On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On mean-field stochastic maximum principle for near-optimal controls for Poisson jump diffusion with applications"

Transcript

1 Int. J. Dynam. Control 04) :6 84 DOI 0.007/ y On mean-field tochatic maximum principle for near-optimal control for Poion jump diffuion with application Mokhtar Hafayed Abdelmadjid Abba Syed Abba Received: 4 September 03 / Revied: 0 November 03 / Accepted: November 03 / Publihed online: 3 December 03 Springer-Verlag Berlin Heidelberg 03 Abtract In thi paper, we tudy mean-field type tochatic control problem for ytem decribed by mean-field tochatic differential equation with jump procee, in which the coefficient contain not only the tate proce but alo it marginal ditribution. Moreover, the cot functional i alo of mean-field type. We derive neceary a well a ufficient condition of near-optimality for our model, uing keland variational principle, pike variation method and ome etimate of the tate and adjoint procee. Under certain concavity condition with non-negative derivative, we prove that the near-maximum condition on the Hamiltonian function in integral form i a ufficient condition for nearoptimality. Our reult differ from the claical one in the ene that here the adjoint equation ha a mean-field type, while the econd-order adjoint equation remain the ame a in the claical cae. A an application, our reult are applied to a mean-variance portfolio election where explicit expreion of the near-optimal portfolio election trategy i obtained in the tate feedback form involving both tate proce and it marginal ditribution, via the olution of Riccati ordinary differential equation. M. Hafayed Laboratory of Applied Mathematic, Bikra Univerity, Po Box 45, Bikra, Algeria hafayedmokhtar@yahoo.com A. Abba B) Departement of Mathematic, Univerity of Bikra, Bikra, Algeria abdelmadjidabba@yahoo.com S. Abba School of Baic Science, Indian Intitute of Technology Mandi, Mandi 7500, HP, India abba.iitk@gmail.com Keyword Stochatic control Controlled mean-field jump diffuion procee Near-optimization Neceary and ufficient condition keland principle McKean Vlaov ytem Time-inconitent olution Feedback control Mathematic Subject Claification Introduction 60H0 930 We conider a tochatic control problem for ytem driven by a nonlinear controlled jump diffuion procee of meanfield type, which i alo called McKean Vlaov equation, where the coefficient depend on the tate of the olution proce a well a of it expected value. More preciely, the ytem under conideration evolve according to the meanfield jump diffuion proce dx u t) = f t, x u t), x u t)), ut))dt σt, x u t), x u t)), ut))dwt) g t, x u t ), ut), θ ) ) Ndθ,dt), x u ) = ζ, for ome function f,σ,g. Thi mean-field jump diffuion proce i obtained a the mean-quare limit, when n of a ytem of interacting particle of the form dx j,u n t) = f t, xn j,u t), n n i= σt, xn j,u t), n xn i,u t), ut))dt n i= xn i,u t), ut))dw j t) gt, x j,u n t ), ut), θ)n dθ,dt), 3

2 On mean-field tochatic maximum principle 63 where W j ) : j ) i a collection of independent Brownian motion. The expected cot to be near-minimized over the cla of admiible control i alo of mean-field type, which ha the form J,ζ u )) = h x u T ), x u T ) )) lt, x u t), x u t) ), ut))dt. ) It worth mentioning that ince the cot functional J,ζ i poibly a nonlinear function of the expected value tand in contrat to the tandard formulation of a control problem. Thi lead to a o called time-inconitent control problem where the Bellman dynamic programming doe not hold. The reaon for thi i that one cannot apply the law of iterated expectation on the cot functional. The value function i defined a V,ζ) = inf J,ζ u )), u ) U where the initial time and the initial tate ζ of the ytem are fixed. It i well-known that near-optimization i a enible and important a optimization for both theory and application. Since the recent work by Zhou ], the concept of nearoptimal control wa introduced for a cla of tochatic control problem. Variou kind of near-optimal tochatic control problem have been invetigated in 8]. In Hafayed et al. ], the author extended Zhou maximum principle of near-optimality ] to ingular tochatic control. The nearoptimal tochatic control problem for ytem governed by diffuion with jump procee, with application to finance ha been invetigated by Hafayed et al. 3]. The neceary and ufficient condition of near-optimal mean-field ingular tochatic control have been tudied in Hafayed and Abba 4]. Near-optimality neceary and ufficient condition for ingular control in jump diffuion procee ha been invetigated in Hafayed and Abba 5]. The neceary and ufficient condition for near-optimality for forward-backward tochatic differential equation with ome application have been tudied in Huang et al. 6]. The near-optimal control problem for recurive tochatic problem ha been tudied in Huietal.7]. The tochatic optimal control problem for jump procee ha been invetigated by many author, ee for intance 9 7]. The general cae, where the control domain i not necearily convex and the diffuion coefficient depend explicitly on the control variable, wa derived via pike variation method by Tang and Li 9]. Thee condition are decribed in term of two adjoint procee, which are linear claical backward SD. A good account and an extenive lit of reference on tochatic optimal control for jump procee can be founded in 3,8]. Mathematical mean-field problem play an important role in different field of, economic, finance, phyical, chemitry and tochatic game theory. Many author made contribution on mean-field ytem and application, ee for intance 4,0,7,9 5]. The exitence and uniquene reult of mean-field backward tochatic differential equation MF-BSD) a limit approach have been invetigated in Buckdanh et al. 9]. The maximum principle for SD of mean-field type wa introduced in 0]. Under ome convexity aumption, the mean-field type ufficient condition for optimality have been etablihed by Shi ]. In Mayer-Brandi et al. 5] a tochatic maximum principle of optimality for ytem governed by controlled Itô-Levy proce of mean-field type wa proved by uing Malliavin calculu. Variou local maximum principle of optimality for mean-field tochatic control problem have been derived in,3]. Our main goal in thi paper i to etablih neceary a well a ufficient condition of near-optimality for mean-field jump diffuion procee, in which the coefficient depend on the tate of the olution proce a well a of it expected value. Moreover, the cot functional i alo of mean-field type. The proof of our main reult i baed on ome tability reult with repect to the control variable of the tate proce and adjoint procee, along with keland variational principle 6] and pike variation method. Thi near-optimality neceary and ufficient condition differ from the claical one in the ene that here the firt-order adjoint equation turn out to be a linear mean-field backward tochatic differential equation, while the econd-order adjoint equation remain the ame a in tochatic maximum principle for jump diffuion developed in Tang and Li 9]. The control domain under conideration i not necearily convex. It i hown that tochatic optimal control may fail to exit even in imple cae, while near-optimal control alway exit. Thi jutifie the ue of near-optimal tochatic control, which exit under minimal condition and are ufficient in mot practical cae. Moreover, ince there are many near-optimal control, it i poible to elect among them appropriate one that are eaier for analyi and implementation. Finally, for the reader convenience we give ome analyi reult ued in thi paper in the Appendix. The ret of the paper i organized a follow. Section begin with a general formulation of a Mean-field control problem with jump procee and give the notation and aumption ued throughout the paper. In Sect. 3 and 4,we derive neceary and ufficient condition for near-optimality repectively, which are our main reult. An example of thi kind of mean-field control problem i alo given in the lat ection. 3

3 64 M. Hafayed et al. Problem formulation and preliminarie Throughout thi paper, we let, F, F t ) t 0,T ], P) be a fixed filtered probability pace equipped with a P completed right continuou filtration on which a d dimenional Brownian motion W = W t)) t 0,T ] i defined. Let η be a homogeneou F t )-Poion point proce independent of W. We denote by Ñdθ,dt) the random counting meaure induced by η, defined on R, where i a fixed nonempty ubet of R k with it Borel σ -field B ). Further, let μ dθ) be the local characteritic meaure of η, i.e. μ dθ) i a σ -finite meaure on,b )) with μ ) <. We then define Ndθ,dt) = Ñdθ,dt) μ dθ) dt, where N i Poion martingale meaure on B ) B R ) with local characteritic μ dθ) dt. We aume that F t ) t 0,T ] i P-augmentation of the natural filtration F t W,N) ) t 0,T ] defined a follow F W,N) t = σ {W ) : 0 t} σ Ndθ,dr) : 0 t, B B ) G, 0 B where G denote the totality of P-null et, and σ σ denote the σ -field generated by σ σ. Baic Notation We lit ome notation that will be ued throughout thi paper.. Any element x R d will be identified to a column vector with i th component, and the norm x = d i= x i.. The calar product of any two vector x and y on R d i denoted by x, y. 3. We denote A the tranpoe of any vector or matrix A. 4. For a et B, we denote by B the indicator function of B and co B) the cloure convex hull of B and Sgn ) the ign function. 5. For a function, we denote by x rep. xx ) the gradient or Jacobian rep. the Heian) of a calar function with repect to the variable x. We denote x the Clarke generalized gradient of with repect to x. 6. We denote by L F, T ], Rn ) the Hilbert pace of F t - adapted procee x ) uch that xt) dt <. 7. For convenience, we will ue x t) = t, xt), x xt)), ut)), xx t) = t, xt), xt)), ut)). x Baic Aumption Throughout thi paper we aume the following. Aumption H) The function f :, T ] R n R n A R n,σ :, T ] R n R n A M n d R) and l :, T ] R n R n A R are meaurable in t, x, y, u) and twice continuouly differentiable in x, y), g :, T ] R n A R n m i twice continuouly differentiable in x, and there exit a contant C > 0 uch that, for ϕ = f,σ,l: ϕt, x, y, u) ϕt, x, y, u) ϕx t, x, y, u) ϕ x t, x, y, u) C x x y y ]. 3) ϕt, x, y, u) C x y ). 4) up θ g t, x, u,θ) g t, x, u,θ ) up gx t, x, u,θ) g x t, x, u,θ ) θ C x x 5) up g t, x, u,θ) C x ). 6) θ Aumption H) The function h : R n R n R i twice continuouly differentiable in x, y), and there exit a contant C > 0 uch that hx, y) hx, y )) hx x, y) h x x, y )) C x x y y ]. 7) hx, y) C x y ). 8) Under the above aumption, the SD-) ha a unique trong olution x u t) which i given by t x u t) = ζ t t f r, x u r), x u r)), ur) ) dr σ r, x u r), x u r)), ur) ) dwr) g t, x u r ), ur), θ ) N dθ,dr), and by tandard argument it i eay to how that for any q > 0, it hold that x u t) ) q < C q), up t,t ] where C q) i a contant depending only on q and the functional J,ζ i well defined. We introduce the adjoint equation a follow. The firt-order adjoint equation turn out to be a linear mean-field backward SD, while the econd-order adjoint equation remain the ame a in Tang and Li 9]. Definition. Adjoint equation for mean-field jump diffuion procee) For any u ) U and the correponding 3

4 On mean-field tochatic maximum principle 65 tate trajectory x ), we define the firt-order adjoint proce ), K ), γ )) and the econd-order adjoint proce Q ), R ), Ɣ )) a the one atifying the following equation: ) Firt-order adjoint equation: linear Backward SD of mean-field type with jump procee dt) = { fx t, xt), xt), ut)) t) ] fy t, xt), xt), ut)) t) σx t, xt), xt), ut)) K t) ] σy t, xt), xt), ut)) K t) l x t, xt), xt), ut)) l y t, xt), xt), ut)) ] g x t, xt ), ut), θ ) γ t θ)μdθ) } dt K t)dwt) γ t θ)ndt, dθ) T ) = h x xt ), xt )) h y xt ), xt )) ]. 9) ) Second-order adjoint equation: claical linear Backward SD with jump procee dqt) = { fx t, xt), xt)), ut)) Qt) Q t fx t, xt), xt), ut)) σx t, xt), xt)), ut)) Qt)σ x t, xt), xt)), ut)) σx t, xt), xt)), ut)) Rt) Rt)σ x t, xt), xt)), ut)) g x t, xt ), ut), θ ) Ɣ t θ) Qt)) g x t, xt ), ut), θ ) μdθ) Ɣ t θ)g x t, xt ), ut), θ ) g x t, xt ), ut), θ ) Ɣ t θ)μdθ) H xx t, xt), xt)), ut), t), K t), γ t θ)) } dt Rt)dWt) Ɣ t θ)ndt, dθ) QT ) = h xx xt ), xt ))), 0) A it i well known that under condition H) and H) the firt-order adjoint equation 7) admit one and only one F t -adapted olution pair ), K ), γ )) L F, T ] ; Rn ) L F, T ] ; R n d ) L F, T ] ; R n m). Thi equation reduce to the tandard one, when the coefficient do not explicitly depend on the expected value or the marginal law) of the underlying diffuion proce. Alo the econd-order adjoint equation 8) admit one and only one F t -adapted olution pair Q ), R ), Ɣ )) L F, T ] ; R n n ) L F, T ] ; R n n) d ) L F, T ] ; R n n ) m). Moreover, ince f x, f y,σ x,σ y,l x,l x and h x are bounded, by C by aumption H) and H), we have the following etimate up t) t T K t) dt γ t θ) μdθ)dt up Qt) t T Rt) dt Ɣ t θ) μdθ)dt C. ) Definition. Uual Hamiltonian and H-function). We define the uual Hamiltonian aociated with the mean-field tochatic control problem 3) 4) afollow H t, X, X), u, p, q,ϕ) = pf t, X, X), u) qσ t, X, X), u) ϕg t, xt ), ut), θ ) μdθ) l t, X, X), u), where t, X, u), T ] R n A and X i a random variable uch that X L, T ] ; R n ). Furthermore, we define the H- function correponding to a given admiible pair z ),v )) a follow H z ),v )) t, x, u) = H t, x, x), u,t), K t) Qt)σ t, zt), zt)),vt)), γ t θ) Qt) γ t θ)) g t, zt ), vt), θ )), σ t, x, x), u) Qt)σ t, x, x), u) g t, x, u,θ)qt) γ t θ)) g t, x, u,θ) μdθ). Thi how that H z.),v )) t, x, u) = H t, x, x), u,t), K t), γ t θ)) σ t, x, x), u) Qt)σ t, zt), zt)),vt)) σ t, x, x), u) Qt)σ t, x, x), u) g t, x, u,θ)qt) γ t θ)) g t, zt), vt), θ) μdθ) g t, x, u,θ)qt) γ t θ)) g t, x, u,θ) μdθ), where t), K t), γ t θ) and Qt) are determined by adjoint equation 9) and 0) correponding to z ),v )). Before concluding thi ection, let u recall the definition of near-optimal control a given in Zhou ], Definition.).)), and keland variational principle, which will be ued in the equel. 3

5 66 M. Hafayed et al. Definition.3 Near-optimal control of order ε λ.)fora given ε > 0 the admiible control u ε ) i near-optimal with repect,ζ) iff J,ζ u ε ) ) V,ζ) O ε), ) where O ) i a function of ε atifying lim ε 0 O ε) = 0. The etimator O ε) i called an error bound.. If O ε) = Cε λ for ome λ > 0 independent of the contant C then u ε ) i called near-optimal control of order ε λ.. If O ε) = Cε,the admiible control u ε ) called ε- optimal. Lemma. keland Variational Principle 6]) Let F, d F ) be a complete metric pace and f : F R be a lower emi-continuou function which i bounded from below. For a given ε > 0, uppoe that u ε F atifying f u ε ) inf u F f u) ε. Then for any δ>0, there exit u δ F uch that. f u δ) f u ε ).. d F u δ, u ε) δ. 3. f u δ) f u) ε δ d F u, u δ ), for all u F. Now, in order to apply keland principle to our Mean-field control problem, we have to endow the et of admiible control U with an appropriate metric. We define a ditance function d on the pace of admiible control U uch that U, d) become a complete metric pace. For any u ) and v ) U we et d u ), v )) = P dt {w, t), T ] : u w, t) = v w, t)}, 3) where P dt i the product meaure of P with the Lebegue meaure dt on, T ]. Moreover, it ha been hown in the book by Yong and Zhou 7], 46 47) that. U, d) i a complete metric pace. The cot function J,ζ i continuou from U into R. 3 Neceary condition of near-optimality for mean-field jump diffuion procee In thi ection, we obtain a Zhou-type neceary condition of near-optimality, where the ytem i decribed by nonlinear controlled jump diffuion procee of mean-field type. The control domain i not need to be convex. a general action pace). The proof follow the general idea a in,9]. The following theorem contitute the main contribution of thi paper. Let ε ), K ε ), γ ε )) and Q ε ), R ε ), Ɣ ε )) be the olution of adjoint equation 7) and 8) repectively, correponding to u ε ). Theorem 3. Mean-field tochatic maximum principle for any near-optimal control). For any δ 0, 3 ), and any nearoptimal control u ε ) there exit a poitive contant C = C δ, μ)) uch that for each ε>0it hold that { σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) )] Q ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ] ε t) f t, x ε t), x ε t)), u ) f t, x ε t), x ε t)), u ε t) ) ]K ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ] γ ε t)g t, x ε t), u,θ ) g t, x ε t), u ε t), θ ) μdθ) g t, x ε t), u,θ ) g t, x ε t), u ε t), θ ) ) Q ε t) γ ε t θ)) g t, x ε t), u,θ ) g t, x ε t), u ε t), θ ) )μdθ), l t, x ε t), x ε t)), u ) l t, x ε t), x ε t)), u ε t) ) } dt Cε δ. 4) Corollary 3. Under the aumption of Theorem 3. it hold that H xε ),u ε ) t, x ε t), x ε t)), u ε t))dt up H xε ),u ε )) t, x ε t), x ε t)), ut))dt Cε δ. u ) U 5) To prove Theorem 3. and Corollary 3., we need the following auxiliary reult on the tability of the tate and adjoint procee with repect to the control variable. In what follow, C repreent a generic contant, which can be different from line to line. Our firt Lemma below deal with the continuity of the tate procee under ditance d. Lemma 3. If x u t) and x v t) be the olution of the tate equation ) aociated repectively with ut) and vt). For any α 0, ) and 0 atifying α <, there exit a poitive contant C = C T,α,,μ)) uch that up t T x u t) x v t) ) Cd α u ), v )). 6) 3

6 On mean-field tochatic maximum principle 67 Proof Cae. Firt, we aume that. Uing Burkholder Davi Gundy inequality for the martingale part and Propoition 6. ee Appendix ) we can compute, for any r : up x u t) x v t) ] t r r C f t, x u t), x u t)), ut)) f x v t), x v t)), vt)) σ t, x u t), x u t) ), ut) ) σx v t), x v t) ),vt) g t, x u t), u,θ ) g t, x v t), vt), θ ) μdθ) dt I I, where r I C { f x u t), x u t)), ut) ) f x u t), x u t)), vt) ) σ x u t), x u t)), ut) ) σ x u t), x u t)), vt) ) μ) up g t, x u t), ut), θ ) θ g t, x v t), vt), θ ) } {ut) =vt)} t) dt and I C r f x u t), x u t) ),vt) f x v t), x v t) ),vt) ) r σ x u t), x u t) ),vt) ) σ x v t), x v t)), v t) ) μ) g t, x u t), vt), θ ) up θ g t, x v t), vt), θ ) ) Now arguing a in ], Lemma 3.) taking b = α > and a > uch that a b =, and applying Cauchy Schwarz inequality, we get r f t, x u t), x u t) ), ut) ) f x u,η t), x u t) ),vt) ) {ut) =vt)} t) dt r f t, x u t), x u t) ), ut) ) f t, x u t), x u t) ),vt) ) a dt r {ut) =vt)} t) dt by uing definition of d and linear growth condition on f with repect to x and y, Aumption 4) we obtain r f t, x u t), x u t) ), ut) ) f t, x u t), x u t) ),vt) ) {ut) =vt)} t) dt C r b, } a x u t) a x u t) ) a )dt d u ), v )) α Cd u ), v )) α. Similarly, the ame inequality hold if f above i replaced by σ and g then we get r σ t, x u t), x u t) ), ut) ) σ t, x u t), x u t) ),vt) ) {ut) =vt)} t) dt Cd u ), v )) α. and r g t, x u t), u,θ ) g t, x v t), vt), θ ) up θ a ) {ut) =vt)} t) dt Cd u ), v )) α. Thi implied that I Cd u ), v )) α. Since the coefficient f,σ and g are Lipchitz with repected to x and y aumption H)) we conclude that up x u t) x v t) ) t r C up t T r up x u t) x v t) dτ d u ), v )) α r τ Hence 6) follow immediately from Gronwall inequality. Cae. Now we aume 0 <. Since α > then the Cauchy Schwarz inequality yield x u t) x v t) ) x u t) x v t) ] ) up t T Cd u ), v )) α] Cd u ), v )) α. Thi complete the proof of Lemma 3.. 3

7 68 M. Hafayed et al. The next reult give the th moment continuity of the olution to adjoint equation with repect to the metric d. Thi Lemma i an extenion of Lemma 3. in Zhou ] to meanfield SD with jump procee. Lemma 3. For any α 0, ) and, ) atifying α) <, there exit a poitive contant C = C α,, μ)) uch that for any u ), v ) U, along with the correponding trajectorie x u ), x v ) and the olution u ), K u ), γ u ), Q u ), R u ), Ɣ u )) and v ), K v ), γ v ), Q v ), R v ), Ɣ v )) of the correponding adjoint equation 9) 0), it hold that u t) v t) K u t) K v t) ) dt and γ u t θ) γ v t θ) μdθ)dt Cd u ), v )) α, Q u t) Q v t) R u t) R v t) )dt 7) Ɣ u t θ) Ɣ v t θ) μdθ)dt Cd u ), v )) α. 8) Proof Note that t) = u t) v t), K t) = K u t) K v t) and γ t θ) = γt uθ) γ t v θ) atified the following Backward SD: d t) = fx t, xu t), x u t)), ut)) t) σ x t, xu t), x u t)), ut)) K t) ] g x t, xu t), u,θ) γ t θ)μdθ) Lt) dt K t)dwt) γ tθ)ndθ,dt) T ) = h x x u T ), x u T ))) h x x v T ), x v T ))) h y x u T ), x u T ))) h y x v T ), x v T ))], where the proce Lt) i given by Lt) =fx t, x u t), x u t)), ut) ) fx t, x v t), x v t)), vt) ) ] v t) σx t, x u t), x u t)), ut) ) σx t, x v t), x v t)), vt) ) ]K v t) l x t, x u t), x u t)), ut) ) 9) l x t, x v t), x v t)), vt) ) ] fy t, x u t), x u t)), ut) ) u t) fy t, x v t), x v t)), vt) ) v t)] σy t, x u t), x u t)), ut) ) K u t) σy t, x v t), x v t)), vt) ) K v t)] l y t, x u t), x u t)), ut) ) l y t, x v t), x v t)), vt) ) ] t, x u t ), u,θ ) g x gx t, x v t ), v, θ ) )γt v θ)μdθ). 0) Let φ ) be the olution of the following linear SD dφt) = f x t, x u t), x u t)), ut)) φt) t) ] Sgn t)) dt σ x t, x u t), x u t)), ut)) φt) K t) ] ) Sgn K t)) dwt) g x t, xu t ), u,θ) φt) ] γ t θ) Sgn γ t θ)) Ndθ,dt), φ) = 0, where Sgn a) Sgna ), Sgna ),...,Sgna n )) for any vector a = a, a,...,a n ). It i worth mentioning that ince f x σ x and g x are bounded and the fact that { t) Sgn t)) K t) Sgn K t)) } dt γ t θ) Sgn γ t θ)) μdθ)dt <, ) then the SD ) ha a unique trong olution. Let η uch that η =,, ) then we get up φt) ) C η t T γ t θ) η η μdθ)dt { t) η η K t) η η} dt C t) K t) γ t θ) μdθ) dt. Note that the right hand ide term of the above inequality i bounded due to 9), then we get 3

8 On mean-field tochatic maximum principle 69 up t T φt) η ) <. 3) By applying Itô formula for jump procee ee Appendix Lemma 6.) to t)φt) on, T ] and taking expectation, we get t) t) Sgn t)) K t) K t) Sgn K t)) γ t θ) γ t θ) Sgn γ t θ))μdθ) dt = Lt)φt)dt T )φt ) = Lt)φt)dt {h x x u T ), x u T )) ) h x x v T ), x v T )) ) )φt )}h y x u T ), x u T )) ) h y x v T ), x v T ) ) ] φt)). Since t) t) Sgn t)) K t) K t) Sgn K t)) γ t θ) γ t θ) Sgn γ t θ))μdθ) dt = t) K t) γ t θ) μdθ) dt, and fact that Lt)φt)dt h x x u T ), x u T )) ) h x x v T ), x v T )) )) h y x u T ), x u T )) ) h y x v T ), x v T ) ))] φt)) Lt) dt φt) η dt h x x u T ), x u T )) ) h x x v T ), x v T ) )) h y x u T ), x u T )) ) h y x v T ), x v T ) )) ] η ] φt ) η] η, then according to 3) we deduce η t) K t) γ t θ) μdθ) dt C Lt) dt { hx C x u T ), x u T ))) h x x v T ), x v T ))) h y x u T ), x u T )))) h y x v T ), x v T )))) }. 4) We proceed to etimate the right hand ide of 4). Firt noting that α < < then by uing aumption H) and Lemma 3., we obtain hx x u T ), x u T ))) h x x v T ), x v T ))) C x u T ) x v T ) Cdu ), v )) α. h y x u T ), x u T )))) h y x v T ), x v T )))) Cdu ), v )) α. 5) Now, to prove inequality 7) it ufficient to etimate Lt) dt. By repeatedly uing Cauchy Schwarz inequality and aumption H) we can etimate f x t, x u t), x u t)), ut) ) fx t, x v t), x v t)), vt) ) v t) dt { C f x t, x u t), x u t)), ut) ) fx t, x u t), x u t)), vt) ) v t) f x t, x u t), x u t)), vt) ) f x C t, x v t), x v t)), vt) ) v t) } dt { {ut) =vt)} t) v t) x u t) x v t) x u t)) x v t)) ] v t) } dt T C v t) dt du.), v.)) T C v t) T dt x u t)x v t) dt By uing the fact that du ), v )) and α <, the firt term of the right ide of the above inequality i dominated by du ), v )) α. Since α < and we have from Lemma 3. that. 3

9 70 M. Hafayed et al. x u t) x v t) dt du ), v )) α, then we have T C v t) dt du ), v )) T v t) T dt x u t) x v t) Cd u ), v )) α, we conclude that f x t, x u t), x u t)), ut) ) dt fx x v t), x v t)), vt) ) v t) dt Cd u ), v )) α. 6) A imilar argument how that σ x t, x u t), x u t)), ut) ) σ x t, x v t), x v t)), vt) ) K v t) dt Cd u ), v )) α, 7) and lx t, x u t), x u t)), ut) ) l x t, x v t), x v,ξ t)), vt) ) dt Cd u ), v )) α. 8) Now, by uing imilar argument developed above and 9) we get { f y t, x u t), x u t)), ut) ) fy x v t), x v t)), vt) ) ] v t) } dt C fy t, x u t), x u t)), ut) ) fy x v t), x v t)), vt) ) v t) ] dt C fy t, x u t), x u t)), ut) ) fy x v t), x v t)), vt) ) dt Cd u ), v )) α. 9) A imilar argument how that {σy t, x u t), x u t)), ut) ) σ y x v t), x v t)), vt) ) ] v t)} dt Cd u ), v )) α, 30) { fy t, x u t), x u t)), ut) ) f y x v t), x v t)), vt) ) ] v t)} dt Cd u ), v )) α, 3) and l y t, x u t), x u t)), ut) ) l y x v t), x v t)), vt) ) ] dt Cd u ), v )) α. 3) Next, by applying Cauchy Schwarz inequality, we get g x t, x u t), ut), θ ) gx t, x v t), vt), θ ) )γt v θ)μdθ) dt = g x t, x u t), ut), θ ) gx t, x u t ), vt), θ ) )γt v θ)μdθ) dt g x t, x u t), vt), θ ) gx t, x v t ), vt), θ ) )γt v θ)μdθ) dt I I, where I = g x t, x u t ), ut), θ ) gx t, x u t ), vt), θ ) )γt v θ)μdθ) {ut) =vt)} t)dt, and I = g x up g x t, x u t), ut), θ ) θ t, x u t), vt), θ ) ) ) t θ)μdθ) dt. γ v 3

10 On mean-field tochatic maximum principle 7 By uing the fact that g x i bounded, du ), v )) and α <, then due to ) we get I C C γt v θ) μdθ) {ut) =vt)} t)dt γ v t θ) μdθ) d u ), v )) Cd u ), v )) α. 33) Further, ince α ) that I C < we conclude from Lemma 3. and x u t) x v t) t θ)μdθ) dt γ v dt It follow from 33) and 34) that g x Cd u ), v )) α, t, x u t), ut), θ ) gx t, x v t), vt), θ ) ) 34) γ v t θ)μdθ) dt Cd u ), v )) α. 35) We conclude from 6) 35) that Lt) dt Cd u ), v )) α. 36) Finally, combining 4) 5) and 36), the proof of 7) i complete. Similarly one can prove 9). Thi complete the proof of Lemma 3.. Now, let ε ), K ε ), γ ε )) and Q ε ), R ε ), Ɣ ε )) be the olution of adjoint equation 9) 0) correponding to x ε ), x ε )), u ε )). Lemma 3.3 For any ε>0, there exit near-optimal control u ε ) uch that for any u A: { σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )) Q ε t) σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )) ε t) f t, x ε t), x ε t)), u ) f t, x ε t), x ε t)), u ε t) )) K ε t) σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )) γ ε t)g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) μdθ) g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) ) Q ε t)γ ε t θ))g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) )μdθ), l t, x ε t), x ε t)), u ) l t, x ε t), x ε t)), u ε t) )) } dt ε 3, 37) Proof By uing keland variational principle with λ = ε 3, there i an admiible control u ε ) uch that for any u ) U : d u ε ), u ε ) ) ε 3, 38) and J,ζ u ε ) ) J,ζ u ε ) ) ε 3 d u ), u ε ) ). Notice that u ε ) which i near-optimal for the initial cot J,ζ defined in ) i an optimal control for the new cot J,ζ,ε given by J,ζ,ε u )) = J,ζ u )) ε 3 d u ), u ε ) ). Therefore we have J,ζ,ε u ε ) ) J,ζ,ε u )) for any u ) U. Next, we ue the pike variation technique for u ε ) to derive the variational inequality a follow. For h > 0, we chooe a Borel ubet h, T ] uch that h = h, and we conider the control proce which i the pike variation of u ε ) : u ε, h t) = { u : t h, u ε t) : t, T ] h, where u i an arbitrary element of A be fixed. By uing the fact that J,ζ,ε u ε )) J,ζ,ε u ε, h )), and du ε, h ), u ε )) = du ε, h ), u ε )) h, we get J,ζ u ε, h )) J,ζ u ε )) ε /3 du ε ), u ε, h )) ε /3 h. 39) Arguing a in Hafayed and Abba 7], Theorem 3.), the left-hand ide of 39) i equal to 3

11 7 M. Hafayed et al. h { σ t, x ε t), x ε t)), u ) ) σt, x ε t), x ε t)), u ε t))] Q ε t) σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )] ε t) f t, x ε t), x ε t)), u ) f t, x ε t), x ε t)), u ε t) ) ] K ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ] γ ε t)g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) μdθ) g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) ] Q ε t) γ ε t θ))g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ) ]μdθ)l t, x ε t), x ε t)), u ) l t, x ε t), x ε t)), u ε t) ) } ] dt τ h), 40) where τ h) 0a h 0. Finally, replacing 40)in39), then dividing inequality 39) by h and ending h to zero, the near-maximum condition 37) follow. Proof of Theorem 3. Firt, we are about to derive an etimate for the term imilar to the left ide of inequality 34) and 35) with all the x ε ), x ε )), u ε )) etc. replaced by x ε ), x ε )), u ε )) etc,. Now, to prove 4) it remain to etimate the following difference S ε) = K ε t)σ t, x ε t), x ε t)), u ) S ε) = 3 σ t, x ε t), x ε t)), u ε t) ) ) K ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ) dt, 4) { σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ) Q ε t) σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )) σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )) Q ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) ] ε t) f t, x ε t), x ε t)), u ) f t, x ε t), x ε t)), u ε t) ) ] ε t) f t, x ε t), x ε t)), u ) f t, x ε t), x ε t)), u ε t) ) ] l t, x ε t), x ε t)), u ) l t, x ε t), x ε t)), u ε t) ) ] l t, x ε t), x ε t)), u ) l t, x ε t), x ε t)), u ε t) ) } ] dt. 4) and S 3 ε) = γ ε t θ) g t, x ε t ), u,θ ) Then we have S ε) = g t, x ε t ), u ε t) )) γ ε t θ) g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ ))] μdθ)dt, 43) K ε ] σ t) K ε t) t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) )] K ε t)σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ) ]dt K ε t)σ t, x ε t), x ε t)), u ε t) ) σ t, x ε t), x ε t)), u ε t) ) ]dt = I ε) I ε) I 3 ε). We etimate the firt term on the right-hand ide I ε) = T K ε ] t) K ε t) σ t, x ε t), x ε t)), u) σ t, x ε t), x ε t)), u ε t))]. For any δ 0, 3 ) o that α = 3δ 0, ). Now, let be a fixed real number uch that <<o that α) <. Taking q > uch that q = then by uing Hô lder inequality, Lemma 3. and note 4) we obtain I ε) K ε t) K ε t) dt σ t, x ε t), x ε t)), u ) σ t, x ε t), x ε t)), u ε t) ) q dt ] q

12 On mean-field tochatic maximum principle 73 ] C du ε ), u ε )) α I 3 ε) K ε t) dt σ t, x ε t), x ε t)), x ε t) q x ε t)) q q )dt ] C ε α. u ε t) ) σt, x ε t), x ε t)), u ε t)) 4 dt 3 = Cε δ. We etimate now the econd term I ε). Then by applying Cauchy Schwarz inequality, note 9), aumption H), and T Lemma 3., we get {u ε ) =u ε )} t) dt Cε δ I ε) K ε t) dt σ t, x ε t), x ε t)), u ) ] C du ε ), u ε )) Cε δ Cε δ, thu, we have proved that σ t, x ε t), x ε t)), u ) dt S ε) = I ε) I ε) I 3 ε) Cε δ. 44) By uing imilar argument developed above, we can prove C x ε t) x ε t) x ε t) x ε t)] that )dt S ε) Cε δ. 45) C du ε ), u ε )) α] Cε 3 ) α α = Cε 3 = Cε δ Now, let u turn to etimate the third term S 3 ε). By applying. the Cauchy Schwarz inequality, we get Now, let u turn to etimate the third term I 3 ε). By adding and ubtracting σt, x ε t), x ε t)), u ε t)) then we have I 3 ε) = K ε t)σ t, x ε t), x ε t)), u ε t) ) σt, x ε t), x ε t)), u ε t))]dt K ε t)σ t, x ε t), x ε t)), u ε t) ) σ t, x ε t), x ε t)), u ε t) ) )dt, then by uing Cauchy Schwarz inequality, we have I 3 ε) K ε t) dt σ t, x ε t), x ε t)), u ε t) ) σt, x ε t), x ε t)), u ε t)) {u ε ) =u ε )} t) dt ] K ε t) σ t, x ε t), x ε t)), u ε t) ) σ t, x ε t), x ε t)), u ε t) ) ] dt. We proceed a in I ε) to etimate the econd term in the right of above inequality, then by applying Cauchy Schwartz inequality, Aumption H) and 9) we obtain S 3 ε) γ ε t θ) γ ε t θ)) g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ )) μdθ)dt γ ε t θ)g t, x ε t ), u,θ ) g t, x ε t ), u ) ]μdθ)dt γ ε t θ)g t, x ε t ), u ε t), θ ) g t, x ε t ), u ε t), θ ) )μdθ)dt, = J ε) J ε) J 3 ε). For any δ 0, 3 ) o that α = 3δ 0, ). Now, let be a fixed real number uch that, ) o that α) <. Taking q > uch that q =. By Hôlder inequality, Lemma 3. and 5) we obtain J ε) = γ ε t θ) γ ε t θ)) g t, x ε t ), u,θ ) g t, x ε t ), u ε t), θ )) μdθ)dt T γ ε t θ) γ t ε θ μdθ)dt up g t, x ε t), u,θ ) θ 3

13 74 M. Hafayed et al. g t, x ε t), u ε t), θ ) ) q dt ] C du ε ), u ε )) α q μ) q T x ε t) q x ε t)) q )dt Cε 3 ) α. = Cε α 3. Applying aumption H3), Cauchy Schwarz inequality, Lemma 3., note 0) and the fact that μ) < we get J ε) γ ε t θ μdθ)dt up g t, x ε t), u,θ ) θ } g t, x ε t), u ε t), θ ) ) dt C x ε t) x ε t) dt C du ε ), u ε )) α]. by uing 38) we get du ε ), u ε )) α μ)] q ε 3 ) α, it hold that J ε) Cε α α 3 ) = Cε 3 = Cε δ. We proceed to etimate J 3 ε). By adding and ubtracting g t, x ε t), u ε t), θ) and Cauchy Schwarz inequality we obtain J 3 ε) = γ ε t θ)g t, x ε t), u ε t), θ ) g t, x ε t), u ε t), θ ) {u ε ) =u ε )} t) μdθ)dt γ ε t θ)g t, x ε t ), u ε t), θ ) g t, x ε t ), u ε t), θ ) )μdθ)dt γ ε t θ) μdθ)dt μ)] up θ g t, x ε t), u ε t), θ ) g t, x ε t), u ε t), θ ) {u ε ) =u ε )} }] t) dt γ t ε θ) μdθ)dt x ε t) x ε t) dt, by applying Cauchy Schwarz inequality, Lemma 3. and ) it follow that J 3 ε) C x ε t) 4 )dt Thu, we have proved that x ε t) x ε t) dt du ε ), u ε )) Cε δ. S 3 ε) = J ε) J ε) J 3 ε) Cε δ. 46) The deired reult 4) follow immediately by combining 44), 45), 46) and 34). Thi complete the proof of Theorem 3.. Proof of Corollary 3. In the pike variation technique for the perturbed control u ε,θ ) in 37) the point u A may be replaced by any admiible control u ) U, and the ubequent argument till goe through. So the inequality in the etimate 5) hold for any u ) U and the ubequent argument till goe through. So the inequalitie in the etimate 5) hold for any u ) U. 4 Sufficient condition of near-optimality for mean-field jump diffuion procee We will how in thi ection, that under certain concavity condition on the Hamiltonian H and ome convexity condition on the function h, ), the ε-maximum condition on the Hamiltonian function H in the integral form i ufficient for near-optimality. We aume: Aumption H3) ψ i differentiable in u for ψ =: f,σ,l,g and there i a contant C > 0 uch that ψt, x, y, u) ψt, x, y, u ) ψu t, x, y, u) ψ u t, x, y, u ) C u u, up θ up θ gt, x, u,θ) gt, x, u,θ) gu t, x, u,θ) g u t, x, u,θ) C u u. 47) h, ) convex with repect to x, y). 48) H t,,,, ε ), K ε ), γ ε ) ) i concave with repect to x, y, u), for a.e.t 0, T ], P a.. 49) The derivative f y,σ y, h y l y are non-negative. 50) Now we are able to tate and prove the ufficient condition for near-optimality for ytem governed by mean-field SD with jump procee, which i the econd main reult of thi paper. 3

14 On mean-field tochatic maximum principle 75 Let u ε ) be an admiible control and ε ), K ε ), γ ε )), Q ε ), R ε ), Ɣ ε )) be the olution of the adjoint equation 9) 0) correponding to u ε ). Theorem 4. Sufficient condition for near-optimality of order ε ). Let condition 47) 49) hold. If for ome ε>0 and for any u ) U : H xε ),u ε )) t, x ε t), x ε t)), u ε t))dt ε up H xε ),u ε )) t, x ε t), x ε t)), ut))dt, u ) U 5) then u ε ) i a near-optimal control of order ε, i.e., J,ζ u ε ) ) inf J,ζ u )) Cε, u ) U where C > 0 i a poitive contant independent of ε. Corollary 4. Sufficient Condition for ε-optimality) Under the aumption of Theorem 4. a ufficient condition for an admiible control u ε ) to be ε-optimal for our mean-field control problem ) )i H xε ),u ε ε ) )) t, x ε t), x ε t)), u ε t))dt C up H xε ),u ε )) t, x ε t), x ε t)), ut))dt. u ) U Proof of Theorem 4. The key tep in the proof i to how that H u t, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) i very mall and etimate it in term of ε. Wefirtfixanε>0 and define a new metric d on U, by etting: for any u ) and v ) U : du ), v )) = where ut) vt) ε t)dt, ε t) = ε t) K ε t) Q ε t) x ε t) x ε t)) ] Q ε t) γt ε θ)μdθ) x ε t) ]. Obviouly d i a metric on U atified ε t) >, and it i a complete metric a a weighted L -norm. Define a functional g on U a follow g u )) = H xε ),u ε )) t, x ε t), x ε t)), ut) ) dt. By uing aumption 47) then a imple computation how that g u )) g v )) = {H xε ),u ε )) t, x ε t), x ε t)), ut) ) H xε ),u ε )) t, x ε t), x ε t)), vt) )} dt. H t, x ε t), x ε t) ), ut), ε t), K ε t), γt ε θ)) H t, x ε t), x ε t) ),vt), ε t), K ε t), γt ε θ)) dt σ t, x ε t), x ε t) ), ut) ) σ t, x ε t), x ε t) ),vt) ) Q ε t) σ t, x ε t), x ε t) ), u ε t) ) dt T σ t, x ε t), x ε t) ), ut) ) Qt) σ t, x ε t), x ε t) ), ut) ) σ t, x ε t), x ε t) ),vt) ) Q ε t) σ t, x ε t), x ε t) ),vt) ) dt g t, x ε t), ut), θ ) g t, x ε t), vt), θ ) Q ε t) γt ε θ)) g t, x ε t ), u ε t), θ ) μdθ)dt T g t, x ε t), ut), θ ) Q ε t) γt ε θ)) g t, x ε t), ut), θ ) g t, x ε t), vt), θ ) Q ε t) γt ε θ)) g t, x ε t), vt), θ ) μdθ)dt, = I ε Iε Iε 3 Iε 4 Iε 5 Now, by uing Definition. and aumption H3) T I ε = H t, x ε t), x ε t) ), u, ε t), K ε t), γ ε t θ)) H t, x ε t), x ε t) ),v, ε t), K ε t), γt ε θ)) dt C ut) vt) ε t) K ε t) 3

15 76 M. Hafayed et al. C t θ)μdθ) dt γ ε ut) vt) ε t)dt. 5) Since σ i linear growth with repect to x and y then by uing aumption 47) we get T I ε = σ t, x ε t), x ε t) ), u ) σ t, x ε t), x ε t) ),v ) Q ε t)σ t, x ε t), x ε t) ), u ε t) ) dt C ut) vt) Q ε t) x ε t) x ε t) ) ] dt C ut) vt) ε t)dt. 53) and I5 ε = T g t, x ε t), u,θ ) Q ε t) γ ε t θ)) g t, x ε t), u,θ ) g t, x ε t), v, θ ) Q ε t) γ ε t θ)) g t, x ε t), v, θ ) μdθ)dt, C C ut) vt) Q ε t) γ ε t θ) x ε t) ] dt ut) vt) ε t)dt, 56) By combining 5) 56) we conclude that g u )) g v )) C d u ), v )), which implie that g i continuou on U with repect to d. Now by uing 5) and keland Variational Principle Lemma.), there exit u ε ) U uch that du ε ), u ε )) ε, 57) Similarly, ince g i linear growth with repect to x then by aumption 47) we can prove that T I4 ε = g t, x ε t), u,θ ) g t, x ε t), v, θ ) Q ε t) γt ε θ)) g t, x ε t ), u ε t), θ ) μdθ)dt C ut) vt) Q ε t) γt ε θ)μdθ) x ε t) ] dt C ut) vt) ε t)dt. 54) Next, ince σ i linear growth with repect to x and y then we deduce that I3 ε = T C C σ t, x ε t), x ε t) ), u ) Q ε t) σ t, x ε t), x ε t) ), u ) σ t, x ε t), x ε t) ),v ) Q ε t)σ t, x ε t), x ε t) ),v ) dt ut) vt) Q ε t) x ε t) x ε t) ) ] dt ut) vt) ε t)dt, 55) and Ht, x ε t), x ε t)), u ε t))dt = max u ) U where Ht, x ε t), x ε t)), ut))dt, 58) Ht, x, y, u) = H xε ),u ε )) t, x, y, u) ε u u ε t) ε t). 59) The maximum condition 58) implie a pointwie maximum condition namely, for P a., and a.e., t, T ] Ht, x ε t), x ε t)), u ε t)) = max Ht, x ε t), x ε t)), u). u A Uing Item 3, Propoition 6.], then we have 0 u Ht, x ε t), x ε t)), u ε t)). 60) Since the function u : u u ε t) i locally Lipchitz but not differentiable in u ε t), then Clarke generalized gradient ee Propoition 6., xample, Appendix ) how that ε u u ε t) ε t) ) = co { ε t) ε, ε t) ε } u = ε t) ε, ε t) ε ]. 6) By uing 6) and fact that the Clarke generalized gradient of the um of two function i contained in the um of the 3

16 On mean-field tochatic maximum principle 77 Clarke generalized gradient of the two function, Item 5, Propoition 6.] we get u Ht, x ε t), x ε t)), u ε t)) u Hxε.),u ε.)) t, x ε t), x ε t)), u ε t)) ε ε t), ε ε t) ]. By applying aumption 47), the Hamiltonian H i differentiable in u, then Item 4, Propoition 6.] how that u Ht, x ε t), x ε t)), u ε t)) H ut, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) { σu t, xε t), x ε t)), u ε t))q ε t) σ t, x ε t), x ε t)), u ε t))) σt, x ε t), x ε t)), u ε t))) } gu t, x ε t ), u ε t), θ ) Q ε t) γt ε θ)) g t, x ε t), u ε t), θ ) g t, x ε t), u ε t), θ ) )μdθ) ε ε t), ε ε t) ]. Next, the differential incluion 60) implie that there i τ ε t) ε ε t), ε ε t) ], uch that H u t, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) σu t, xε t), x ε t)), u ε t))q ε t) σ t, x ε t), x ε t)), u ε t))) σt, x ε t), x ε t)), u ε t))) gu t, x ε t), u ε t), θ ) Q ε t) γt ε θ)) g t, x ε t), u ε t), θ ) g t, x ε t), u ε t), θ ) } )μdθ) τ ε t) = 0. 6) By uing aumption 47) we can prove that Hu t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) H u t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) C u ε t) u ε t) ε t), 63) hence from 6) and 63), aumption 47) and the fact that τ ε t) ε ε t) we get Hu t, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) C u ε t) u ε t) ε t) σ u t, x ε t), x ε t)), u ε t))q ε t) σ t, x ε t), x ε t)), u ε t))) σt, x ε t), x ε t)), u ε t))) g u t, x ε t ), u ε t), θ ) Q ε t) γt ε θ)) g t, x ε t ), u ε t), θ ) g t, x ε t ), u ε t), θ ) )μdθ) τ ε t) C u ε t) u ε t) ε t) τ ε t) C u ε t) u ε t) ε t) ε ε t), 64) Now, uing 49), we obtain for any u ) U Ht, xt), xt)), ut), ε t), K ε t), γ ε t θ)) Ht, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) H x t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) xt) x ε t)) H y t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) xt) x ε t)) H u t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) ut) u ε t)). 65) Integrating thi inequality with repect to t and taking expectation we obtain from 5) and 64) Ht, xt), xt)), ut), ε t), K ε t), γ ε t θ)) Ht, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ))] dt H x t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) xt) x ε t))dt H y t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) xt) x ε t))dt C du ε ), u ε )) ε ) H x t, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) xt) x ε t))dt H y t, x ε t), x ε t)), u ε t), ε t), K ε t), γ ε t θ)) xt) x ε t))dt Cε. 66) On the other hand, by uing 48) we get h xt ), xt ))) hx ε T ), x ε T ) ) ) hx x ε T ), x ε T ))) h y x ε T ), x ε T ))) ] xt ) x ε T )]. 3

17 78 M. Hafayed et al. Noting that ince ε T ) = h x x ε T ), x ε T ))) h y x ε T ), x ε T ))) ) then we have { h xt ), xt ))) hx ε T ), x ε T ) ) ) } { ε T )xt ) x ε T )) } 67) By integration by part formula for jump proce ε t)xt) x ε t)) ee Lemma 6.) we get ε T )xt ) x ε T )) ] = xt) x ε t))d ε t) K ε t)σ t, xt), xt)), ut)) σt, x ε t), x ε t)), u ε t)))dt γt ε θ)g t, xt), ut), θ) g t, x ε t), u ε t), θ ) )μdθ)dt, ε t)dxt) x ε t)) with the help of ), and 9) we obtain { ε T )xt ) x ε T )) } = H xt, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) H y t, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)))] xt) x ε t)) ε t) f t, xt), xt)), ut)) f t, x ε t), x ε t)), u ε t))] K ε t)σt, xt), xt)), ut)) σt, x ε t), x ε t)), u ε t))] γt ε θ)g t, xt), ut), θ) g t, x ε t), u ε t), θ ) ]μdθ) dt, then from 49) and 66) we get { ε T )xt ) x ε T )) } Ht, xt), xt)), ut), ε t), K ε t), γ ε t θ)) Ht, x ε t), x ε t)), u ε t), ε t), K ε t), γt ε θ)) ε t) f t, xt), xt)), ut)) f t, x ε t), x ε t)), u ε t))] K ε t)σt, xt), xt)), ut)) σt, x ε t), x ε t)), u ε t))] γt ε θ)g t, xt), ut), θ) g t, x ε t), u ε t), θ ) ]μdθ) dt Cε = l t, x ε t), x ε t)), u ε t) ) l t, xt), xt)), ut))]dt Cε. 68) Combining 67) and 68) we get { h xt ), xt ))) hx ε T ), x ε T ) ) ) } l t, x ε t), x ε t)), u ε t) ) l t, xt), xt)), ut))]dt Cε, then by uing definition of J,ζ we conclude J,ζ u )) J,ζ u ε ) ) Cε. Finally, ince u ) i arbitrary element of U, the deired reult follow. 5 Application to finance: penalized mean-variance portfolio election In thi ection, we will apply our neceary and ufficient condition of near-optimality to tudy a penalized mean-variance portfolio election and we derive the explicit expreion of the optimal portfolio election trategy. Our method inpired from Zhou ], xample 6.). Suppoe that we have a mathematical market coniting of two invetment poibilitie: The firt aet i a bond whoe price P 0 t) evolve according to the ordinary differential equation Rik-free ecurity: e.g., a bond), where the price P 0 t) at time t i given by the following equation: { dp0 t) = P 0 t) ρt)dt, t 0, T ] 69) P 0 0) > 0, where ρ ) i a bounded determinitic function. Riky ecurity e.g. a tock), where the price P t) at time t i given by P t) = P t) ςt)dt σ t dwt)p t) P t) ξ t θ) N dθ,dt), 70) P 0) > 0, where ςt), σ t and ξ t θ) are bounded determinitic function uch that ςt) = 0,σ t = 0 and ςt) >ρt). and a above Ndθ,dt) i a compenated random meaure. 3

18 On mean-field tochatic maximum principle 79 Aumption. In order to enure that P t) > 0 for all t 0, T ] we aume that:. ξ t θ) > for any θ.. The function t ξ t θ) μdθ) i a locally bounded Portfolio and wealth dynamic: A portfolio i a predictable proce πt) = π 0 t), π t)) giving the number of unit held at time t of the bond and the tock. The correponding wealth proce x π t), t 0 i then given by x π t) = π 0 t)p 0 t) π t)p t). 7) The portfolio π ) i called Self-financing if t x π t) = x π 0) We denote by 0 t π 0 r)dp 0 r) 0 π r)dp r). 7) vt) = π t)p t), 73) the amount inveted in the riky ecurity. Now, by combining 7) and 7) together with 73) we introduce the wealth dynamic a follow dx v t) = ρt)x v t) ςt) ρt))vt)] dt σ t vt)dwt) ξ t θ) vt)n dθ,dt), 74) x v 0) = ζ, where ζ R. If the correponding wealth proce x v ) given by SD-74) i quare integrable, the control variable v ) i called tame. We denote U the et of admiible portfolio valued in A = R. Mean-variance portfolio election.we aume that we have a family of optimization problem parameterized by ε, where ε i a mall parameter ε>0may be repreent the complexity of the cot functional J ζ,ε v )) = x v T ) x v T )) ε ) ) 0 ε Lvt))dt, 75) 4 ubject to x v T ) olution of SD-74) at time T given by x v T ) = ζ 0 0 ρt)x v t) ςt) ρt))vt) ] dt σ t vt)dwt) 0 ξ t θ) vt)n dθ,dt), where L ) i a nonlinear, convex and bounded function, atifying aumption 47) and independent of ε. Inpired from Zhou ], example 6.), our objective i to find an admiible portfolio v ) which minimize the cot function 75) of mean-field type i.e., with l ε 4 Lvt)), = 0, h xt), xt))) = xt) xt)) ) ε ). xplicit olution of problem 74) 75), called P ε, may be a difficult problem. The idea i to how that we can eaily get a near-optimal control in feedback form) analytically baed on the optimal control of the impler problem, called P 0 which i obtained by etting ε = 0in75), then we get { x J ζ 0 v )) = v T ) x v T )) ) }, 76) We tudy the optimal control problem where the tate i governed by SD-74) with a new cot function 76). In a econd tep, we olve the control problem 74) 76), and obtain an optimal olution explicitly. Finally, inpired by Zhou ], xample 6.), we olve the control problem P ε of nearoptimally. Problem P 0 :Optimal olution of mean-field tochatic control problem 74) 76)). By a tandard argument, problem P 0 can be olved a follow. Since f t, xt), xt), vt)) = ρt)xt) ςt) ρt)) vt), σ t, xt), xt), vt)) = σ t vt), g t, xt), vt), θ) = vt)ξ t θ), then the Hamiltonian H get the form H t, x, x),vt), t), K t), γ t θ)) = t) ρt)xt) ςt) ρt))vt)] K t)σ t vt) vt) γ t θ) ξ t θ) μdθ) = t)ρt)xt) vt) t)ςt) ρt)) K t)σ t γ t θ) ξ t θ) μdθ). Conequently, ince thi i a linear expreion of v ) then it i clear that the upremum i attained at v t) atifying t)ςt) ρt)) K t)σ t γ t θ) ξ t θ) μdθ) = 0. 77) Since h x xt ), xt )) = xt ) xt )), h y xt ), xt )) = xt ) xt )) then a imple computation how that the firt-order adjoint equation 9) aociated with v t) get the form d t) = ρt) t)dt K t)dwt) γ t θ)ndt, dθ) 78) T ) = x T ) x T )). In order to olve the above q. 78) and to find the expreion of v t) we conjecture a proce t) of the form t) = t)x t) t) x t) ) 3 t), 79) 3

19 80 M. Hafayed et al. where ), ) and 3 ) are determinitic differentiable function. ee 4,,5,] for other model of conjecture). Applying Itô formula to 79), in virtue of SD-74), we get d t) = t) ρt)x t) ςt) ρt))v t) ] dt σ t v t)dwt) v t)ξ t θ) N dθ,dt) x t) t)dt t)ρt)x t)) ςt) ρt))v t)]dt x t) ) t)dt 3 t)dt = { t) ρt)x t) ςt) ρt))v t) ] x t) t) t) ρt)x t)) ςt) ρt))v t) ] t) x t) ) 3 t) } dt t)σ t v t)dwt) t)v t)ξ t θ) N dθ,dt), T )= T )x T ) T ) x T ) ) 3 T ). 80) Next, comparing 80) with 78), we get ρt) t) = t) ρt)x t) ςt) ρt))v t) ] x t) t) t) ρt)x t)) ςt) ρt))v t) ] t) x t) ) 3 t), 8) K t) = t)σ t v t), 8) γt θ) = t)v t)ξ t θ), 83) and T ) =, T ) =, 3 T ) = 0. 84) Combining 8) and 84) together with 77) we get v ςt) ρt)) t) t) = t) σt ξ t ]. 85) θ) μdθ) We denote At) = σ t ξ t θ) μdθ), 86) by uing 77) together with 85) and 86) then we can get 3 t) = 0fort 0, T ],v t) = ρt) ςt)) At)) t)x t) t) x t))). t) { = ρt) ςt)) At)) } x t) { ρt) ςt)) At)) } t) x t) ). 87) t) Now combining 8) with 79) we deduce v t) t) t)) ρt) ςt)) = ρt) t) t) ] x t) ρt) t) t) ] x t)). 88) By comparing the term containing x t) and x t)), we obtain from 87) with 88) the two ordinary differential equation OD in hort): ] ρt) ςt)) At)) ρt) t) ρt) ςt)) At)) t) = t). ] ρt) ςt)) At)) ρt) t) ρt) ςt)) At)) t) t) = t), 89) a imple computation from 89) we obtain t) t) = t) t), 90) Since T ) =, T ) =, ee 84)) we deduce t) = t), 9) Let u turn to calculate explicitly t) and t).bydividing the firt OD in 89) by t) and the econd OD by t) we get t) = ρt) t), T ) =, t) = ρt) t), T ) =. We now try to olve the above OD See the book by Boyce and DiPrima 8], Chapter ). By imple computation how that for any t 0, T ] ] T t) = exp t ρ)d ] T t) = exp t ρ)d. 9) With thi choice of t) and t), we conclude that v t) i given by v t) = ρt) ςt)) At)) ] x t) ρt) ςt)) At)) ] x t) ), 93) and the adjoint procee t) = t)x t) t) x t) ), K t) = t)σ t v t), γt θ) = t)ξ t θ) v t), atifying the adjoint equation 9). Moreover, with thi choice of v t), the maximum condition 4) of Theorem 3. hold. 3

20 On mean-field tochatic maximum principle 8 Since h xt), xt)) = xt) xt)) i convex and H,,,t), K t), γ t θ)) i concave, we can aert that our admiible portfolio v t) i optimal and the ufficient condition in Theorem 4. are atified where v t) achieve the maximum. Finally, we give the explicit optimal portfolio in the tate feedback form in the following theorem. Theorem 5. The optimal olution of our mean-field tochatic control problem P 0 i given in the tate feedback form by v t, x t), x t) ) ) = ρt) ςt)) At)) ] x t) ρt) ςt)) At)) ] x t) ), 94) where At) i given by 86). Problem P ε : The Hamiltonian function H for the problem P i H z ),v )) t, x, u) = t)ρt)xt) ut) t)ςt) ρt)) K t)σ t γ t θ) ξ t θ) μdθ) σt vt)ut)qt) σ t u t)qt) ut)vt) ξ t θ)) Q t) γt θ)) μdθ) vt) ξ t θ)) Q t) γ t θ)) μdθ), where Q ) i given by econd-order adjoint equation dq t) = ρt)q t)dt R t)dwt) Ɣ t θ)ndθ,dt) Q T ) =. By uniquene of the olution of the above claical backward SD it i eay to how that Q t), R t), Ɣt θ)) = exp ρr)dr, 0, 0, then we get H x.),v ) t, x,v) = t)ρt)xt) vt) t)ςt) ρt)) K t)σ t t θ) ξ t θ) μdθ) γ t σt v t)vt)q t) σ t v t)q t) vt)v t) ξ t θ)) Q t) γt θ)) μdθ) v t) ξ t θ)) Q t) γ t θ)) μdθ). 95) Since v ) i optimal, by tochatic maximum principle, it neceary that v ) maximize the H-function a.. namely, t)ςt) ρt)) K t)σ t γt θ) ξ t θ) μdθ) = 0. P a., a.e.t. 96) The Hamiltonian H ε for the problem P ε i H x ),v )) ε t, x,v) = t)ρt)xt) vt) t)ςt) ρt)) K t)σ t t θ) ξ t θ) μdθ) γ σt v t)vt)q t) σ t v t)q t) vt)v t) ξ t θ)) Q t) γt θ)) μdθ) v t) ξ t θ)) Q t) γ t θ)) μdθ) ε Lvt)). 97) 4 The above function i maximized at v ε t) which atifie t)ςt) ρt)) K t)σ t γt θ) ξ t θ) μdθ) σt v t)q t) σt vε t)q t) v t) ξ t θ)) Q t) γt θ)) μdθ) v ε t) ε 4 Lv ε t)) = 0, P a., a.e.t. ξ t θ)) Q t) γ t θ)) μdθ) 3

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det Aendix C Tranfer Matrix Inverion To invert one matrix P, the variou te are a follow: calculate it erminant ( P calculate the cofactor ij of each element, tarting from the erminant of the correonding minor

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters 32 Vol 32 2 Journal of Harbin Engineering Univerity Jan 2 doi 3969 /j in 6-743 2 23 5 2 F83 9 A 6-743 2-24-5 he martingale pricing method for pricing fluctuation concerning tock model of callable bond

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Turkish Journal of I N E Q U A L I T I E S

Turkish Journal of I N E Q U A L I T I E S Turkih J Ineq, ) 7), Page 6 37 Turkih Journal of I N E Q U A L I T I E S Available online at wwwtjinequalitycom PARAMETERIZED HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRALS M ADIL KHAN AND

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS

SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH IMPULSE EFFECTS Electronic Journal of Differential Equation, Vol. 26 26, No. 296, pp. 77. ISSN: 72-669. URL: http://ejde.math.txtate.edu or http://ejde.math.unt.edu SURVEY AND NEW RESULTS ON BOUNDARY-VALUE PROBLEMS OF

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Determination of Optimal Supply When Demand Is a Sum of Components

Determination of Optimal Supply When Demand Is a Sum of Components Mathematical Modelling and Application 7; (6: 68-74 http://www.ciencepublihinggroup.com/j/mma doi:.648/j.mma.76.3 ISSN: 575-786 (Print; ISSN: 575-794 (Online Determination of Optimal Supply When Demand

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

The semiclassical Garding inequality

The semiclassical Garding inequality The semiclassical Garding inequality We give a proof of the semiclassical Garding inequality (Theorem 4.1 using as the only black box the Calderon-Vaillancourt Theorem. 1 Anti-Wick quantization For (q,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Appendix S1 1. ( z) α βc. dβ β δ β

Appendix S1 1. ( z) α βc. dβ β δ β Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Boundary Controllability of Thermoelastic Plates via the Free Boundary Conditions

Boundary Controllability of Thermoelastic Plates via the Free Boundary Conditions Univerity of Nebraka - Lincoln igitalcommon@univerity of Nebraka - Lincoln Faculty Publication, epartment of Mathematic Mathematic, epartment of January Boundary Controllability of hermoelatic Plate via

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Approximate System Reliability Evaluation

Approximate System Reliability Evaluation Appoximate Sytem Reliability Evaluation Up MTTF Down 0 MTBF MTTR () Time Fo many engineeing ytem component, MTTF MTBF i.e. failue ate, failue fequency, f Fequency, Duation and Pobability Indice: failue

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα