEHNIKA Izpitna pola Petek, 31. avgust 007 / 180 minut Dovoljeno dodatno gradivo in pripomočki: Kandidat prinese s seboj

Διαβάστε περισσότερα

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω.

2. Pri 50 Hz je reaktanca kondenzatorja X C = 120 Ω. Trditev: pri 60 Hz znaša reaktanca tega kondenzatorja X C = 100 Ω. Naloge 1. Dva električna grelnika z ohmskima upornostma 60 Ω in 30 Ω vežemo vzporedno in priključimo na idealni enosmerni tokovni vir s tokom 10 A. Trditev: idealni enosmerni tokovni vir obratuje z močjo

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE I

OSNOVE ELEKTROTEHNIKE I OSNOVE ELEKTROTEHNIKE I ENOSMERNA VEZJA DEJAN KRIŽAJ 009 Namerno prazna stran (prirejeno za dvostranski tisk) D.K. / 44. VSEBINA. ENOSMERNA VEZJA. OSNOVNA VEZJA IN MERILNI INŠTRUMENTI 3. MOČ 4. ANALIZA

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

4. Analiza vezij. Analiza vezij(4).docj 4. Vsebina poglavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov.

4. Analiza vezij. Analiza vezij(4).docj 4. Vsebina poglavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov. 4. Analiza vezij Vsebina polavja: metoda Kirchoffovih zakonov, metoda zančnih tokov, metoda spojiščnih potencialov. Spoznali smo že oba Kirchoffova zakona in zvezo med tokom in napetostjo na uporu. Zaradi

Διαβάστε περισσότερα

Splošno o interpolaciji

Splošno o interpolaciji Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo

Διαβάστε περισσότερα

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija.

Matematika I (VS) Univerza v Ljubljani, FE. Melita Hajdinjak 2013/14. Pregled elementarnih funkcij. Potenčna funkcija. Korenska funkcija. 1 / 46 Univerza v Ljubljani, FE Potenčna Korenska Melita Hajdinjak Matematika I (VS) Kotne 013/14 / 46 Potenčna Potenčna Funkcijo oblike f() = n, kjer je n Z, imenujemo potenčna. Število n imenujemo eksponent.

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Elektrotehnika in elektronika

Elektrotehnika in elektronika Elektrotehnika in elektronika 1. Zapišite pogoj zaporedne resonance, ter pogoj vzporedne resonance. a) Katera ima minimalno impedanco, katera ima minimalno admitanco? b) Pri kateri je pri napetostnem vzbujanju

Διαβάστε περισσότερα

DISKRETNA FOURIERJEVA TRANSFORMACIJA

DISKRETNA FOURIERJEVA TRANSFORMACIJA 29.03.2004 Definicija DFT Outline DFT je linearna transformacija nekega vektorskega prostora dimenzije n nad obsegom K, ki ga označujemo z V K, pri čemer ima slednji lastnost, da vsebuje nek poseben element,

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo "kulon") ali As (1 C = 1 As).

Električni naboj, ki mu pravimo tudi elektrina, označimo s črko Q, enota zanj pa je C (Coulomb-izgovorimo kulon) ali As (1 C = 1 As). 1 UI.DOC Elektrina - električni naboj (Q) Elementarni delci snovi imajo lastnost, da so nabiti - nosijo električni naboj-elektrino. Protoni imajo pozitiven naboj, zato je jedro pozitivno nabito, elektroni

Διαβάστε περισσότερα

OSNOVE ELEKTROTEHNIKE I

OSNOVE ELEKTROTEHNIKE I OSNOVE ELEKTROTEHNIKE I 008 ENOSMERNA VEZJA DEJAN KRIŽAJ Spoštovani študenti! Pred vami je skripta, ki jo lahko uporabljate za lažje spremljanje predavanj pri predmetu Osnove elektrotehnike 1 na visokošolskem

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!

1.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti! UNI: PISNI IZPIT IZ Atomike in optike, 3. junij, 7.naloga: Zapišite Lorentzovo tranformacijo v diferencialni (infinitezimalni) obliki in nato izpeljite izraze za Lorentzovo transformacijo hitrosti!.naloga:

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

8. Posplošeni problem lastnih vrednosti

8. Posplošeni problem lastnih vrednosti 8. Posplošeni problem lastnih vrednosti Bor Plestenjak NLA 13. april 2010 Bor Plestenjak (NLA) 8. Posplošeni problem lastnih vrednosti 13. april 2010 1 / 15 Matrični šop Dani sta kvadratni n n matriki

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Visokošolski strokovni študijski program»tehnologija polimerov«

Visokošolski strokovni študijski program»tehnologija polimerov« Visokošolski strokovni študijski program»tehnologija polimerov«predmet: ELEKTROTEHNIKA Predavatelj: dr. Konrad Steblovnik Asistent: Drago Šebez 1 Elektrostatika. Električna polja. Sile v električnem polju.

Διαβάστε περισσότερα