Solutions Manual for A Course in Ordinary Differential Equations. by Randall J. Swift Stephen A. Wirkus

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Solutions Manual for A Course in Ordinary Differential Equations. by Randall J. Swift Stephen A. Wirkus"

Transcript

1 Solutions Manual for A Course in Ordinary Differential Equations by Randall J. Swift Stephen A. Wirkus

2

3 Preface This solutions manual is a guide for instructor s using A Course in Ordinary Differential Equations. Many problems have their solution presented in its entirety while some merely have an answer and few are skipped. This should provide sufficient guidance through the problems posed in the tet. As with the book, code for Matlab, Maple, or Mathematica is not given. It is our eperience that the synta given in the book is sufficient to learn the relevant commands used to obtain solutions to the various problems in the book. Please give Appendi A a chance, if you have not done so already. This solutions manual was put together by many people and we note a few of them here. We owe a big thanks to our former students David Monarres, for help in preparing portions of this book, and Walter Sosa and Moore Chung, for their help in preparing solutions. More recently Scott Wilde has helped tremendously in shaping this manual. Jenny Switkes and other colleagues and students have also given feedback on various drafts of this manual and all have been helpful. This book has evolved over the last few years and we have tried to make this solution manual stay in step. However, we realize that there are probably many typos throughout and we encourage you to contact us with your corrections. Hopefully future printings of this manual will have an eponentially decreasing number of such errors. We would appreciate any comments that you might have regarding the book and the manual. Randall J. Swift ( rjswift@csupomona.edu Stephen A. Wirkus ( swirkus@csupomona.edu URL for typos and errata: swirkus/acourseinodes

4

5 Contents Traditional First-Order Differential Equations. Some Basic Terminology Separable Differential Equations Physical Problems with Separable Equations Eact Equations Linear Equations Chapter : Additional Problems Geometrical and Numerical Methods for First-Order Equations 5. Direction Fields the Geometry of Differential Equations Eistence and Uniqueness for First-Order Equations First-Order Autonomous Equations Geometrical Insight Population Modeling: An Application of Autonomous Equations Numerical Approimation with the Euler Method Numerical Approimation with the Runge-Kutta Method An Introduction to Autonomous Second-Order Equations Chapter : Additional Problems Elements of Higher-Order Linear Equations 9. Some Terminology Essential Topics from Linear Algebra Reduction of Order The Case of n Operator Notation Numerical Consideration for nth Order Equations Chapter : Additional Problems Techniques of Higher-Order Linear Equations 5 4. Homogeneous Equations with Constant Coefficients A Mass on a Spring Cauchy-Euler (Equidimensional Equation Nonhomogeneous Equations Method of Undetermined Coefficients via Tables Method of Undetermined Coefficients via the Annihilator Method Variation of Parameters Chapter 4: Additional Problems

6 5 Fundamentals of Systems of Differential Equations Systems of Two Equations Motivational Eamples Useful Terminology Linear Transformations and the Fundamental Subspaces EigenvaluesandEigenvectors Matri Eponentials Chapter 5: Additional Problems Techniques of Systems of Differential Equations A General Method, Part I: Solving Systems with Real, Distinct Eigenvalues A General Method, Part II: Solving Systems with Repeated Real or Comple Eigenvalues Solving Linear Homogeneous and Nonhomogeneous Systems of Equations Nonlinear Equations and Phase Plane Analysis Epidemiological Models Chapter 6: Additional Problems Laplace Transforms 7. Fundamentals of the Laplace Transform PropertiesoftheLaplaceTransform Step Functions, Translated Functions, and Periodic Functions The Inverse Laplace Transform Laplace Transform Solution of Linear Differential Equations Solving Linear Systems using Laplace Transforms The Convolution Chapter 7: Additional Problems Series Methods 8. Power Series Representations of Functions ThePowerSeriesMethod Ordinary and Singular Points The Method of Frobenius Bessel Functions Chapter 8: Additional Problems B Graphing Factored Polynomials C Selected Topics from Linear Algebra C. A Primer on Matri Algebra C. Gaussian Elimination, Matri Inverses, and Cramer s Rule C. Coordinates and Change of Basis

7 Chapter Traditional First-Order Differential Equations. Some Basic Terminology. With y(,wehavey ( 6. Substituting into the ODE gives (6 (, which is true for (,.. y, dy d d dy (. Substituting y and d d into the ODE, we get (,which is true for all. Thusy is a solution to dy d (y on (,.. y( 5 +4 (5 +4, dy d (5 +4 ( dy. Substituting y and 5 d 5 ( dy. y and (5 +4 d into the ODE, we get ( ( ( (5 +4 do not eist when which is true for { 4 5 }.Thusy 5 +4 is a solution to the ODE on ( 4 5,. 4. Since y( e, wecalculatey ( e. Substituting into the ODE gives (e + (e e +( e + e +e e + e + e e + which is true for all (,. 5. y(, dy d. Substituting y and dy into the ODE, we get d ( /

8 Section. which is true for all. Thusy is a solution to the ODE on (,. 6. y(, dy d ( Substituting y and dy d dy. y and ( d into the ODE, we get ( ( ( ( ( do not eist when. which is true for { }. Thusy is a solution to the ODE on (,. 7. Taking the derivative of y( gives us y ( and y ( +. Substitution gives ( + ( + which is true where both sides are defined, which occurs when. 8. y( sin +cos, dy d cos sin, y andd d sin cos. Substituting y and d y d into the ODE, we get ( sin cos+(sin +cos which is true for all. Thusy sin +cos is a solution to the ODE on (,. 9. y(, dy d,and d y d. Substituting y and d y into the ODE, we get d ( + ( which is true for all. Thusy is a solution to the ODE on (,.. y( + C sin, dy d +Ccos, and d y d C sin. Substituting y and d y d ODE, we get ( C sin +( + C sin into the which is true for all. Thus y + C sin is a solution to the ODE on (, for any constant C.. (a y e, y e,y e y y +y e e +e (b y e, y e, y 4e y y +y 4e 6e +e

9 Section.. (a y e, y e,y e y y + y e e + e (b y e, y e + e,y e +e y y + y e +e e e + e. (a y sin, y cos, y 9sin y +9y 9sin +9sin YES (b y sin, y cos, y sin y +9y sin +9sin NO (c y cos, y sin, y 9cos y +9y 9cos +9cos YES (d y e, y e, y 9e y +9y 9e +9e NO (e y, y,y 6 y +9y 6 +9 (unless NO 4. y +6y +9y (a y e, y e,y e e +6e +9e NO (b y e, y e y 9e 9e 8e +9e YES (c y e, y e + e y 9e 6e 9e 6e 8e +6e +9e YES (d y 4e,y e, y 6e 6e +7e +6e NO (e y e ( +, y e ( 5, y e (9 + e ( NO 5. y 7y +y (a y e, y e, y 4e 4e 4e +e NO (b y e, y e, y 9e 9e e +e YES (c y e 4, y 4e 4, y 6e 4 6e 4 8e 4 +e 4 YES (d y e 5, y 5e 5, y 5e 5 5e 5 5e 5 +e 5 NO (e y e +e 4,y e +8e 4, y 9e +e 4 e 4 +9e e 56e +e +4e 4 YES 6. y +4y +5y (a y e, y e,y 4e 4e 8e +5e NO (b y e sin, y e cos e sin, y 8e cos 8e cos +8e cos 8e sin +5e sin NO

10 4 Section. (c y e cos, y e cos e sin, y 8e sin 8e sin 8e cos 8e sin +5e cos NO (d y cos, y sin, y 4cos 4cos 8sin +5cos NO 7. y e r, y re r,andy r e r.theodegives r e r +re r +e r e r (r +r + e r (r +(r + r, 8. y +4y +4y y e r, y re r + e r,y r e r +re r e r ( r +r +4r +4+4 r +(+4r +(4+4 r 4 ± or or We can disregard the value involving, which leaves only r. 9. (a y + y sin (i nd order (ii linear (iii N/A (b y +siny (i nd order (ii nonlinear (iii N/A (c y ( +(siny ( + y, y(, y (, y ( (i rd order (ii linear (iii IVP (d y + e y y 4, y( (i st order (ii nonlinear (iii IVP (e y + y y (i nd order (ii linear (iii N/A (f y + e y + y,y(, y(π (i nd order (ii nonlinear (iii BVP. (a y yy (i nd order (ii nonlinear (iii N/A (b y sin (i nd order (ii linear (iii N/A (c y +y,y(, y ( (i nd order (ii linear (iii BVP (d y,y(, y ( (i nd order (ii linear (iii IVP (e y 4y +4y,y(, y ( (i nd order (ii linear (iii IVP (f y + y +(lny (i nd order (ii linear (iii N/A

11 .. SEPARABLE DIFFERENTIAL EQUATIONS 5. Separable Differential Equations.. 4y d +( +dy 4 + d y dy 4 dy + d y Letting u +, du dy u y ln u + C ln y ln( ++C ln y e ln( ++C y y e C ( +, since e C > y C (, + where C ±ec tan dy+yd dy d y tan ln y ln sin + C y sin e C y C csc, c ±e C. (e +cosydy+ e (sin y +d,y(. Then cos y sin y + dy e e + d Substitute Then Therefore, u siny + u e + du cosydy du e d [ ln sin y + ln e + + C sin y +A (e + A Apply IC: (sin + (e A (sin+ + sin y + +sin e +

12 6 Section. 4. We have (y +d +( 4 +dy,y(. Then Therefore, Finally, ( 4 +ds (s +dr dy y d u du d arctan(y arctan(u+c arctan(y arctan( +C arctan( arctan( + C + arctan( C }{{} C π π/4 u + du 5. y d +( +dy have ln y 6. arctan(y arctan( + π π y tan( arctan( dy y y A( +e d. Substituting u +, u, du d, we + ( (u du u u du ln + + C (y + / d y dy d d y y + dy y y + dy Let u y +anddu ydy,so du ydy.thenwehave d du u ln + C (/ u (/ ln + C y +

13 Section We have ( y +y andy(. Then ( dy d y dy y d dy y y y d ln + C ln + C IC: ln + C C y ln + 8. We have y cot + y andy(. Then dy cot y + d dy tan d y ln y ln cos + C y e C cos y ±e C (cos +A(cos + Since y(, A + A. Thus y (cos + 9. y +y dy d y dy y d y dy d Use a u e u ln a.then y + C y + C y log + C

14 8 Section.. d dt + t d ( t dt d ( t dt t t + C t t +C ± t t + C, C C. Let u y du d dy d du d +cosu du d cosu du cos u d tan(u/ tan( y y +tan (/. Let u + y du d +dy d u u u u + du u + d ln(u + e u + + y y e +. We have ( +yy,y(. Let u y +. Then du d dy d + Substituting into the ODE gives ( u u This is separable: u u u +u + u u u +u du d

15 Section. 9 Note that Then ( u +u u + +u +u du +u d u ln +u + C Substitute back u +y: ( +y ln + +y + C Apply IC: + ( ln ++( +C 4 ln C The solution is given in implicit form as y ln + +y +4+ln 4. y 4 +y. Let u 4 +y du d 4+dy d u u +4 du d u +4 ( ln ( u + u ( ( ln 4 +y + 4 +y 5. We have (y +d + y( +4dy,y(. Then ( +4ydy (y +d y y + dy d +4 ( d dy y + +4 y ln y + ln +4 + C e y ln y+ ln +4 +C e y + ey e C Apply IC: y( +4 e y (y + ± ec ( +4 A ( +4 A e e ( + A ( +4 e y (y + e ( We have 8 cos yd+csc dy,y(π/ π/4. Then csc dy 8cos yd sec ydy 8 sin d ( tan y 8 4 sin + C where A ±e C tan y sin 4 + C, where C 8C

16 Section. Using y(π/ π/4, we solve for C: ( π tan 4 ( π sin π 6 + C C π So tan y sin 4 + π 7. We have dy d y +y, y(. Separating variables and integrating gives + y +y dy + d ( y (y + + ( dy y ( + + Now apply IC: The solution is then 4 ln y + + ln y ln + + ln + C 4 ln( ++ ln( ln( + + ln( + C C ln 4 4 ln 4 ln(y ++ ln(y ln + + ln + ln 4 4 ln 8. We have y e, y(. Then dy d e dy e d y e d Apply IC: ydy y( y( y( e t dt e t dt e t dt

17 Section. 9. We have y ye, y(. Then dy e d y ln y e + C C ln y e, when,y Thus C y is even since we have only an term. ln y y e / e ( / y ±e / e. (a We have y cos y, lim + y 9π/4. Then dy cosy + d First we use a trigonometric identity as follows: cos y + (cos y sin y+(cos y +sin y cos y Thus we obtain dy cos y sec ydy d d tany + C tan y + C C tany + ( 9π 4 lim + C tan + Thus tan y ( or y arctan

18 Section. (b We have y y +6 y.then y dy d (y 8 y y 8 dy d ln y 8 + C y 8 e C e y ±e C e +8 y [Ce +8 / where C ±e C Notice that no value for C bounds y since e C.. dn rn dt dn rdt N N dn rdt ln N rt + C Note N is number of population, i.e. >. e ln N e rt+c N e C e rt N C e rt Note C is >, dealing with possible population. Thus N C e rt is a solution to the ODE. Case. For values r we have eponential growth as t. Case. For values r< we have eponential decay as t.

19 Section.. lim N K t. We have ( + y d dy. Then dn dt ( r N N K dn rn ( N K dt (Let u N/K du dn dt K dt K du dt ruk( u du dt ru(u dt du ru(u ln u ln u t r ( r ln ( N K e tr ( N K N K e tr N K K e tr Let Then Substituting for u gives 4. We have Let Then ( + y dy d + y dy d u y y u u u + u +u u u ln + C y (ln + C dy d y +y y + y u y y u + u u + u u +u u u + u

20 4 Section. This equation is separable: Use partial fractions to rewrite Thus u(u + A u + du u + u d ln + C u + u. ( u(u + du u u + Plugging in u y/ then gives 5. We have B A(u ++Bu u(a + B+A u + } A + B B A du ln u ln u + ln u u + ln u u + ln + C u u + eln +C e C u C u C(u + u + u( CC u C C y Let u y y u + u. Substituting gives C C dy d + y dy d +y (u + u +u u +u u (u This is separable: Letting w u, dw du, du (u d u ln + C u ln + C u ln + C Plugging in u y/ gives y ln + C

21 Section y y + y y + y + y y + y + y ( y ( y + + (homogeneous Let y v, y v + v. Then dv d + v +v + v dv d +v +v dv d arcsinh v ln + C Substituting back in, we have y sinh(ln + C y sinh(ln + C 7. We have ( +y d dy. Then +y dy d +y dy d dy ( y d + Let y v, y v + v. Then (homogeneous dv d + v +v dv d +v dv v + d ln v + + C v + Ce y Ce y Ce 8. We have (y y d + dy dy y y y ( y ( d

22 6 Section. Let u y, y u + u. Then u + u u u u u u ln u +ln u ln + C u u eln +C C y/ (y/ C y y C y y C y Cy C y C +C 9. We have y y( y. Then dy d y ( y dy ( y d ( ( y Let u y, dy d du + u. Then d du d + u u ( u du d u u du u ln + C y ln + C y ± ln + C d

23 Section. 7. We have ( + y y y. Then. dy d y + y dv d + v v + v dv d + v v +v dv d v +v v dv v v v d +v dv d v v +v +v v v dv dv v( v dv + v ( v dv d ln v ln v ln + C v v C y ( y C y C y C y Cy C y C(y ( y v, y v + v,v y y y tan(y/ y y ( y +tan (Homogeneous v + v v +tanv dv tan v d ln ln sin v + C e C sin v e C sin y y sin e C y sin e C. ( + y d (4 +y dy dy d y + C

24 8 Section.. We have y + y yy.then Let y v + v. Then y y (y y y y y 4 y dy d y (y (y dy yd (y dy +( y d dv d + v v v y v dv v d v v v dv v v(v d v dv d v v + v v dv v v d v v v dv d ln(v ln v ln + C ln +ln v ln + C v v(v C (y(y ( y C ( y C y(y C 4. ( y+(y y y (fory y + C. If y, the equation is true trivally.

25 Section ( +4yy +y y +y +4y +(y/ +4(y/ ( y v, y v + v, v y v + v +v +4v d ( + 4vdv +v 4v (Partial fractions yields: ln [ ln( + v( v 5 6 ln [ ln( + (y/( (y/ We have Let u y, y u + u. Then ( y d +( + y dy dy d y y + y ( +u + u +u du u + u u +u du d u +u u + y du u d +u +u +u du d d arctan u + ln +u ( y arctan + ( ( y ln +

26 Section. 7. yd ( + y dy dy d (y/ +(y/ (y v, y v + v v + v v +v v v + v v + +v v + v dv d ( v + ln ln + C v v + v e C (y/+ (y/ e C 8. ( ( y (y/ y + y +(y/ ( y v, y v + v, v y v + v v ( + v v v v ( + v ( + v v v dv d ( (v 4 ln v ( ((y/ 4 ln (y/ + v ln + C +(y/ ln + C 4. (a M(, y t Homog. deg. n M(t, ty t n M(, y ( n M(, y M(, y n M(, y (b Repeat above echanging M for N. (c M(, yd + N(, ydy dy M(, y M(, y d N(, y N(, y Define g (t M(,t, g (t N(,t, g(t g (t g (t dy d M(, y N(, y g ( y g ( y g( y

27 Section. 4. In (.F (, y ( + yd dy F (t, ty (t + tytd t t dy t (( + yd dyt F (, y Homogeneous of degree. The others are similar. 4. Given that M(, y d + N(, y dy is homogeneous, then dy M(, y M(, (y/ and the substitution d N(, y N(, (y/ r cos t d r sin tdt+costdr y r sin t dy r cos tdt+sintdr dy M(, tan t M d N(, tan t N dy r cos tdt+sintdr d r sin tdt+costdr M r cos tdt+sintdr N r sin tdt+costdr (r cos tdt+sintdrn M( r sin tdt+costdr N sin tdr+ M cos tdr Nrcos tdt+ Mrsin tdt ( dr N cos t + M sin t r dt N sin t + M cos t Since the function M and N are functions of t, the right hand side is a function of r times a function of t. Hence, it is seperable. 44. (a From 4. with r ( + y and t tan y [ ( + y ep ln ( dr r cos t +(cost +sintsint r dt cos t sin t +(cost +sintcost ( cos t +sintcos t +sin t r cos t ( +sintcos t r cos t ( dr +sintcos t r cos dt t ( ln r ln cos +tant t [ ( r ep ln cos +tant + C t, we finally have cos (tan ( y ( + tan(tan y +C (b

28 Section. 45. (a dy d y y + (y/ (y/+ which is homogeneous. As before, y v and v + v v v + v v + (v +dv d v + v + C ln Ke (v /4 (v/ K ep( y 4 y (b i. ( y d +(y + +5dy M(, y y M(t, ty t ty tm(, y. Hence, M is not homogeneous. Similarly for N, and so the equation is not homogeneous. ii. X, y Y, d dx, dy dy and dy d dy dx Y X Y +X iii. X K ep( Y 4X Y + X (y + K ep( 4( + y + ( Lines are parallel, so there is no point of intersection. 47. Lines are parallel, so there is no point of intersection. 48. dy +y 5 which gives point of intersection to be (4,. Thus, we let X 4and d +4y y Y +andgetto dy dx X +Y X +4Y +(Y/X +4(Y/X Y vx Y v X + v v X v +4v ln X 5ln v 4X ln +4 5ln y +4 4( +4

29 Section. 49. Point of intersection is (,. Thus we let X +andy Y andget dy dx Y X + Y dx X + Y dy Y (/y+ X uy dx dy u Y + u u Y + u u + du u + dy Y ln u + ln Y + C Y K u + K (X/Y + ( y + ±K y + + ( y + 5. y and as in 49., + y ( dy Y dx X + Y dx ( X dy Y + X uy dx dy u Y + u u + u X u + u + u X (u + du u + dx X tan (u ln X + C ( tan ln + C y +

30 4 Section.. Physical Problems with Separable Equations. r kv, v e 6m/s, v,m 75kg, s 8m, s e 5m m dv dt mg kv 75v 75(9.8 kv 75 kv 75 dv dt 75 kv.8 ln kv 7. kv+7. t + C k kv 7. [ kt + C ep kv From the given information lim v(t 6 t k6 7. k.47 k v C.45v 7. Thus, we have.45v +7. e (.6t and after some simplification ( +e.6t v(t 6 e.6t. r kv, r.48n when v k.48.4 dv dt (.4(9.8.48v dv dt 9.8.v dv 9.8.v dt If air resistance is neglected, then s(t 4.9t +t, v(t 9.8t + t.4, s(.4.4ft 4. v(t gt + v, v( g + v v g s(ft/s 96ft/s 5. (a v,v(t gt t, v(4 8ft/s 4 (b Ave velocity tdt64ft/s 4 (c v(t t, s(t6t + s,s(4 s(4 6 + s s 56 cliff was 56 ft tall 6. a(t,v(t t + v t, s(t 6t + s, s(5 6(5 + s s 4 cliff was 4 ft tall

31 Section s 5, v,s(t 6t 5 t average velocity km 5/4 5 8km 4.48km/s 5s 8. T (t (T T s e kt + T s,t s, T 5,T( 5 T ( 7e k 5 k ( 7 ln 7. Then to find eating time (t eat, T (eat 7e k(eat eat ln(/7 4.8hrs 5pm ln(7/7 9. Let t bepm. T ( 79, T( 68, T s 6. T (t 9e kt +6,T( 9e k +668 Thus the person died about :pm 9e k 8 k ln.4.88 T (t 9e.88t +6 (Solve for t when T t.46. T (t 8e kt +,T( 8e k +6 k.69 T (t 8e.69t ln 6 +5 t 4min ln. N(t amount of N in tank after t seconds. N( 6. dn dt rate in - rate out. N (. dn N dt N(t e( t/+c, N( 6 e C C ln4.9 N(t e ( t/+.9. We want to solve N(t ( fort. t (ln( seconds min. 4. s(tamount ( of salt at time t. s(. ds s(tkg dt (5L/m s(t L s(t e ( t/+c C ln s(t e ( t/+ln s( kg 5. (a ds s(t (4lb/gal(gal/m (s(tlb/5gal(gal/min8 dt 5 s(t 6+9e ( t/5 concentration s(t/5. (b ds dt s 8 s(t e( t/5 conc s(t/5 t. 6. s(t amount of salt in pond, s,v(t volume of pond, v, dv dt 5 v(t 5t. ( ( ds 5kg dt s(tkg (5m /d m ( 5tm (m /d 6.5 s(t 5t Yes, after days, there is no water in the pond which will result in no salt in the pond.

32 6 Section. ( ( 7. C(t amount of CO, C (.5(.m, dc dt m Cm min (.4 m (m /min.8.c This gives us that the concentration will be half of what it started (i.e. there will be.5m of CO in.45 minutes. 8. da dt ka, da A kdt A(t ekt+c A e kt. A( A /A e k e k k ln(/. A(t.A A e.t t ln(.. days 9. A(.56 e k k.5798 t.95 years. p amount of decayed tin, Moriginal amount of tin. dp k(m p(p wherem p is the amount of tin left dt dp kdt p(m p ( p M ln kt + C M p M p(t M +e Mkt+C where C would be determined by the original amount of decayed tin in the organ.. Let (, y be the point of tangency and c be the -intercept of the tangent line. Then c y a c a y. dy d y c y a y y y a dy y a d y ± a Because of symmetry, either graph will give the desired result.. Let (, y be the point of tangency and c be the -intercept of the tangent line. Then c + y b. dy d y c y b y b ln y y This is an implicitly defined function.

33 .4. EXACT EQUATIONS 7. Let A(t be the amount of snow on the ground. Then A(t kt since it is falling at a constant rate and there was none when it started. Let P (t be the distance plowed. Then dp dt m A(t m kt. Thus dp m kt dt P m k ln t + C, P ( C P (t m k ln t +. P ( m k ln + m k.44. P (t.44 lnt +. Set P (t togett 4which says it started snowing at about 8am..4 Eact Equations. We have y +(+ y dy d. UsingM y and N + y,wehave M y 6y, N 6y so the equation is eact. We need to solve f f M and y N: f f d y d y + g(y This f y + g(y mustalsosatisfy f y N. + y y ( y + g(y y + g (y g (y g(y y Thus the solution is given by f C: y + y C. We have (y ++( +4y dy,y(. Use M y +andn +4y. Then M y N so the equation is eact. We set f f M and y N and solve. f f y dy ( +4y dy y +y + h( This f must also satisfy f M: y + ( y +y + h( y + h ( h ( h( The solution is given by Initial conditions yield C,so y +y + C y +y +

34 8 Section.4. We have (y sec +sectan + (tan +y dy withy(. Setting M (ysec + sec tan andn tan +y leads to M y sec N so the ODE is eact. Then, F (y sec +sectan d F y tan +sec + g(y tan +y f y tan + g (y y g (y g(y y The solution is y tan +sec + y C. With initial conditions, ( + + C C, so y tan +sec + y 4. We have (y sin cos + y sin +(sin y cos dy with y(. Let M y sin cos + y sin and N sin y cos. Then M y sin cos +ysin N sin cos y( sin so the equation is eact. We set f Then f f M and y N and solve. f y dy (sin y cos dy y sin y cos + h( y sin cos + y sin (f y sin cos + y sin + h ( h ( h( C The solution is given by y sin y cos C Initial conditions give us sin cos, so C 9 and y sin y cos 9 5. We have y +( y dy. Setting M y and N y, Then M y N f y f(, y y + g(y f y + g (y y g (y y g(y y

35 Section.4 9 Thus the solution satisfies y y C 6. We have ( 9y +(4y 6 ydy. UsingM ( 9y and N (4y 6 y gives M y 8 y N Then f 9 y f(, y y + g(y f y 6 y + g (y 4y 6 y g(y y 4 Thus the solution satisfies y + y 4 C With initial conditions y(, ( ( + 4 C gives C, so y + y 4 7. We have e y (y + e 4 dy withy(. Using M e y and N y e y we have M y e y N We need to solve f Md e y d e y + g(y Substituting into f y N, y (e y + g(y e y + g (y y e y g (y y g(y y The solution is given by e y + y C. Now apply initial conditions: e ( C, so C 9 e. The solution is then e y y e 9 8. We have ( + y sin +( y cos dy. Then so the equation is not eact. y [ + y sin y sin [ y cos 4y sin

36 Section.4 ( 9. We have ( ln y+ y y dy. Then y [ + ln y y [ y y y so the equation is eact. f + ln y f(, y + ln y + φ(y f y y + φ (y y y φ(y y + C Then f(, y + ln y y + C. (+ y ( d + y dy M y, N F the equation is eact. Thus + y F y + g(y. F y + g (y y g (y y, g(y y /+C F (, y y + y + C (. We have sin y + d + ( +cosy dy. Then cos y [ y sin y + cot[ycsc[y [ ( +cosy cos y cos y cos y We find cos + cos(y cos y cos cos y cos y So so it is eact. Then N cos y (cos cos y sin cot y csc y y f sin y f(, y + + φ(y sin y f y cot y csc y + φ (y cos y +cosy cos y cos y sin y + cos y siny cot y csc y cot y csc y

37 Section.4 So and φ (y cot y csc y φ(y csc(y f(, y csc y + + csc(y+c + C. Solve a a y a d + (( a a y a dy. (i As a separable equation, (ii As an eact equation, a a y a d (a a y a dy a a (a y a a d y a dy a (a d dy y a ln + C (a ln(y y (a C a y [aa y a a( a a y a y [( aa y a a( a a y a f aa y a f(, y a y ( a + φ(y f y ( aa y a + φ (y ( a a y a φ (y C f(, y a y ( a + C. Determine A R such that the equation is eact. Then solve the resulting equation. (a ( +y d +(A +4y dy. Then so A anda.then y [ +y [A +4y A f +y f(, y + y + φ(y f y + φ (y +4y φ(y y + C So f(, y + y +y + C

38 Section.4 (b ( Ay + y ( d + dy. Wehave [ Ay y + y [ A + + so A. Then Therefore f y y f(, y y + y + φ(y f y + + φ (y φ(y C f(, y y y + C 4. Assume M y N F. We want to find F (, y such that M, F N. As in the proof y of Thm..4., proceed replacing the argument of F M(, y withonefor F N(, y and continuing in the same manner. y 5. Determine the most general function N(, y sothat is eact. For the equation to be eact, ( + y d + N(, y dy so y [ + y y N N(, y y d y + φ(y 6. Determine the most general function M(, y such that M(, y d +(ye + y e dy is eact. We have So M y [ye + y e ye +y e M(, y ye +y e dy y e + y e + φ( 7. Show that (A + By d +(C + Dy dy is eact if B C. To prove this, assume that B C. Then [A + By y B [C + Dy C

39 .5. LINEAR EQUATIONS Then [A + By [C + Dy y which by Theorem.8. implies that the equation is eact. Now assume that the equation is eact. Then by Theorem.8. we know that B [A + By [C + Dy C y or that B C. 8. Show that the homogeneous equation (A + By + Cy d +(D + Ey + Fy dy is eact if and only if B D and E C. To prove this, assume that B D and E C. Then y [A + By + Cy B +Cy D + Ey [D + Ey + Fy Therefore, by Theorem.8., the equation is eact. Now assume that the equation is eact. Then by Theorem.8., B +Cy y [A + By + Cy [D + Ey + Fy D + Ey which implies that B D and C E..5 Linear Equations. y + y : Linear equation with a(, b(. Let A( d ln. Then e A( and e A(. The solution is given by ( y( [ d + C + C if < ( + C if Then y( + C for all.. y + y. Linear with a( +, b(.then A( + d ln + ln( + because + is always positive. Substituting u +, du d leads to e A( e ln(+ + ; e A( e ln(+ +

40 4 Section.5 Then b(e A( d ( ( + d + d arctan The solution is therefore. ( +y 4 +y leads to Using P where + y (+ ( arctan +(+ +C y y and Q + gives d ln + + e p( e p( e ln + + e ln d sgn( + sgn( + The solution is y + ( sgn( ++C or { if +< if + y ( + ( + C 4. We have y + y tan sec with y(π. Then so y sec tan + C. N( sec d d [y sec sec 5. We have dy So y sin + C cos sinπ + C cos π C C y sin cos ( + y d. Then Let u du/ d. Then dy d y Q( N( e (/( d N( e (/ (/u du e ln (/

41 Section.5 5 So [ d y d Let u. Then du/ d and d u du y u / du +C so y +C and y ( + C 6. y y 4e and y( 4. Let P (, Q( 4e.Then d e p( e ; e p( d e 4e e d 4 d 4 The solution is y e (4 + C With initial conditions, 4 e (4( + C C 4,thus y 4e ( + 7. y + y, P (, Q(, μ( e / e / d e / + C. ( Thus the general solution is y e / e / + C 8. P (, Q( e,μ( e ln e d e e. Thus the general solution is y e ln (e e + C (e e + C 9. P (,Q(, μ( e e d e + 4 e + C. Thus the general solution is ( e y e + 4 e + C. We have dy d + y cos ( π with y 4 π and >. This time Q( which implies that d [y cos( y sin(+c d So with y( π 4 π,wehavethat π 4 ( π π sin + C +C so C and y( sin( + so N(,

42 6 Section.5. P ( Q( μ( e Q(μ( d e + C ( y e e + C. P ( Q( μ( e Q(μ( d ( +e y + C. P ( Q( cos μ( e Q(μ( d e (cos +sin+c ( e y e (cos +sin+c 4. P ( Q( e μ( e Q(μ( d e + C ( e y e + C

43 Section y +y withy(. Then we have A( d e A( e, e A( e 4 b(e A( e d y(te A(t b(te At 6. We have ( + y dy yd gives + y y d dy or d dy y y Thus a(y y, b(y y, A(y y dy ln y. Then Then y[y+cy and e A(y e ln y y, e A(y y ( b(ye A(y dy y dy dy y y y + Cy 7. We have (e y y or(e y dy d. Soey d dy we have N(y e y. so the solution is d dy [ey e y and e y e y + C e y + Ce y 8. We have (sin y + cot yy. Rewriting,wehave (sin y + cot y d dy d cot y siny dy With Q( cot y we have N(y e ln(sin csc y, so d sin y [ csc y dy sin y d sinycos y [ csc y dy sin y csc y cosydy 9. (a y,y, y + P (y + csc y siny + C (y sin y + C sin y and d dy + ey.withq(y

44 8 Section.5 (b y y is a solution. y ky, y ky. Then ky + P (ky k(y + P (y k( (c y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y +(Sincey and y are solutions. (a y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y +r( (Since y and y are solutions r( (b y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y r(+q( (Since y and y are solutions (c Solution to ( y +y e is y e (e + C andy +y cos is e y e ( cos +sin+c. 5 ( Thus y e e + e ( cos +sin+c is a solution to the original equation. 5. (a y P (y dy P ( d y ln y P ( d y c ±e P ( d (b y A(y c, y A (y c + A(y c. Then Q( y + P (y A (y c + A(y c + P (A(y c A (y c + A((y c + P (y c A (y c (c A (e P ( d Q( A ( Q(e P ( d A( Q(e P ( d d (d y p y c A(, ( y y c + y p y c + y c A( y c ( + A( e P ( d Q(e P ( d d. Let y be the amount of pollutant at time t. Then ( y y ( 5 + t 4 y 5 + t Then y + y 4 is linear with solution 5 + t ( y(t 4(t (t C. C 4(5 6. y(t 4(t + 5 4(56,y( 87 (t Concentration g/gal

45 Section.5 9. (a dn dt rn + ra dn dt rn ra N(t a + Cert. N( A C N(t Ae rt A (b r ln. So,withA,N(t e rt t. N(4 5,, 645 N(6 6, 58, 4, 5 d 7. dt + a(t f(t, P(t a(t, μ(t e a(t dt ( (t e a(t dt e a(t dt f(t dt + C. ( ( lim (t lim e a(t dt e a(t dt f(t dt + C sincea(t >, e a(t dt t t ( 9. (a See section.5.. μ( ep ( (y d which gives an eact y DE and F (, y y + y + C ( M (b N y N ( (. So μ( which gives an eact De and F (, y ln y + C. M and N change roles, but the argument is eactly the same as (. M. y y, N ( M N y N M y +, only in so μ( N N + (y which a function only in so μ( e y ( M y N which a function + M y +y, N y ( N M M y y which a function only in y so μ(y y M y y +, M y, N N y +Which does not yield anything of a function in or y ( M N y N which a function only in so μ( ( M y N which a function only in so μ( e ( M y N which a function only in so μ( cos y ( M N y N 4 ( which a function only in + M y, N e N M y y +, N y N M y cos y, N so μ( ( + 4. n,v y v v which is linear and gives solution v ++Ce y ++Ce

46 4 Section.5 4. y y 4 cos + y tan, so Let v y.then So dy d +(y tan(y y4 cos dv dy y 4 [ d d 7dv d y4 dy d dv ( d +( tan(y y 4 cos dv +(tan(v cos d N e tan d e ln(/(cos sec d d [v sec cos d d [v sec + cos v sec 4 sin + C y sec 4 sin + C 44. n 4,v y v 9v which is linear and gives v Ce 9 + y Ce 9 + y Ce We have y y + y.then y y y y y y y This is a Bernoulli equation with r, so r (. Thus we need to solve u + ( u (. Take a(, b(, anda( d ln. Then e A( e ln, e A( e ln ( b(e A( d d ( ( d d < ( d d ( u + C + C y + C y ( + C / 46. y is a trivial solution, so if y y y ln y 4 + C y ±e 4 +C 4 dy y (4 d

47 Section We have ( +(y + y y. Then dy d + y y + dy d + y + y Let v y,so and that which implies that dv dy y d d dv d ( y dy d ( dv d ( y + y y + ( dv d y dv ( + d v + Q( +, N( e (/(+ d +,so [ d v d + + v + ln We have y y 4y. Then v (ln + ( + (ln + ( + y y ( +ln + dy d y 4 y ( 4 dy d + y y / (Bernoulli equation Let v y (/ y /,so dv d dy y / d.then ( dv d [y/ + 4 y y / ( dv d + v (N( [ d y d y ln + C y ln + C

48 4 Section We have y +y + 5 y e. Then dy d +y + 5 y e dy d + y ( 5 e y (Bernoulli equation dv d v y dv d ( y + y ( 5 e y y dy d dv d ( y dv d 4 y (5 e [ Now use N(,so d 4 d v [e. Then 4 v 4 e ( + C v 4 e ( + C 4 5. We have y dy (y + d. Then y ( Let v y + y,so dv d y dy Using N( e ( + C dy d dy d (y y + dy d y + y ( dy d + y y (Bernoulli equation dv d ( y we have d d + d.then ( [ v,so y y dv d + v + C y + C 5. Use the Bernoulli method to solve the logistic equation ( dn dt rn N K We have Let v N,so dv dt ( v dn dt rn r K N dn dt +( rn r K N N dn dt and dv dt ( N dn dt.then dv dt ( N +( rn r K N dv dt + rv r K

49 .6. CHAPTER : ADDITIONAL PROBLEMS 4 Using N e rt gives d dt [vert r K ert,so ve rt K ert + C v k + Ce rt N K + ce rt N(t.6 Chapter : Additional Problems. False - It is linear, but no initial condition is given. True - y makes it non-linear. False - y( f( is an eplicit solution K + Ce rt 4. The point is to get linear DE into an eact DE by multiplying by an integrating factor. So even if this were true, there would be no reason to do so. 5. False - Solutions can be defined on a restricted portion of the real line 6. True 7. True - dy f(y d 8. y C4 e 4 4 (y 4 ( + Ce 4 4 (Ce 4 y 9. y Ce + y + Ce Ce y. y C y ±(C /, y ± C, y ±(C / y. Valid when C (. y ( + C, (y ( + C ( + C y. We have yy + y. Then y dy y d ydy y d ydy y d ln y + C y e C e / y Ce /, where C ±C y ± Ce / +

50 44 Chapter Review. We have y y with y(. Rewrite the equation as y y /. Separate variables and integrate: y / dy d y / + C It is easiest to apply the initial conditions now: ( / (+C leads to C 6, so 4. We have y y y. Then ( / y y / 6 y / y ( dy d (y +y dy y d (by partial fractions +y + / dy d y ln y + ln y + C ln y y +C y e C e y ± e C e y ± e C y +C where C ±e C 5. We have e ( + d dt. Then d dt e e e d e dt Letting v e, du e, du u dt ln u t + C u e C e t e ±e C e t e ±e C e t ln ±e C e t ln Ce t where C ±e C

51 Chapter Review We have y + y y with y(.5. Then Apply initial conditions: y y y ln y ln y ln + C y y dy d y y ( y y A A( A y dy d Then we have + y + y 7. We have y y e y/. Rewriting we have y y ey/.letu y, dy d du d + u. Then du d + u u e u du d e u e u du d e u ln + C e y e / ln + C e y ln + C ( e / ln + C y ln e / 8. y y (+y ln(+ y which is Homogeneous. Let v y v + v v (+vln(+v dv ( + vln(+v d [u ln(+v du u d u e C ln( + y ec ln( + y ±ec

52 46 Chapter Review 9. We have y y cos ( ln ( y. Then ( ( y y y cos ln y y ( y (ln cos dv d + v v cos(ln(v dv d v(cos(ln(v v dv d v(cos(ln(v v(cos(ln(v dv d ( cot ln(v ln + C ( ( y cot ln ln + C (homogeneous. We have (y + y d dy.weusem(, y y + y and N(, y, so M(t, ty ty + t y t(y + y+tm(, y N(t, ty t t( tn(, y We need to solve dy d y y + dv d + v v + v dv d v dv v d v ln + C Then y ln +C y 4(ln y + C. We have dy d y + y. Then dy ( y ( y d + dv d + v v + v dv v d (homogeneous arcsin(v ln + C ( y arcsin ln + C

53 Chapter Review 47. dy d 4y + y 4(y/ +(y/ Homogeneous (y v v + v 4v +v +v v +v dv d ln ( v ( v ln + C [ ( (y/ ( (y/ ±e C. We have (y/+(y +ln dy. We find ( y y [y +ln so the equation is eact. Then, f 4 f(, y y ln + φ(y f y ln + φ (y y +ln φ(y 4 y4 + C So f(, y y ln + 4 y4 + C ( + y ( 5y dy 4. We have y + y. Then d [ + y y y 6 y [ 5y y 6 y

54 48 Chapter Review so the equation is eact. Solving, we get f y + f(, y y + + φ(y f y y φ (y 5 y φ(y 5 y + C f(, y y y + C + φ (y y 5 y 5. We have ( + y d ydy. Then [ + y y [ y y so the equation is eact. Solving, y y φ (y leadstoφ(y C, so f + y f(, y + yd f(, y + ( y / + φ(y f y y + φ (y y f(, y + ( y / + C 6. y + y y which is Bernoulli n, v y, dv dy y d d.thenwehavedv d + v which is linear with solution v y + C y + C 7. M y y, N y N ( M y N which gives μ( and F (, y y y + C y + (y + which is only a function of

55 Chapter Review dy d y y (Homog (y v v + v v v dv v d v + C y + C 9. Not linear, eact, homogeneous, Bernoulli, seperable. Not linear, eact, homogeneous, Bernoulli, seperable. y + y Linear y C [ e. Linear y e (cos +sin+c [ 5. Linear y e 8 e ( + C 4. Bernoulli n 4,v y,v v (linear v y + C 5. Bernoulli n,v [ y,v +v (linear e v y e ( + C 6. Bernoulli n,v ( y,v v 4 (linear v y e / 4e / + C 7. T (t (T T s e kt + T s 95e kt +5, k.55 soup will be edible in about 4 minutes. 8. T (t 5e kt +7,k.5 coffee is drinkable in about 5 minutes. 9. Let y(t amount of salt at time t, y( 6 dy 6+t dt 5 + t 4 t 5 + t y 9 ln t +5 t + C y( 6 C 46.8 The tank will fill in 5 minutes y(5.4lbs of salt

56 5 Chapter Review 4. y(t lbs of sugar at time t, y( 5 dy 5 + pt p dt t p 5 pt t dy p 5 pt dt t y (5 pln t p ln t pt + C C 5 5 ln We want y(95.5 p.74lbs/min 4. y(t amount of nitric acid, y( ( dy +.t d. 8 t 56 t t y(t 88 ln t +6t + 88 ln The solution reaches % when y(t.t which is when t 8 minutes. Since the tank empties in minutes, this will never happen. 4. If (, y is the point of tangency, then ( dy, is the point of intersection and d y y. Then dy y d y is such a curve.

57 Chapter Geometrical and Numerical Methods for First-Order Equations. Direction Fields the Geometry of Differential Equations. Looking at the point (,, y 9, which matches graph b.. Looking at the point (,, y 8, which matches graph c.. Looking at the point (,, y 9, which matches graph a. 4. Looking at the point (,, y 8, which matches graph d. 5. Graph B 6. Graph C 7. Graph D 8. Graph A 9. y y 4 #9 # y cosy - - 5

58 5 Section.. y siny y e y y

59 Section y cos y sin y e

60 54 Section. 7. y y y + y y ( +(y

61 Section. 55. y e. y y y y

62 56 Section.. y y(y y( + 5. y (y + y Eistence and Uniqueness for First-Order Equations. (a y y, y(, f y, f y eists and is unique on some interval. y. The theorem guarantees that a solution

63 Section. 57 (b y y, y(, f y, f y y.thetheoremdoesnot guarantee that a solution eists or is unique on some interval. (c y y +, y(, f y +, f. Thetheoremdoesnot guarantee that y a solution eists or is unique on some interval.. (a f(, y (y + / f, y, which is discontinuous when y, so a (y + / solution eists and is unique everywhere ecept possibly along y. (b f(, y ( y /5, f y, which is discontinuous when y, so solutions 5( y 4/5 eist and are unique everywhere ecept possibly along y. Alternatively, f(, y ( y, f 5 y, so solutions eist and are unique everywhere. 5 (c f(, y y, f y y, which are both discontinuous when y, so solutions eist and are unique everywhere ecept possibly along y. (d f(, y ( + y f, y, which are both discontinuous when y, so ( + y solutions eist and are unique everywhere ecept possibly along y.. (a f y 4 y( / which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. Actual solution: y 6. This solution crosses y when. 7 (b f y (/ which, along with f(, y, are continuous everywhere. Hence solution eists and is unique. Actual solution: y. (c f y y( 5/ which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. ( (/5 5 Actual solution: y (6/5 This solution crosses y when. 6 (d f y y( / which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. Actual solution: y 6 which crosses y when f(, y y is continuous for y and f y is continuous for y>. Hence, by the y theorem, a solution eists and is unique for y(. Actual solution is given by: y ( f(, y 5(y /5 and y(. y y is discontinuous when y, so solutions (y /5 eist and are unique everywhere ecept possibly along y. Solving for the initial value, y 5(y /5 (y /5 dy 5 d 5 (y /5 5 + C

64 58 Section Applying initial conditions, 5 ( /5 5(+C C (y /5 y ±( 5/ Solutions passing through (, are NOT unique. y ± ( 5/ f y (/ ( y which is continuous everywhere (as is f, therefore, unique solution will eist everywhere. f y (y ( / which is continuous everywhere ecept y, so solutions eist and are unique everywhere ecept possibly along y. Actual solution: ± (/ f y y which is continuous everywhere ecept y, so solutions eist and are unique everywhere ecept possibly along y. ( / Actual solution: + 9. f(, y and f are not continuous at y, so solutions eist and are unique everywhere y ecept possibly along y. Actual solution: y + cos which IS unique.. f y f y lim h f f DNE at y ;ify>, then y andify<, then y. Hence, f(, y + h f(, y DNE. Therefore, the solutions will eist and be unique ecept h possibly at y. If y, y e C e which will never be. If y<, y e C e which will never be. Thus, the only solution to this DE is y which IS unique.

65 .. FIRST-ORDER AUTONOMOUS EQUATIONS GEOMETRICAL INSIGHT 59. First-Order Autonomous Equations Geometrical Insight. y y +,y + End behavior: +y (i y y y - y Root y Multiplicity (ii By the phase line diagram, y (iii y>, y as y<, y as (iv y-plane is an unstable equilibrium point

66 6 Section.. y y +4y +4,y +4y +4,(y + Root y Multiplicity End behavior: y (i y y y y (ii By the phase line diagram, y is a half-stable equilibrium point. (iii y>, y as y<, y as (iv y-plane

67 Section. 6. 6( ( + (i y y y - - y (ii is a stable equilibrium is an unstable equilibrium (iii If >, then (t as t. If < <, then (t ast. If <, then (t ast. (iv y-plane

68 6 Section. 4. ( +( Equilibrium Multiplicity Highest power and coefficient: (+(+ + (i y y y y (ii, unstable; stable (iii For (,, as t For (,, ast For (,, as t (iv y-plane

69 Section ( ( 9 ( ( +( Highest power coefficient: ( ( + 5 (i y y y y (ii, unstable, stable (iii For (,, as t For (,, ast For (,, as t (iv y-plane Equilibrium Multiplicity

70 64 Section. 6. y siny, π <y<π sin y, π <y<π End behavior: trigonometric sine wave (i y y y Roots y π y y π Multiplicity y (ii By the phase line diagram, y π is a stable equilibrium point. y is an unstable equilibrium point. y π is a stable equilibrium point. (iii For y>π, y π as For <y<π, y π as For π <y<, y π as For y< π, y π as (iv y-plane

71 Section y e y / e, e y / e. When y y 4 y 4 (i y y y y (ii By the phase line diagram, y is stable y is unstable (iii For y>, y For <y<, y For y<, y (iv y-plane

72 66 Section. 8. y y, y Root y Multiplicity End behavior: y (i y y y y (ii By the phase line diagram, y is a half-stable equilibrium point. (iii For y>, y as. For y<, y as. (iv y-plane

73 Section ( Highest power and coefficient: ( (i y y y y - Equilibrium Multiplicity (ii is a half-stable point; isastablepoint. (iii For (,, ast. For (,, ast (iv y-plane

74 68 Section.. ( ( ( + Equilibrium Multiplicity Highest power and coefficient: ( ( (+ + 6 (i y y y y - (ii isstable; is half-stable; is unstable. (iii If >, then as t. If < <, then ast. If < <, then ast. If <, then ast. (iv y-plane

75 Section. 69. y cosy +, π <y<π. cosy +,cosy. End behavior: cosine wave (i y y y Roots y π y π Multiplicity y (ii By the phase line diagram, y π is a half-stable equilibrium point. y π is a half-stable equilibrium point. (iii For y>π, y as. For π <y<π, y π as. For y< π, y π as. (iv y-plane

76 7 Section.. ( + (5 + 7 ( ( 4 Equilibrium 5 Multiplicity 7 4 Highest power and coefficient: (+(+ 7 ( ( 4 6 (i y y y y (ii 5, are unstable points;, are stable points; is a half-stable point. (iii If < 5, then as t. If 5 < <, then ast. If < <, then ast. If < <, then ast. If < <, then ast. If >, then ast. (iv y-plane

77 Section. 7. v g k m v. Equilibrium satisfies g (k/mv,sov gm k v g (i v v k m v (ii v gm is a stable equilibrium point. k (iii For v [,, v gm k as t (iv Figures will vary. With g,m.5, k as in eample in. then v g k m v. Equilibrium satisfies g (k/mv,sov gm/k yields v ± gm/k. Note that this is a free-fall problem where v> in the downward direction. We thus ignore v<. (i Graphs will vary gm (ii is a stable equilibrium point k (iii For v [,, v + gm/k as t (iv Graphs will vary 5. ( ( +, ( ( + End behavior: ( ( 5 Roots Multiplicity

78 7 Section (i (ii By the phase line diagram, is a stable equilibrium point; is a half-stable equilibrium point; is a half-stable equilibrium point. (iii For >, ast. For <<, ast. For <<, ast. For <, ast. (iv t-plane

79 Section ( ( + 4, ( ( +4 End behavior: ( ( 5 (i Roots ±i Multiplicity ignore (ii By the phase line diagram, is a stable equilibrium point. (iii For >, ast. For <, ast. (iv t-plane

80 74 Section. 7. y ( y (y +4 Root Multiplicity Highest power and coefficient: ( y (y y 7 (i (ii By the phase line diagram, y is a stable equilibrium point. (iii If y <, then y as. If y >, then y as. (iv t-plane

81 Section y y (4 y(9 y Roots 4 Multiplicity Highest power and coefficient: y ( y( y y 5 (i (ii y, 4arestable;y is half-stable; y is unstable. (iii If y <, y as. If <y <, y as. If <<, y as. If <<4, y 4as. If >4, y 4as. (iv t-plane

82 76 Section ( (, 5 ( ( End behavior: 5 ( ( 9 (i. Roots two normal Multiplicity 5 ignore (ii By the phase line diagram, is a half-stable equilibrium point; is an unstable equilibrium point. (iii For >, as t. For <<, ast. For <, as t. (iv t-plane

83 Section. 77. ( ( + (, ( ( + ( End behavior: (( ( 9 (i Roots two non-real ± Multiplicity ignore (ii By the phase line diagram, is an unstable equilibrium point; is a half-stable equilibrium point; is a stable equilibrium point; is an unstable equilibrium point. (iii If >, as t. If <<, ast. If <<, ast. If <<, ast. If <, as t. (iv t-plane

84 78 Section.. ( (, ( ( End behavior: ( ( 7 (i Roots ± Multiplicity (ii By the phase line diagram, is a stable equilibrium point; equilibrium point; is a stable equilibrium point. (iii If >, ast. If <<, ast. If <<, ast. If <, ast. (iv t-plane is an unstable

85 Section. 79. ( +5( 4 ( +5 End behavior: 8 (i 5 5 Roots 4 5 Multiplicity (ii By the phase line diagram, is a stable equilibrium point; equilibrium point; is a stable equilibrium point. (iii If >, ast. If <<, ast. If <<, ast. If <, ast. (iv t-plane is an unstable

86 8 Section.. y ±, f (y y, f ( Unstablef ( Stable 4. y ±, f (y y, f ( Unstablef ( Stable 5. y, ±π, f (y cosy, f ( Unstablef (±π Stable 6. y, f (y y,f ( Unstable 7. y,f (y y,f ( Inconclusive. However, from the phase line diagram, y is stable. 8. If we Taylor epand the function about y and keep the lowest order non-zero term, we see that we have y f ( (y y as the approimate solution near the equilibrium point. Phase line analysis then shows the equilibrium point is stable. 9. (a y ry y y y.4 y. sqrt r sqrt r y y sqrt r sqrt r y Figure.: Phase line for y ry y : r<, r,r> Figure.: Pitchfork bifurcation for y ry y

87 Section. 8 (b y ry + y y y.4 y. sqrt r sqrt r y y sqrt r sqrt r y Figure.: Phaseline for y ry + y : r<, r, r> Figure.4: Pitchfork bifurcation for y ry + y

88 8 Section.4.4 Population Modeling: An Application of Autonomous Equations. (a is half-stable, is stable. For logistic equation, is unstable and k is stable. Yes, the are different. (b For small, logistic model growth is larger.. -Stable, - Unstable, 6-Stable. -Stable, - Unstable, -Stable 4. (a - Half-stable, - Unstable, 4-Stable (b For small, Allee effect model has larger growth rate. 5. (a Eponential growth - Unlimited growth rate. No limitations placed on organisms. (b Logistic model - Growth rate dependent on factors such as population amount or food availability. (c Allee effect - Growth rate dependent on factors such as population amount or food availability as well as a sufficient population to sustain itself. 6. (a - Unstable, a -Stable, 5 - Unstable (b For > 5, bacteria grows uninhibited. (c The parameter a could represent the strength of the immune system or ability of the body to fight off the given bacteria. A healthy person would likely have an a-value that is closer to than to 5 because the lower value of a represents a lower value of the bacteria (that is stable. 7. (a For a>, - Unstable 5 a -Stable 5+ a - Unstable -Stable (b For a, - Unstable 5 - Half-stable -Stable (c For a<, - Unstable -Stable (d Saddle-node (e Bacteria grows unchecked to a level of. No, the bacteria population eventually reaches and levels off at, which above the fatal level. (f The parameter a could again represent the strength of the immune system or ability of the body to fight off the given bacteria. 8. ( ( 6( 9. ( ( ( ( 8 or ( ( ( ( 8. (a ( ( 4

89 .5. NUMERICAL APPROXIMATION WITH THE EULER METHOD 8 (b - Half-stable, - Half-stable, 4 - Unstable. (a r( a( r, a > (b i. <a<, - Unstable, a -Stable, - Unstable ii. a, - Unstable, - Half-stable iii. a>, - Unstable, -Stable, a - Unstable (c When a<, the bacteria goes to the stable level a if it starts with a level less than and grows without bound otherwise. When a, the bacteria goes to the half-stable level a if it starts with a level less than and grows without bound otherwise. When a>, the bacteria goes to the stable level of if it starts with a level less than a and grows without bound otherwise..5 Numerical Approimation with the Euler Method. dy/d, y( ; eplicit solution: y 4 (4 + Euler Eplicit i y i y( i dy/d 4 y, y( ; eplicit solution: y e (5 /5 Euler Eplicit i y i y( i dy d y cos, h., y( ; eplicit solution y +sin. +(.(. +(.(. +(.(. 4 +(.(4.4 y y +(.( ( cos(.9 y.9+(.( (.9 cos(..894 y (.( (.894 cos(..756 y (.( (.756 cos(..699

90 84 Section.5 Eplicit: y( y(. y(. y(. y(.4 +sin +sin( sin( sin( sin( Euler Eplicit i y i y( i y sin, y(π,h.. y π π +. π +. π +. 4 π +.4 y ( sin(π y +(. ( sin(π +. y +( ( sin(π +. y (. ( ( sin(π +. y (. ( Eplicit: y ( 4cos /4 y(π y(π +. ( 4cos(π +. / y(π +. ( 4cos(π +. / y(π +. ( 4cos(π +. / y(π +.4 ( 4cos(π +.4 /4.996

91 Section.5 85 Euler Eplicit i y i y( i π π π π π dy/d ye, y( ; eplicit solution: y ep( e Euler Eplicit i y i y( i dy/d y, y( ; eplicit solution: y Euler Eplicit i y i y( i dy/d y +cos, y( ; eplicit solution: y (sin cos + e Euler Eplicit i y i y( i dy/d y +sin, y( ; eplicit solution: y (cos +sin 5e

92 86 Section.5 Euler Eplicit i y i y( i dy/d e y, y( ; eplicit solution: y ln( + e Euler Eplicit i y i y( i dy/d + y, y( ; eplicit solution: y +e Euler Eplicit i y i y( i dy/d ( +(y +, Euler Eplicit y( ; eplicit solution: y tan( + i y i y( i

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Review Exercises for Chapter 7

Review Exercises for Chapter 7 8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6

Διαβάστε περισσότερα

F-TF Sum and Difference angle

F-TF Sum and Difference angle F-TF Sum and Difference angle formulas Alignments to Content Standards: F-TF.C.9 Task In this task, you will show how all of the sum and difference angle formulas can be derived from a single formula when

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Math 5440 Problem Set 4 Solutions

Math 5440 Problem Set 4 Solutions Math 544 Math 544 Problem Set 4 Solutions Aaron Fogelson Fall, 5 : (Logan,.8 # 4) Find all radial solutions of the two-dimensional Laplace s equation. That is, find all solutions of the form u(r) where

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα