Chapter 3 Prior Information
|
|
- Οὐλίξης Νικολαΐδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Chatr Pror Iorato Subjtv Dtrato o th Pror Dst Svral usul aroah a b us to tr th ror st Th ar th hstogra aroah th rlatv llhoo aroah athg a gv utoal or 4 CDF trato () Th hstogra aroah Dv th aratr sa to trvals tr th subjtv robablt o ah trval a th lot a robablt hstogra () Th rlatv llhoo aroah Coar th tutv llhoos o varous ots a rtl sthg a ror st ro ths tratos () Mathg a gv utoal or Assu that ( ) s o a gv utoal or a to th hoos th st o ths gv or whh ost losl aths ror bls (4) CDF trato Subjtvl tr svral α rtls lot th ots ( z ( α )α ) sth a sooth urv jog th whr ( z ( α )) α P
2 ot: Th hstogra a th rlatv llhoo aroahs ar th ost usul ot: Utra or urt ol o qut oorl trg th robablt strbutos Through th stu o Basa robustss w a allvat ths robl o-oratv Prors (a) Itrouto o-oratv ror s a ror whh otas o orato about al : ( ) ( ) ( ) s so ostat ala (8) us ( ) As ( ) ( ) ( ) s ot a ror st (ror ror) I ato th othr svr rts o th o-oratv ror s th la o vara ur trasorato al :
3 s th aratr w ar trst Suos ( ) ( ) t Th th ror or s ( ) ( ) ( ( )) Thror th ror or s ot o-oratv (b) o-oratv ror or loato a sal robls () oato robl Th st o s o or ( ) ( ) ( s ol o ) Th st s th sa to b a loato st al : Th lt Th st o s ( ) ( z ) ( ) z ( ) For a ostat th st Y Y th Y has
4 ( ) ( ) ( ) ( ) Furthr ot th Y has th st ( ) whh s tal to th st o ( ) strutur al (otu): ( ) Y 5 Th Y ( 5 ) ( ) 5 st ( ) ( ) ( ) Y has th Assu ( ) a ( ) ar th o-oratv rors o a rstvl t A b a st Th A ( ) ( ) A A A ( ) Q ( ) A A A Thus ( ) ( ) t () ( ) so ostat It s ovt to hoos th ostat to b ; that s () 4
5 5 () Sal robl Th st o s o or > Th st s th sa to b a sal st al 4: Th lt z z Th st o s t Y Y Th Y has th st uto whr Y has th st whh s tal to th st o strutur al 4: 5 Y
6 Th 5 Y Th st o Y s Y Assu a ar th o-oratv rors o a rstvl t A b a st Th A A A A A A A Q Thus t () () It s ovt to st () Th () ot: s a ror ror s
7 7 ot: Th a ult usg th o-oratv ror s th uquss For al loato robl a b ossbl hos Thr ar a vart o rt hos () o-oratv rors gral sttgs t I b th t Fshr s orato Jrs (9) roos th o-oratv ror [ ] I I [ ] t s a vtor o aratr th [ ] t I K whr I M O M M al 5: Th
8 8 I Thus th o-oratv ror s [ ] I al : Th 4 4 I
9 Mau tro Prors Motvato: S artal orato s avalabl t s srabl to a ror that s as o-oratv as ossbl Dto (tro srt as): Assu { K K } s srt a lt b a robablt o Th tro o s ot b ε ( ) ot: ε ( ) ( ) [ ( )] [ ( ( ))] I ( ) th ( ) [ ( )] s to b al 7: Th al 8: Th K { } ( ) ε { K } ( ) ε ( ) ( ) 9
10 Th ollowg rsult a b us to th au tro as so artal ror orato [ g ] K avalabl or al as g s ( ) [ g ( )] ( ) ; as as g [ ] ( ) ( ) [ g ( )] ( ) g ; I ( ) [ g ( )] I ( ) ( z ] ( z ] [ ] P ( z ) Iortat Rsult: Th ror satsg [ g ( )] K has au tro ( ) g ( ) g ( ) whr K a b tr b quatos [ g ( )] K al 9: Th { } g ( ) 5 K
11 whh s gotr strbuto 5 Thror 5 Dto (tro otuous as): Assu s otuous Th tro o s ε whr s th atural oratv ror Iortat Rsult: Th ror satsg [ ] g g K has au tro g g whr K a b tr b quatos
12 [ g ( )] K al : ( ) Θ a assu s loato aratr Also lt ( ) Assu w ow g ( ) ( ) Thus That s Th ( ) ( ) ( ) ( ) al : ( ) R Θ a assu s loato aratr Also lt ( ) Assu w ow g ( ) ( ) Th ( )
13 os ot st s os ot st al : R Θ a assu s loato aratr Also lt Assu w ow Var g g Th Thus Var Thror ot: Two ults ars trg to us th au tro aroah to tr a ror: th to us a o-oratv ror th rvato o os ot st
14 4 Usg th Margal Dstrbuto (I) Itrouto Rall th arg st o s Θ Θ ( ) ( ) ( otuous ) ( ) ( ) ( srt ) al : ( ) ( ) ( ) Th th argal st o s ( ) ( ) ( ) ( ) ( ) ot: ( ) s sots all th rtv strbuto or t ( ) w b th argal st ur th orrt ror a ( ) b th argal st ur th wrog ror Th th statst obta ro th ata shoul b los to th sa 4
15 statst bas o ( ) ot o w ( ) b th o o ( ) w ( ) For al lt a w b th o o Itutvl th obsrv ata shoul b arou ot w To th orrt or ssbl ror tvl o oul rstrt th ho o th rors to so lass Th bas o so rtra th bst ror oul b ou Svral lasss o rors ar rqutl us Prors o a gv utoal or: Γ { : ( ) g ( ) Λ} whr Λ s so st a s all a hr-aratr o th ror al : Γ ( ) { : ( ) > > } s th hr-aratr Prors o a gv utoal or: Γ : K t ( ) ( ) s a st ( ) al 4: K ( ) 5
16 s a ow ostat Γ : ( ) ( ) ( ) < < > Prors los to a lt ror: A ror los to a ssbl ror woul also b rasoabl For al ε otaato lass s Γ { : ( ε ) ( ) εq( ) q } whr s a lass o ossbl otaatos a q ( ) s so st uto or (II) Pror slto Thr ar svral aroahs to slt a ssbl ror Th ar () th M-II aroah () th ot aroah () th sta aroah () M-II aroah t Γ b a lass o rors ur osrato M-II (au llhoo-t II) s to Γ satsg su [ ] Γ al 5:
17 7 K Th Th M-II tho s to a azg Thus [ ] { } a s s Thror { } a s al : { } : q q Γ ε ε Th [ ] [ ] [ ] q q q ε ε ε ε ε ε
18 ow M-II ror s to q whh azs q ( ) I s th lass o all ossbl strbutos a azs ( ) t ( ) δ b th strbuto wth ( ) P (all ass at ) S th q ( ) q( ) ( ) q( ) ( ) q( ) ( ) ( ) δ ( ) δ ( ) ( ε ) ( ) εδ ( ) () Mot aroah t ( ) a ( ) vara o wth rst to ( ) b th otoal a o Also lt a b th ow argal a o vara o wth rst to ( ) Th th ollowg quatos a b us to obta th ot o th ror st suh as ( ) 8 a [ ] ( ) ( Y ) : ( [ ]) Q [( ) ] [ ( )] ( ) [ ] ( QVar ( ) [ Var ( Y )] ( ( Y ) ( )) )
19 O sal al s ( ) ( ) al 7: ( ) ( ) ( ) Suos w ow S ( ) ( ) th Thus ( ) ( ) s th arorat ror () Dsta aroah t ( ) b th argal st stat o obta ro th ata Also lt ( ) ( ) ( ) Θ b th argal st wh th bst ror s ou Th w tr to to z 9
20 ( ) ( otuous ) ( srt ) ot: ( ) ( ) ( ) 5 Hrarhal Prors Hrarhal ror s all a ultstag ror t th ror lass Γ whr ( ) { ( ) } : Λ s o a gv utoal or Th so stag s to osr ( ) o th hr-aratr Th so stag ror ( ) s also all a hr-ror ot: ( ) ( ) ( ) Λ
21 al 8: K : > < < Γ α α α γ α γ z z z IG Z IG Q al 9: K : > Γ γ Th
22 I t t Σ Σ 5 t strbuto wth Multvarat K α γ γ γ γ γ γ γ γ γ
23 s γ s th st o IG a or a ultvarat-t strbuto Y wth aratrs [ ] Σ t α has th st [ ] t t Σ Σ α α γ α γ K Crtss I Objtvt Bo (98): t s ossbl all to stgush btw ol assutos a th ror strbuto o th aratrs II Msus o ror strbuto Qusto: Wh rt rasoabl rors l substatall rt
24 aswrs a t b rght to stat that thr s a sgl aswr? Woul t ot b bttr to at that thr s st urtat wth th oluso g o th ror bls? Aswr: I rortg olusos ro Basa aalss th ror (also ata a loss) shoul b rort saratl orr to allow othrs to valuat th rasoablss o th subjtv uts III Robustss Qusto: Slght hags th ror strbuto ght aus sgat hags th so Aswr: Through robust Basa thoo a ho o robust rors or a b ru 7 ral Bas Aalss Motvato: For ε ε Th th M stat s ( ) K (hghr soal ol) I th M stat s 4
25 (lowr soal ol) Qusto to as: whh ol s bttr (lowr or hghr)? Aswr: ral Bas aalss s artular srabl ths (a) Itrouto stuato ral Bas tho rovs a oros btw th ol whr ar oltl urlat (hghr soal ol) a that whr all th ar assu to b qual (lowr soal ol) Thr ar two ts o ral Bas thos O s aratr ral Bas (PB) a th othr s oaratr ral Bas (PB) Paratr ral Bas: th ror ( ) s so aratr lass wth uow hraratrs oaratr ral Bas: o tall assu ol that ar ro so ror ( ) al : t ( ) ( ) ( ) 5
26 whr a ar uow hraratrs Two rt was to arr out ral Bas aalss ar statg th ror or ostror b ata rst th us ( ) or ( ) to arr out th staar Bas aalss g th Bas rul tr o uow ror a us th ata to stat th Bas rul (b) Paratr ral Bas or oral a al 5 (otu): Th K ( ) ( ) ( ) Th ror usg M-II tho s whr ( ) ( ) ( ) ( ) ( a { s } ) a a{ s } Th ostror strbuto or s ( ) Th th aratr stat usg Bas rul ur squar-loss uto s th ostror a
27 7 B B B whr B Furthr th ostror vara s B V ot: B B Morrs (98 JASA) suggst B a th th ral Bas stat s B B V B B B B B B whr a ar th stats obta st Th stat ostror strbuto s B B V ot: B B
28 8 Th % α HPD rbl st or s B B B B B V z V z C α α a Th % α HPD rbl st or s : α χ B B B V C al : [ ] [ ] t Y Y Y Y ε ε K Th S Th argal strbuto s th [ ] [ ] t Σ K whr Σ M O M M M O M M M
29 9 a zg also z t Σ Thus t t Σ Σ whr Σ M O M M S volvs a volvs w hav to us tratv sh to solv Th ostror strbuto or Y s Slar to th rvous al th ral Bas stats ar B B l C C l V C whr l l C
30 a [ ] Σ t t l () o-aratr ral Bas aalss al : P K ar ro a oo ror Ur squar loss th stat s th ostror a!! δ Furthr w a stat th argal strbuto b th ral
31 strbuto I ( ) ( ) whr I ( ) as as Thus th ral Bas stat or s δ B ( ) ( ) I ( j ) j j I ( ) j
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ
ΕΠΩΝΥΜΙΑ ΠΕΡΙΟΔΟΣ ΜΕΣΟ ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ ΔΗΜΗΤΡΙΟΣ 7 OO ΑΝΑΓΝΩΣΤΟΠΟΥΛΟΥ ΖΩΙΤΣΑ
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I
Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o
UNIT 13: TRIGONOMETRIC SERIES
UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs
Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error
onvcton rvtvs brry 7, nt Volm Mtho or onvcton rvtvs Lrry rtto Mchncl ngnrng 69 omttonl l ynmcs brry 7, Otln Rv nmrcl nlyss bscs oncl rslts or son th sorc nlyss Introc nt-volm mtho or convcton Not n or
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Richard Barrett. Helene soprano, recorder, marimba and triple harp. performing score
chrd Brrtt 00-0 oro,, d trl hr rformg cor (00-) for oro,, d broqu trl hr commod by th Cty of Lvrool rt of CONSTUCTION (rtc & vo rt ) durto: roxmtly mut to Gvv Lcy Grl ot Th cor trod. Th hr tud to A=1Hz
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
IJAO ISSN Introduction ORIGINAL ARTICLE
IJAO Int ISSN 0391-3988 J Artif Organs 2015; 38(11): 600-606 OI: 10 5301 a 5000 52 ORIGINAL ARTICLE Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous
İSTANBUL TEKNİK ÜNİVERSİTESİ FEN-EDEBİYAT FAKÜLTESİ GRADUATION PROJECT
İSABUL EKİK ÜİVESİESİ FE-EEBİYA FAKÜLESİ GAUAI PJE SIPLE SUPEGAVIY I IAY SPAE- IE P.v IEUWEHUIZE 90 Ykup Eül 090970 prtt : prtt of Physs Egrg SPIG 00 ABSA hs s ltry trouto to thtl tools for spl suprgrvty
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±
CHPR III: SYMMRIS Sytrs OFo CD CD CD s b on local SU( c gag sytry In aton: global sytrs. Nöthr s hor L CD ( ( [γ D ] ( 4 Ga ν(g ν a ( (a 8 whr D g ( ( a( λ a an (. s Lt L CD b nvarant nr a global transoraton
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Boundary-Layer Flow over a Flat Plate Approximate Method
Bounar-aer lo oer a lat Plate Approimate Metho Transition Turbulent aminar The momentum balance on a control olume o the bounar laer leas to the olloing equation: + () The approimate metho o bounar laer
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.
. F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
Teen Physique. 131 Luke Smith Lance Manibog Donail Nikooei 4 137
T hysq Fst Lst 20 Avo Vs 1 20 21 Rdy z 16 21 56 Ms Sz 8 56 67 Dy Gdy 15 67 82 Adw L 11 82 94 Do Csos 12 94 98 Jss Vs 6 98 103 Jss Mo 13 103 105 Dvd K 10 105 107 Jo By 9 107 112 Js Gtt 3 112 114 Ty MKy
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2
Journal of Rlablty and Statstcal Studs; ISSN (Prnt: 0974-804, (Onln: 9-5666 Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
GPS, 0. 5 kg ( In tegrated Fertility Index, IF I) 1. 1 SPSS 10. IF I =
34 11 () V o l. 34 N o. 11 2006 11 Jour. of N o rthw est Sci2T ech U niv. of A gri. and Fo r. (N aṫ Sci. Ed. ) N ov. 2006 α 1, 1, 2, 1 (1, 450002; 2, 410007) [ ]12 () 1 612,, ( IF I ) : (1), ( ) ( ), ph
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
[ ] [ ] ( ) 1 1 ( 1. ( x) Q2bi
NSW BOS Mhics Esio Soluios 8 F dowlod d pi fo wwwiuco Do o phoocopy opyigh 8 iuco Q L u 5 d ( ) c u u 5 Q Qc ( ) ( ) d 5 u d c d d l c d [ ] [ ] ( ) d l ( ) l l Qd L u fo > ( ) u d Wh u ; wh u d d ( u
Cursul 10 T. rezultă V(x) < 0.
ursul uţol ătrtă V: X R V s lsă stl: ) V st oztv tă ă X u X rzultă V(). ) V st tv tă ă X u X rzultă V()
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
GREECE BULGARIA 6 th JOINT MONITORING
GREECE BULGARIA 6 th JOINT MONITORING COMMITTEE BANSKO 26-5-2015 LEGISLATIVE FRAMEWORK Regulation 1083/2006 (general provisions for ERDF). Regulation 1080/2006 (ERDF) Regulation 1028/2006 (Implementing
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
10. Circuit Diagrams and PWB Layouts
ircuit iagrams and W ayouts Q... ircuit iagrams and W ayouts mbilight nterface: nterf. + Single / TR + S - V _SS RV_ SW_ T_ V T_ V_UT SW_T _S V STU VRSTS R / TR See the stuffing diversities table in the
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
PARTIAL SUMS OF CERTAIN CLASSES OF MEROMORPHIC FUNCTIONS
5 Proc Pist Acd Sci Nilh 43: A 5-6 Al-ih 006 PATIAL SUMS OF CETAIN CLASSES OF MEOMOPHIC FUNCTIONS Nilh A Al-ih Girls Collg o Eductio iydh Sudi Arbi civd Jury 006 cctd Fbrury 006 Couictd by Pro r M Iqbl
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Su cient conditions for sound hashing using atruncatedpermutation
Su cient conditions for sound hashing using atruncatedpermutation Sander van Dam supervised by Joan Daemen icis 10/8/2016 For my thesis I corrected and expanded upon the paper 1. Due to the nature of
Transparency and liquidity in securities markets*
Trasarcy ad lqudty scurts marts Taash U Isttut for Motary ad Ecoomc Studs Ba of Jaa (E-mal: taashu@bojorj Abstract Ths ar rods a framwor whch dals wth arous tys of trasarcy cocr th comosto of ordr flow
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
Errata Sheet. 2 k. r 2. ts t. t t ... cos n W. cos nx W. W n x. Page Location Error Correction 2 Eq. (1.3) q dt. W/m K. 100 Last but 6 2.
Eaa S Pag can E Ccn Eq. (. q q k W/ K k W/ K A A 6 n as bu 6 s q lns s q T k T k Q.. Wall s aus n gvn Wall s aus a an C. 7 n, lf kc cs ( s sn kc cs ( s sn s f cs k sn cs k sn quan C ( s C ( s an ln 6 sn
ΠΡΟΤΑΣΗ ΖΩΗΣ: «Η ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΚΑΙ ΤΑ ΠΡΟΪΟΝΤΑ ΤΗΣ»
ΠΡΟΤΑΣΗ ΖΩΗΣ: «Η ΒΙΟΛΟΓΙΚΗ ΚΑΛΛΙΕΡΓΕΙΑ ΚΑΙ ΤΑ ΠΡΟΪΟΝΤΑ ΤΗΣ» ΠΑΣΧΑΛΙΔΗΣ Ν. 1, και ΤΣΑΜΠΛΗΣ Ι. 1 1 3 Ο Δημοτικό Σχολείο Δράμας, Α/θμια Εκπαίδευση Δράμας e-mail: nikospas18@yahoo.gr ΠΕΡΙΛΗΨΗ Οι λόγοι επιλογής
Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών
Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
01 A. b = 2 b = n b = n + 1
P P 1èt s Ð P Ôst ì t è t Ð Ð t èr è ❼ ❼s t t s s Ð s Ð sô t r s Ð t s Ô ❼r rì ì èq Ð ì r t t èr Ôt r t r trðt rìq r r❼2t r rqðs 1èt s t r t ì s s ❼ ì s èq Ð r❼2t st r t ì st Ôt r ì st trðt ì P t r tè
Exam Statistics 6 th September 2017 Solution
Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΙΑΤΑΞΗΣ ΜΕΤΡΗΣΗΣ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΑΣ ΣΕ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΓΙΑ ΧΑΡΑΚΤΗΡΙΣΜΟ
Examples of Cost and Production Functions
Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Representing Relations Using Digraph
M R n = M R, Κλειστότητες, Ισοδυναµίες, Μερικές ιατάξεις Ορέστης Τελέλης tllis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Σύνοψη Προηγούµενου EXAMPLE 6 from th finition of Booln powrs. Exris
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
Das Pentagramma Mirificum von Gauß
Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
Expected Mean Squares For 4-Way Crossed Model With Balanced Correlated Data
ourn of Bsrh Rsrhs Sns Vo o un Expt n Squrs -Wy ross o Wth Bn rt Dt ZAAB A AKAABAW Dprtnt of thtsog of Sn Unvrsty of Bsrh Bsrh rq Rv // Apt // ABSTRAT n ths stuy w ut th xpt n squrs f -wy ross n o wth
{3k + a : k N a = 1,2}.
P P 1èt s t rð P Ôst ì t è t Ð Ð t èr è ❼ ❼s t t s s Ð s Ð sô t r s Ð t s Ô ❼r rì ì èq Ð ì r t t èr Ôt r t r trðt rìq r r❼2t r rqðs 1èt s t r t ì s s ❼ ì s èq Ð r❼2t st r t ì st Ôt r ì st trðt ì P t r
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΟΜΕΑΣ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ Υ ΑΤΙΚΩΝ & Ε ΑΦΙΚΩΝ ΠΟΡΩΝ ΕΠΙΒΑΡΥΝΣΗ ΜΕ ΒΑΡΕΑ ΜΕΤΑΛΛΑ Ε ΑΦΩΝ ΤΗΣ
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII
3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8