Das Pentagramma Mirificum von Gauß
|
|
- Λουκανός Σπυρόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Wissenschaftliche Prüfungsarbeit gemäß 1 der Landesverordnung über die Erste Staatsprüfung für das Lehramt an Gymnasien vom 07. Mai 198, in der derzeit gültigen Fassung Kandidatin: Jennifer Romina Pütz Matrikel-Nr.: der Johannes Gutenberg-Universität in Mainz Thema: Das Pentagramma Mirificum von Gauß Fach: Erstgutachter: Zweitgutachter: Mathematik Prof. Dr. Manfred Lehn Prof. Dr. Duco van Straten Abgabedatum:
2 ts r3 s t är s r tr rs r s är ä r r tr r r r s är s tr r tr s ät3 ür s är s r t r rs s P t r r str t s ö t rst t s t ÿ s P t r r är s s P t s P t s t s t s P t r r r ÿ ss t3 P t r r t s r t r s t s t rü 3 P t r r r r t s t s t s P t r r r t ät3 3 r t s t r ss t rü 3 s P t r r 3 t r t 3 r tr tr s r s t3 s r t rs s t3 s t3 r t t r r tr tr s r r r r r r t s t s r3 s t r t r
3 t s r r r ÿ r st r s s ss 3 r t 3 3 rs st r t t r t r r t s s s t s r t 3 r s r rst r3 t r r ü r t t s r rö t t ÿ t 3 s t r r r t 3 r tü r r s t P t r r s ü r t r P t st r t r s r r t s ÿ t 3 r s s st 3 rt tt r t ss r t r t r ss t s t s P t r r r t s r ts s 3 s s r s är s r s 3 P t t t s r s s rt r r t s ü s t3 r 3 s t s t ÿ t t ss s s r s är s P t 3 s P t r r s t ässt s r s st t röÿ 1 t s t s r ö s r r t s r r tt t r s ÿ s t t r t s r r s röÿ s s t r s är s P t r ü s r r s s t s P t r r r ü s r t s 3 3 ö r r r ÿ r ä st r r s s st r s s t t s t r s är s tr s rs r s är s r tr rtr t s r t st ät3 s s t s 3 r r t rs t s r r s s ä st r tt t r s P t r r 3 str r s r t r t ss ÿ ü r s r 3 3 t r r s r tt t s r r ÿ s 3 P t t s t t r ss t s t s P t r r r s ÿ r r ÿ P t r r t 3 ä st ü r t t s 3 s ü s t s t 3 rst s 3 rr r r s 3 rst t P t s ÿ ss t3 s ä t t s t r t ü r s ÿ s t 3 s t r t3t r tt s rt t s r r ÿ t ss ss s t s t s P t r r r t st 3 ö s ÿ r r ü t t s 3 s ÿ t rs r t s är 3 r r r 3 ä st r t s s st r s s t t s ü r s r t r ss t s t r s ÿ r r r s r t s 3 r r t s r r t rst s t r s är s r tr 3 r rt
4 s ss r r ss r s r r s st s t3t r s r t s rt r rs P r P t r r t t s s r ss s t t rs t r r rs tät 3 s tät st s st t tq s r r t r t r ä rt r
5 är s r tr rs r s är ä r r tr är r r r r tr r r ä s t r s t r t t s rü t r r t r t t t ür s rs t3 r r t r är r r r ÿ s t r ss r str r ü s r ss s t t r t t r ts Pt r s r s r t s t3 s s t ä r s r r Pt r r t s t är s r r r r t t r tr r s r r t t s ss s t r ü st 3 r r Pt r r 3ä t r rst s r r är t t r str t s r t r t ss r är s r t s s r s r t r s r tt s ss s t r s st s ss t s r s t ss t s P t ss r Ü r s ä t st s r t r är rst t r s ä t t s s r t r r t 3 3 s r ÿ r s P P r r r s t t r t r t 3 r är ä t rs st 3 s st P tr s r t r Pr ü r t r ä r t r s t r r s ö r s 3 r s s ss r r s r rst ä t s 3 t r rts r st t r rst r Pr s t s r r ä r 3 s tr t3 s s ss s t rs t s s r t r r s t r r t ss s str s ö str t s 3 s t t t s s r r t rs 3 r är s är s r tr s st s s r r 3 stä t t r s är s s r r tr s t s 3 t r rts r r s ä rt s t tr t r s r st s s r t s r r röÿt t s s str s tät r rts Pt r s s t r st r t t s r r tt st r s st r s r s Pt r s t t r r rts 1 r t r st r t t s r r tt st r s st r s r s t t r P s tr tr t t s t r s r t t t r s s s tt s t st rs rt t r r r s t st s r r rts r s s t r st r t t s r r tt st r s st r s r s r s t t r
6 t 3 s r rü r r r tr r 3 st s rst P rs sst t s r r t s t3 3 s r ä r t r s r s t r t r r r r ü r rt r t r r 3 r s r t s r r s t r r 3 s str s t rt t rs r r ä r ts s ü rt 1 s sst 3 r r s r ä r r st r s t r s t r t r rst s t r t r r 3 t3 s r ä t s r t r 3 r r s ü rt s rt rü r s t3t r r r r s rts st r t r r r 3 r r 3 ü r r t st t r s s r t r ü rt r s r röÿ t rr s t r tr r r r s r st r t crd(θ) r chord(θ) s s tr t t 3 r ABC s s r M AB tt t s r s s ABC 3 t t θ r r tt t AM B t st r t rt s r (θ) := s r, s AB r s s r s s 3 t t r st t t 3 rs tt ts r sr 1 s sst s t r r s t r s r r t r r s ös t t r s t r st ür r t s r rü t r s 1 r s r s Pt ä s s r s r s rst r r r Pr t s t r t r r 3 s t3 s r sst s s ü r 3 r r s t r t s rü r s s r r s ä t st r s r Ü rs t3 r t r 3 r s är s r tr s st t s r ü r trä t r r s r t s r rs t 3 rst r s är s r s r ö s öst r str r ä t r st r tr s är t ä r r rts r tr t s t r st r t t s r tt st r s st r s st s r tr t s t t r r rts s 1 r t r st r t t s r r tt st r s st r s r s s t t r r rts s Pt t r st r t t s r r tt st r s st r s r s Pt t t r
7 r t t s t r r r str t r r t r s r rst r s r r rt r s r r ä r ür tr tr s rä t r s röÿt t s r t r s r t t r r r st ts 3 r t s s t t s r ÿ r st s är s r tr r t t3 r t r r s r tr r t t r r ts r s 3 rü s s r ä 3 t s r t s s r s är s r s r r tr s s rst Pt ä s t st r st s ür r rt ü r rt s s tr tr s ss s t rrs t s s t r r s r str s r r r t st r st r ts str s t rs t r t t s t s r tt 3 r t r t rt r ss s s Pt ä s r r 3 s st s r t s r t ätt s r ts s r ä r s rs r s s ss r s s s Pt ä s s r t s r r t ss t s st r 3 r s s r t s s r st t st s är s r r tr Pt ä s t r rs r t 3 ös r s r tr t t 3 rstr t s r tr tt t r t ÿst r s Pt ä s rrs t s r s ös s t t rt r Pr t s 3 s r r r s t r s ür s t t3t r Pt ä s t r t3t s s 1 s sst ür t t r s r 3 r s r ss rt t s s r rt rü r str s 3 r t r s s ü st t s r s ü r st s ss ässt s ü r r s r tr s st t s P r r r tr r str ü r äÿ t r t s r t s s t s sst r s r ä r s r s Pt ä s r s r ss s t 3 r s r st t ör rt r tr r t t ss s t s sst t r r s är s r tr 3 rü tr t rt r t r t 3 s ä ät3 s tt 3 r är öt r
8 r r r s är s tr s t ö t r sät3 t s ä r s är s tr t r r s s 3 K s t r s t tt t M s r t r ÿ r s r st rt s tt r s t r tt t t ä t 3 rs P t r ÿ r s s r ÿ r s r r t 3 t t r 3 r P t r ts r t r ä s ür3 r r r ÿ r s ö r ür3 st r 3 s 3 P t r r t s r ÿ r s s r ä t st r ür3 r r r ÿ r s ö ür3 st r r P t ä s r ÿ r s s 3 t r ts r t s tt ts AMB st r s r 1 s t = r AMB. t s är s s r ABC st r 3 r r ä r r r ÿ r s ö t tt t t s s är s r s s s =: c =: a =: b ABC ts r 3 s 3 r r r r ÿ r s r α ts r t 3 s 3 3 ör r ÿ r s β 3 s γ 3 s r r α ts r t ÿ r 3 s t 3 β γ ör r ÿ r s P t s t ür ür t r r s s t s r ss s s ABC t s s är s s r t α β γ > 0 t a b c > 0 t t rü ür st ts ss t s rt t 3 r r r s 3 r tt r r
9 t P r P t t s r ÿ r s ss rt 3 r tr MP t s r r ÿ r s ÿt P r 3 P r t p 3 t r ÿ r s t s 3 s ü r tt t P 1 P r 3 r rt r r t r r ä r P 1 P s P 3 3 t r ÿ r s t s s 3 P 1 P ör P r p r P t r P r 3 r t r P r s t3t 3 s r ü r P P r t P 3 r 3 ö ü rt r t r r s r 3 P r t r s rs s r st t r t r P r s tr t t s r 3 ör P s s st s r t s r s s r P r s r 3 r ör P r s r st ts 3 r t s st ür r ö t s s t st ts 3 r t ä t t r r r t s t s r 3 ör P s r 3 r r r r t r P r t P r r t r P r t r P 3 r t r ür r st r r r t s t r 3 r P r ör t P s s st ts 3 r 3 r P r p ör P P str rt r ÿ 3 t r t 3 r s r ÿ r s s p r s rt 3 tt t t r r ä r P P 3 p st r tt t r s r st t r r t s p t r r s r ÿ r s s r P P t rt 3 r r P r p s t t ä t s r ÿ r s s tt t r s t ss tr MP r 3 r ÿ r s r P t t t tr MP rt 3 r p r ä t t M P t ä t rt 3 r p s s r s s r ÿ r s s r P r s ässt s r t r r ÿ r s rt r 3 p ör st t t ä t P s r t t t ss rt 3 r p 3 s MP t r ÿ r s rt 3 r r ÿ r s P t ä t s t s s 3 p ss ÿ 3 p t rt 3 r r ÿ r s P t ä t t r s P s P 3 P t s r P r p trä t r π π PMQ = r ür P t p
10 s r P t r P r p r t r r ÿ r s t t tr MQ r 3 p ör r r 3 p ör P P t t t rt 3 r r ÿ r s p t ä t t s s r rt 3 M Q r s t ss PMQ = r π t ABC s är s s r r 3 r t r t r3 rs r t r ÿ r s r s ss r s r ÿ r s s P r 3 ss P t s ö r r 3 ör P s 3 r t A B C A r 3 ör P s s s P r s är s s r ABC s P r r 3 ABC r t ABC 3 r t a b c s t α β γ s t α = π a, β = π b, γ = π c, a = π α, b = π β, c = π γ. tr t t ABC s s s r r t t s r r t s s P r r s s r t s r 3 π α = π (π a) = a r s t ss s 3 ABC ör P r r r ABC st r tr s ät3 ür s är s r s s t t s r tr r r ts r s är s r tr t t s t t r t rä t s s s s r t r r t s r r r r s r t t r str tr t r t s t ä r (α) = s r = sin α, röÿ 3 rst s Pt ä s s r r ts t s t3t r r s t s r 3 str t ü rt r s r t s t t rst r r r ärt r rst t str tr ä t st s t s str r t r r ts rt t t r s r röÿt t s r s str r t r t r ss r ü r r s t s s s st t 3 r 3 r s s r MAB 3 r t t tt ts α 3 r t
11 s r s ö r s t s st 3 s r s s r ü r ö t t r t r t r s s ät r s t t rs r ss str tr r ts 1 r s ss s t r P s r 3 är r s r s r t Pt ä s s s s t t r t r st ss r s s s r s t s rs s r s 1 cos rt st t3t r ür 3 r r t r s r r s r ä r s r t t r r r rst s t t ät3 3 ür s är s r r t s r s r s t t r st tt ss s r ss st t r rt r s Pr t s Pt ä s t3t tt ü rt s rt s r r r t t s üt 3 t r r ä t t r ss s s 3 ä st ss s t tü r r r r ä r 3 r Ü rs t 3 t r 3 t 3 tr s t r r st s Pt ä s r s tq r r r P r s r ür str s t r tr s r t3t r r r ss r r t s r r t s s t st r r s r ü t s s t s s s s t 3 t t r3 r t rs t t ä s 3 t s t s rt s s s s s r rs t s s r r t s s s rt s s r r ss r t P rsö t s s r st r r r t s rs üt3 t r s t r är 3 st t s är s t s t3 r 3 s t r t r s r t3 s s öst r r r rst r tr tr s ät3 sst t s 3 s st t s s r s s t t r r ü r3 ört s r r ts t st r r r t s s ä sin cos cos = tan sin = cot s r r s s r s s 3 r tr t t s s t3t r s s s 3 s t3 3 s r ä 3 r s 3 tr t s t ü st r s r s ss r r r s r rst r rt sst t s s t3t r t3 s r r ÿ rts r tt r s s s r ä r r s är s r tr 3 r tt s s 3 s t t r tr r t s t t ss t3t r r r r r r ür st r s r r r st t r ss r str s r r r ös t rt r s s r tr ä 3 s ss
12 r P rs r s r s s t r t r s är s r tr s ü r r öst r t s r stä r t s t t3 ss t3 rü r s t3t r s r s s P r r s rst t t r s ät r r t rs t t r s r st t 3 r t r s st r s s r ÿ r t ür s st är s r tr t r s öst r str s st3 r s ss t3 t r r r s t r t r r r 3 t r t t s r s t t rs tt s üt3 t r s t t t r s 3 ö t r rts s t s ü rs t3t s rt s tt t rs 3 ä t t s t s s r r r r t r str tr 3 tr ss t3 r s rst r r t st ät3 r s är s r tr ür r 3 ss t3 r r r t s t t3 s r r s s r ts s r t t s r s s s ä t t s r s st ts r t r 3 rü ü rt ts r st s ü rr s ss r 3 s ss t3 s ür r t r r s 3 st r r ä t r s r r s 3 t r rts st t ä st r s t t stä r t s 3 tr t s r ä t s r tt r s t r ät3 t3 s s s ts t3 r s är s r tr öst s r ss t3 s s t t r ä s rs t3t r 3 t r s t r r r t s r t s s s t3 s ts t st r s r r s s ässt s t är r r t r r s s t t3 s r K ür t r r s r r t ts t tt t M rs r s t3 ss t3 s är s r ABC t α β γ t a b c r t s s r t s r ü r sina sinα = sinb sinβ = sinc sinγ. ö t t s ss t3 s röÿ r sr ü rt s 3 r r t t 3 s r 3 s rt s t3 sinα = sin(π α). ö t s 3 röÿ s t ä r st t r s ü r
13 röÿ r s ässt s s t s ss t3 s t t ös s t Ü r ür t s s ss t3 s s t s t t s rt r s s r ür t r r r r t ss t s r s ABC s s r r π ä t s 3 s s ss t3 s 3ä s ö t s s t t3 s ö t 3 r rst s r r r s s s s t r tr s r t s s ss t3 s ABC r K r t ÿ t A MB r t ÿ t MC r t ÿ t A ä h A := AF t sinc= AD MA sinβ = h A AD MAD, ADF, sinγ AE sinb = MA = h A AE MAE, AEF. r ts t t MA = 1 r s t ür sinc = AD, sinb = AE. t t ür st h A h A = sinβsinc, h A = sinγsinb. s t3 s t sinβ sinγ r t r sinb sinβ = sinc sinγ. ü rt s ür P t B C s t r ss t3
14 s t r r t s s ss t3 s t t r ABC r K r tr t t r t BA t CA P t B 3 C rü r rt s t r t 3 r tba tca t s t r s r r t ä A A 3 P t MB MC t MA A MAA r t A 3 A t MA = MA + A A MA = MB MA + tba MA = MA + A A A A, MA = MC MA + tca A A. s r MA A MAA r ä t MA = cosc A A = sinc MA = cosb A A = sinb ÿ r n A rt s r t r r MBC t ä t3 r t 3 r s ÿ t t n A s r t r n A ( MB cosc+ tba sinc) = n A ( MC cosb+ tca sinb) n A MB cosc+ n A tba sinc = n A MC cosb+ n A tca sinb. MB MC r MBC 3 r n A r t r st t n A MB = A n MC = 0 ÿ r s ÿ t r n A tba β n A tba = cos( π β) = sinβ t n A tca = sinγ r s t sinβsinc = sinγsinb sinb sinβ = sinc sinγ. ü r r s ss t3 s r s ss tt r s s s üt 3 t r 3 t ä t s r 3 t r rts r 3 t tt st
15 r r s s t t r r st t s r t r t s t s ü rs t3t t st t r r tr r rt s t st st r s r 3 t Ü rs t3 s r ä t r s tt tt t r r t s t s s ür s r r ä s t t r r ss s s r s rt rü t r s str s tr tr s r s st s t3t s t ü r rt r s r s r s r r ss rt s t r r r r är t r ü r ts r r P r st r s r t r r t t ä s str r t3t s rä r r r ös r s r s rs tsst r rü t r t s t3t s ü r r t rt r ts t t r t t s ü r s t s s s r s r r r tr ä t t s r t s r tr s s r q q s 3 r ÿt r ts s r r rst rö t t r st ÿ 3 r t s tr tr s st s s r t t r r rst r 3 st r tr s stä r t t s öst r str t s r rst r ü r tr s ss ÿ ss t3 s r s s är s r t r t3 r s s s ss r ÿ 3 ä st r r sst r r t t r s ü rt s s s 3 ss t s t 3 r t r r rt t s ät3t s t rt t s t r r tr r r ä 3 s är s r 3 r ÿ rst s s s t r t r r s t r t ss r t 3 s r r st r r tr s r s r t r s rs s ss s t r s r r s r r r s s ä rt r s t s t rts ät3 r ä t s 3 s t r rü r s t s t 3 rst r t s ss t3 r s ss t3 ä st r s tt t s r r s tt s st r r P rs r t r ts s t 3 ö t r rt r 3 s s r t s ür t s s s t t s ür s s r s s 3 r tr t t ü t3t r r r r ts r3 r ä t s r r st s t s s s t3t st s t t t r t r s ässt s 3 s t s s s rü r rts ü r t s t r st r t t s r tt st r s st r s r s t s t t r
16 r rt t s r r rst r s sst t s r s s öst s tr t r t r st t r sst tr tr s t r s r t s r ä t s r ü s r t st t t s rü r s r 3 s s tr tr s t rö t t tr tr s t s r r s r t s r st s s r rs r s s r r t t r ä s r ä r t s ässt s s s s r r ss r t ö t r s t t3t s rst s s t st t ä 3 r s s ss t3 s rt r ür s r t ss r s ä t tt t s ss t3 ür ss t3 st st t ss r r r t s ss t3 t t s r st t t r r s s 3 r ös r s 3 r r trä ü r r str tr s t s ss t3 s rst t s s s s Pt ä s s t t r r s s ÿ s r r r r s s r t s r t s t3 s sst r r r tt s r r rt ä r s t r r t s ss t3 3 r 3 r r r t r s t r rt s t3 r s är s r tr s st t3t t s s rtr t r t r r tr str s r st r t s ss t3 r ä t t 3 rst t r t ü r rt r s tt t r rt t3t 3 r rt s t s ss t3 tt s r rts r ü t r s r tr s s s ss ÿ ss t3 r t s r ü t s 3 ss t3 r s ss t3 st t r s t s r t 3 rt r r 3 r r 3 st t t3 t s ss t3 ür s är s s r ABC t α β γ t t cosa = cosbcosc+sinbsinccosα, cosb = cosacosc+sinasinccosβ, cosc = cosacosb+sinasinbcosγ.
17 r t s tür r r r t s s s r 3 r3 r s t r tr s r t s s s ss t3 s ABC r K ä r P t C r tr MC s t3 MC =: d s ÿ ä r C s s t C A MA s A r t r B t C A = d tanb MA C, C B = d tana MB C, MA = d cosb MA C, MB = d cosa s ss t3 ür r t ÿ r MB C. A B = C B +C A C B C A cosγ, A B = MB +MA MA MB cosc. t3 r s r t r A B = d (tan a+tan b tanatanbcosγ), A B = d 1 ( cos a + 1 cos b cosc cosa cosb ). s t3 s ÿ s t d r s tan a+tan b tanatanbcosγ = 1 cos a + 1 cos b cosc cosa cosb. 1 cos = tan +1 sin = cos tan t r s tan a+tan b tanatanbcosγ = tan a+1+tan b+1 tanatanb cosγ = cosc cosacosb cosc cosa cosb
18 cosc = (cosacosb) (1+tanatanbcosγ) cosc = cosacosb+sinasinbcosγ. ü r r s ür r t s r t r s s t t s ss t3 s t r r t s s s ss t3 s t t r ABC r K tr t t r t AB t AC P t A rü r rt t r t 3 r tab tac t s t r s r r t ä B C 3 P t MA t MBB MC C r t B 3 C t MB = MB + B B MB = MA MB + tab MC = MC + C C B B, MC = MA MC + tac C C. s r MBB MC C r ä t MB = cosc, B B = sinc, MC = cosb C C = sinb ä r t a CMB st t ÿ r cosa = MB MC MB MC, MB = MC = 1 B C r ts t3 r s t cosa = MB MC = ( MA cosc+ tab sinc) ( MA cosb+ tac sinb) = ( MA) cosbcosc+ MA tac coscsinb+ MA tab cosbsinc
19 + tab tac sinbsinc. P r t s r r t s t ( MA) = 1 rü r s s t AB t AC st t s t r r A r t s t r rt 3 MA s t MA tab = MA tac = 0 r s t cosa = cosbcosc+ tab tac sinbsinc. r t AB t AC s ÿ P t A α = CAB t t cosα = r tab = tac = 1 t t AB tac tab tac, cosa = cosbcosc+sinbsinccosα. ü r r s t s ss t3 s r ä t t s P r täts r 3 s ss s t r rt tt r r rt r t tt r r ür üt 3 t r r tr t t s r r r s t s tt s s tr tr s t s t sät3 r s är s r tr t r t 3 3 s t r t t s r t tr t ÿ r s t s s t r tr r tr str s s rt r r s t s är s tr r tr 3 r rts st t rt rst r t t r ts s r s 3 t rts r tt t r r r r tr r rt t r t t r t t st rtr t r s s r r r 3 s r ç s èt r t s rt r s s t r s t r ü r ärt t s s3 t t r r tr t 3 s t r ss r ss s3 t r t s r r r r r r tr r ärt r s ö st r t t r s r r r r r ü 3 ss r t t r ÿ r st r tr s rs s är s s 3ä s s s rst sst t s s r t 3 r r r s är s r r t r r sä t r s s t stä s r t s är s r s s ÿ r 3 ö t r s r r ä st t t s r r r rts r ç s èt t r st r t t s r r tt st r s st r s t t t r
20 s s s s t t3t t rtr t r r s s r tr s r t r tt r t rs s r r r3 t r r r ss r st r t r s P r r s r ä s t r ts t ss r t rs s s P r r s st ÿ r s P r täts r 3 ss r ü t t r s ä 3 r r r r s ss 3 s 3 ät3 r är r r 3 täts 3 st t ss s r st t t s är s r r rt s r t r ss r r3 r 3 r ä t s s q 3 t r r s s rt s t t r r ts t 3 t r r ü t s r s r t r t s är s r s st t t t st s st r s ss t3 ä st r s tt ÿ r ü rt t r s r r r tr s r tr s 3 r t r t r ü t r r tr s t r t r t t rü r s t s ö r r s ststä tr tr t r r ü r ss t 3 r s r t ss ü r r tr tr s t ört r r t s s r ss t r s r rts r tt r ät3 r t r st s t t 3 r s s r s rstä s rü t ss s r t r t ss t t t r ür r r ü ö r s t s t t r t r r s r rst r s r rr s t rs rü rs s r t ss r r 3 s r r ür st r t t r ts ss t s st t s s r s t s r t ss s s s t s r r r t tsä rö t t r r t t r s r t r r t ss r ss t r s r st t rs r r r tr ÿ 3 tr t ss tr tr s t ss öt3 3 r ö r s t r s st r r P rs r r r ä 3 st ss s t P r t rr t tt s ss t3 s r t3 r s r r s ss t3 3 t r t r 3 s t 3 rü s r rö t t r r ts r 3 r t t tt ür r s r s t s ss t3 3 r r t s s P r täts r 3 s t r s t3 t s t t r3 r P t s s s ät r rt t r r r r t r t s täts r 3
21 t3 s ss t3 ür s är s s r ABC t α β γ t t cosα = cosβcosγ +sinβsinγcosa, cosβ = cosγcosα+sinγsinαcosb, cosγ = cosαcosβ +sinαsinβcosc. s tr t r 3 s är s r ABC K s 3 ör s P r r ABC s s s är s r K s t3t r t a = π α b = π β c = π γ α = π a β = π b γ = π c r t s ss t3 a r t r cosa = cosbcosc+sinbsinccosα cosα = cosβcosγ +sinβsinγcosa. r s t s ss t3 s b c r r P r t t r r r t s r s ss t3 t r rs r ü r r r t r r r s tt s t r t t t r ä r r s r t ü tr tr s 3 rst r 3 r ss r s tt 3 r ss s 3 t s r t s ä t t r t r s r r s t s 3 t r s t r s r tt r rü r rt t r r r r t t s r r r r s r r st r st st r r r st rt r t r s rs t t r s rt s ss t t r 3 s r t 3 t s s t s t r ss r r t r s t r t t tr r r s ä r s s s r ÿ r tt r 3 s r r s t r s r r r ts r t r ü r t t r s s t t s s ss ts r röÿt t s r r t s ü rst r r r ü r3 t r Pr t st t r t t s st st ts s r t s r t s r s s t st r t st r ö t st s rst s rs s t t s s r r
22 r t r s s r t r s r t ü rt r ts r s r r t s s ü rs t3t s t s r t t r r t s trä t rr t s t r s r ÿ r s t r rt s s r s r ärt r s t t ür ü r r r t r ss s s s s t ts äst r s ür t t s ät t ts ss r r äst t rt s t t s r t r3 3 r ÿ r r s r ü t s röÿt t s st r ü t ts r s r t r r t r s t t t s rt s s t rst r r rs rt st rö t t r t r r t r s str t r r ür r tr ür3 r s r s r r s t t r s r t r t s r st ts s s s r t r s s r r t s r röÿ s t r r r t s s s s r röÿ s t 3 r s q 3 ss r s r s r t t r t t ür s s s r ü r r r s ü r r t t r r r t s rt t 3 t rts r t r t st s t ss s ö st t r s s s ss r t s s rt r t st r 3 s s r s 3 ör r t s s tär s s r sst r 3 r t t t r 3 t r t s s 3 st t tär s s t r t s s s s s s s r t s s r r r tt t r ts r s r t tür sin( π α) = cosα t r s t t t s s tr s t t t t r t s r t t t r st r t rs t t t t s s s sq r 1tr t s r t rs s s t t s 1 t r r t st rt s t t s r rr rs
23 logsin( π α) = logcosα. s t s s rs t r t s s t r t s s s s rü r s ässt s s r r t r 3 s r t s s t r t s s t t rt t r r t s s t3 t t logsinα logcosα = log( sinα cosα ) = logtanα. r 3 3 t s r t s s s r r r r rt st tt s s s 3 t3 ässt s t t rt t3 tr tr s 3 r s s t r 3 t s s t s s rs s s t s r t st ü r st s s s s tt s t ü t r s t3t r st s r r ä r s 3 r s t s s ä t s r s 10 7 s t3t r r t s s s s s s r t s s s t s r r 3 r s st t s rst t s s rst s s t3 3 s r r r ss t r r t s 1 3 t s s 3 r r ü s r t ss s trä ä r s s s 1 e r r3 r s r r rü t r r s s s s s st s 3 ä s r r r s s t3t s r3 t s ät r rö t t ss r t t r r s s rs t t r s r s s r t t s s s r t s rü r t s t rs r r r r r tr ü st r Pr rt tr t t 3 sät3 t rt s r r rst r rt r s s r röÿ r t r tr r tr tr s ät3 r t r r r s rs t r r st r tr 3 r t r r t t tsät3 r s är s r tr 3 rü s r r t s r 3 ABC s s t γ = π t ss t3 sina = sincsinα, sinb = sincsinβ. r t s t s s t s s ss ätt s r t s t tür r rt
24 r t s ss t3 rt cosc = cosacosb. s s ss t3 s r t r cosα = sinβcosa, cosβ = sinαcosb, cosc = cotαcotβ. t r sinα sinβ 3 cosa s t3 3 s t cosα = sinb sinc cosc cosb = tanbcotc, cosβ = sina sinc cosc cosa = tanacotc. r t t r t s s t3 r t s sinacosα = sinαsinctanbcotc sina cosα sinα = tanbcosc sinacotα = tanbcosacosb sinb = tanacotα r t r ür t sinbcosβ = sinβsinctanacotc sinb cosβ sinβ = tanacosc sinbcotβ = tanacosacosb sina = tanbcotβ s s r t r t r r ä t t s r rts r ts t ss s t r tär α = π α β = π β c = π c s r 3 sina= cosccosα, sina = tanbtanβ, t st s s t s s t r s r ä r3 tr t t s s ss t r s s r t r ös
25 sinb = cosccosβ, sinb = tanatanα, sinc = cosacosb, sinc= tanαtanβ, sinα= cosacosβ, sinα = tanbtanc, sinβ= cosαcosa, sinβ = tanatanc. s ür r t s är s r r 3 ä st r ü r s t s t ä t s 3 t ü r s t r r r r r rs r r r r t tr tr s r s rt r t t r s r t r t tr tr s Pr s r s t3t ä ÿ rst t r t s s 3 r t r t r r tr tr s r s r t t r 3 ä st r tr t s r r t s ÿ s är s r stä r r s rt ür ü rt r 3 ä st 3 tr t t s ü 3 r är s r t s är s r s t γ = π 3 t r ü röÿ α c β s r s ABC s r t r 3 t s t r t s r s r 3 s st s r s r t r r s r t r ä t s s r ü 3 t s s tt t t s 3 s r s 3 ü r 3 r 3 rs ür s r ABC s t tür 3 r s q 3 ss 3 s r t r ts t r s s t t ä π s t3 t r t rs r ss s r röÿ s r s s r t t t r r t rs t3t r s st r t r ts ÿ r r t rt s r tr t s s r r t tsä röÿ rs s ö t t r s r
26 3 r är s s r r r s P t r r ä st t s ü r r t3 tr t t r rt r s 3 r ä t sr t3 rs r s s tt t s st Pr t r t r r 3 Pr t r s s r ü r s r t s rs t r r ÿ t t s r t r r ts t s är s r s 3 ö ü t s ü r r t s 3 röÿ s r s s ü r ss s r t r st t r r t s s är s s r s t3t s t 3 r ts r rü r s r ärt r ü r s r r r t sä t ät3 ü r s r t s är s r r r s t t s t t r r rs st st t 3 r 3 t3 r t s ä t s t st3 t r t r s st t s t3 r st r tür t rs r rt t3 rt t s 3 t s rs r r r r t3 r r t r rs t s s s t r r t r t s t r r r ä r t r rs s s t äq t r s s tt t s st Pr t r s s r ü r Pr t r s r r 3 t3 r r t s s tt r st r 3 r 1tr r t r t r ü r 1tr r r t r st r s s s tü s Pr t r t s r tü Pr t r s r t tü r t t t 3ä t t t t s t3t r t r t s rü r t3 3 3 ä st r s sinm = tana 1 tana, sinm = cosg 1 cosg, r tt t t m 3 r 3 t a 1 a s ü r t g 1 g rs r r s r t t r t s t r q t r r t s r s t r 1tr r s t r t s s t r 1tr r
27 ö r s 3 ä st t äq t 3 st s r t tt r t t r 1tr t r s t r 1tr ü r 1tr t s t r 1tr s s st rstä r tt t r 3 3 ü r r ü 3 r är s t t 3 s s t s s r 3 t r t r t s r röÿ st ts r t s s s s r röÿ t t r t s r t s s s s t r r 3 r t s s s t ss ö t rs r r s s r ÿ s r r r t s s s s tt t s st r t r s r r 3 r r t r s s r ü r s s rü t r 3 s t3 t t s ss logsinm = logtana 1 +logtana, logsinm = logcosg 1 +logcosg. s ts r t s 3 s t3t r tt t r r t s s t3 t r logsinm = logtana 1 +logtana logsinm = log(tana 1 tana ) sinm = tana 1 tana, logsinm = logcosg 1 +logcosg logsinm = log(cosg 1 cosg ) sinm = cosg 1 cosg. ts r rs r r s r st t tsä äq t 3 t3 3 st äq t 3 r 3 r ts t rs 3 t3 st t r r 3 r är 3 r r röÿ s r s s r t s t3t r t3 s s r t s s r 3 s α β ä r t t s s s r t s t3t r s ü rt 3 ss 3 r är tär 3 s t3 s a α β b 3 r är s r s ABC s s α c β rü r s r s s s r 3 r rt r t s ss s 3 t s r t s cos( π m) = cot(π a 1)cot( π a ), cos( π m) = sin(π g 1)sin( π g ).
28 s s r s äq t s t cos( π m) = cot(π a 1)cot( π a ) sinm = tana 1 tana, cos( π m) = sin(π g 1)sin( π g ) sinm = cosg 1 cosg. s ässt s s st t ss ä r t r rs äq t s 3 s r rs s s t t3 s s r 3 r är r s tt t ä t t3 r t s r s r t t3 r r r rst t ÿ s s s r r ür r ä 3 r t r r s st t s s ss r s s s r ä t r st t s 3 ä st 3 ä ä r s tt t s tr t ö st t3 s ÿ ür s ä r s t ür 3 s s s s r ärt r ts r r r r t ü r r r r 3 tät s ü 3 r är s r t r s t r ö r ü r r t s s t r s t r stä t s r tr t r 3 ä r r t rt r ÿ s BPS r t s s är s s r t t P P BSP, SPB, PBS = π t t ü 3 r är BPS π BSP π P π SPB P r s t ss s s s t ü r s ä t ä r s tt t s tr t ö ür rst r s s, P, π BSP; π BSP,, π P ; π P π, BSP, π SPB; π SPB, π P, P ; P, π SPB,. s r ä rst röÿ s tt t m ä t r r s r s r 3 a 1 a t t r ss ü ä t r s s r r 3 r ä t t t t r rts r tr t s t q st t r r rts s st r t r t t ss s s s t3 s r r tr t
29 s 3 s t s s tt t s r s t s 3 s s r s tana 1 sin t t =. sin r m tana Pr s t s 3 t t s s rst s tt r r ts 3 t ss s ür r röÿ t a b = c d logb+logc = loga+logd. r röÿ s r ü ss ür s t logsin r m+logsin t t = logtana 1 +logtana. r rü r s s r t ss logsin t t = 0 t t s logsin r m = logtana 1 +logtana. s st r ts s 3 r r s r äq t 3 rst r rs r s t s s st 3 t s r st r r t r t tr t t r 3 ä st ü ö ä, π π SPB, π P ; BSP, P, π SPB; π P, π SPB, π, P ; BSP, ; P, π P, π BSP. r s r ä rst röÿ r s tt t ä t r s t r s ü r r r t rt ss s r ü ä ss t r r t s st st s r 3 tät r ü ä r ä t s r s t s s t s s r ü r 3 s t s s tt t s r s t s 3 s t s s t s s r ü r s sin r ( π g 1) sin r m = sin t t sin r ( π g ). ö t r ss s s r t s t ü r s ür r t s t t t t 1tr s s t t r t s t s t s s t t t t r 1tr r st r s ü r s ss t s r s r ür s r t s r ür ür r t s t r t s t t t 1tr s s t t r t s t s t s st t t r t s t t t t r 1tr
30 s st r ts t r röÿ s r s s r t ä ss r 3 t s s t t r t3t r t r s t logsin r m+logsin t t = logsin r ( π g 1)+logsin r ( π g ). r t r logsin t t = 0 r s r r t logsin r m = logsin r ( π g 1)+logsin r ( π g ). s st s 3 r r 3 t äq t 3 r 3 t ss t3 r s t stä s st s r ü r s är s r tr r r s ä st t s ü r t r r s P t r r s rs t3 ss r rs
31 s P t r r s r s r t s r t r s r r s r ö t r äÿ t r ü rt 3 r är s s är s r s rs t s P t r r r r r ä ü r t r t ä t s s ü r ÿ r s 3 s s t3t r rst 3 t r 3 t r tt r r tt rt r rt ü t r ü t r rst s r t s t t r r str t s ö t rst t s t r t r ss s s K ts t tt t M t ABC r t s r t γ = π α β a b c < π ss s str t r r r s rt t s s 3 t s t r str t s P t r r s s t s r str t s 3 ä st 3 r ÿ r s ö s B r t tr str rt r E s t r r ÿ r s r E s r t s t s r t r r C t s r ÿ r s s r F t r ÿ r s r t r t s ÿt s ü r ÿ r s ö s s s 3 r t B C D E 3 F rü r s s s 3 r ÿ r s ö t r P t P Z Q O 3 S 3 s s är s s P t r s tt tst ÿ r ü r t r P ZC ZQD QOE OSF SP B r t s r t s P t s ts r r r s 3 tt t B C D E F P Z Q O S t r t s s s P t r r rst t s t ss t s r ts r t r s r str t s t ä t ü r t r s s ü r ÿ r s ö s 3 r t s 3 s s t3 s P t r r r s r r t r t r r s s rä t st r s t är
32 st r tät s r ärt tür t rs st r s r r t r r r s r t r r t s P t s r s ÿ r r t rs st t s r s ss ss t r P s r t s tr t r t s P t s P ZQOS s s s r r 3 r ü r ÿ r s s P t r r ä st t str t s rs r t rt r r 3 r ss s s P r 3 s rä r s s P t s st r t s P r t ür r r t s P t s r t r s P r r ü r t t s P r ü 3 s r P t P ZQOS s P t s s t P r t s s s t s s t3t ü rt s r s ü PZQOS r t s st P r t s s P t r r st s 3 s s st r s t s t ä t 3 r t r t str t s r t s s r t s r t r t rs str t A T A T C A T C S S s P D S R t Q s P E B B r str t s P t r r r r t r AST t r t A s s s t s r s π s t s r s s s 3 r ÿ r s r ä rt 3 r P r s 3 P t S s tst r tt t rst s r tt t s t r ÿ r s r A S s r s t 3 t 3 t s r tt t s t r ÿ r s r S T r C r tt s r tt t s t r ÿ r s r A T r t P 3 ss r r ür P t T r str r s P r t s r r tt t rt rst tt t D t 3 t E t t r R ür s str t s r s P t r r s s r st tt s r s t r P P t r P t r t r
33 t 3 t3t tt t Q t r P r s P t A B C D E P Q R S T s P t r r s r r t r s st r tät r r s t3t s 3 str r t s P r r ü r t s P t s P QRST st rstä s s r 3 r ÿ r s ö A B C D E r t s s tt t r P r t r 3 ör P r r ÿ r s s s s s st r tt t r r ÿ r s P P r P r 3 st r r s s s r t r är r r r t3 s tst s r t r r P t r r r st r tät s P t s s s r s ss r s r t s r r s t rs r r t ü r t r s s r t rs st t s t3 s 3 r är t r r s 3 tr s t t ss 3 r r tt str t s r t s s s tt s r ä t r r ä st r r 3 rü 3 3 r är s t tt r r r s s ü 3 r är s r t r s s rst r r r s t r s r ABC r s r τ := (a,b, π α, π c, π β). r r τ r t rt r tr P s t r r rst tr t3t P s t s r t s n(τ) := τ = (a,b,( π α),...) = (b, π α, π c, π β,a). s r τ s r t s s är s s r s s γ r t st r röÿ r r s r t rt s r t t a = n(a) = b b = n(b) = π α c = n(c) = β α = n(α) = c β = n(β) = π b s γ = γ = π 3 t t s rs t t s st s t 3 s n 5 (τ) = τ 3 n 5 = id. r t t r s r ä t g(τ) := n(τ ) = n (τ) = (a,b,( π α),...) = ( π α, π c, π β,a,b). s r s r t t r s s är s s r s γ r t s t3t rü r s s t3t s t g(a) = π α g(b) = π c g(c) =
34 π a s g(α) = β g(β) = π b s s r t s β t s s r s ÿ t r t r s r t P s t r r r t st t st s s r ss 3 s s B = A r 3 rü 3 r str t s P t r r t r 3 r är r r t s är s r P 1 P Q 4 t t P Q 4 =: π p 5 Q 4 P 1=: π p 3 P 1 P =: p4 Q 4 P 1 P =: p 1 P 1 P Q 4 =: p P Q 4 P 1 = π s r s r p i < π ür i t r r s t3 r p i := π p i ür i s 3 r P 1 P Q 4 ör 3 r är τ 1 = ( p 5, p 3, p 1, p 4, p ) = g 0 (τ 1 ). r r τ 1 s r t r r t r r t r P i P i+1 Q i+3 i =,3,4,5 r 3 s t 3 r är τ i+1 = g i (τ 1 ) = ( p i, p i+3, p i+1, p i+4, p i+ ). r P i P i+1 Q i+3 i = 1,,3,4,5 t P i+1 Q i+3 P i = π, P i P i+1 = pi+3. Q 4 P Q 5 p 4 p 5 P 1 P 3 Q 3 p 3 p 1 p P 5 Q 1 P 4 Q s r P t r r t 3 t s ÿs r ür st r t ts ss r s t β s t3 s s t t st s r r r s rr ü r r ür t g = n 4 id = n 5
35 s ü r t r r r s r ss s 3 s t rü r ss s ss tt tst t r r P t P 1 P P 3 P 4 P 5 s är s s P t s ÿ s 3 s t Q 1 Q Q 3 Q 4 Q 5 s P t r r t t s r r t s P t s r ts r t s r r ÿ r s r P i P i+1 r P r 3 P P i+3 3 r P t P i ts r t 3 r P r r P i+ P i+3 ör P r r t rs t ss s P t P 1 P P 3 P 4 P 5 s st r st rü r s s r P i P i+1 Q i+3 i = 1,,3,4,5 s t r ä t P t Q i r t s P t s s r 3 tr s t s t3t s P t r r t r r t r st s s t π P i P i+ =, i = 1,...,5. s t t ts r s s ss tt ts P i MP i+ ür i = 1,...,5 r t s s t P i P i+ P t ä π s t 3 ss s s s r st 3 s P P t s r P r r π trä t s r s r P t P 1 P P 3 P 4 P 5 s P 1 P 3 P1 P 4 P r 3 P P1 st r P 3 P 4 P3 P 4 s s P t r P r 3 P 1 r s t ss r r t P 1 s ä π ss s ÿ r s rä s t s t t t r r r t t st π t p i 3 p i r ü r P t r r üss r s π s s s r r t t Q i ü 3 r är p i r ü r r r s r 3 r är r r s t s r r t p i 3 r t s r t s P t s s s r p i r r ss t3 r s π s s s ss t s s r s r röÿ s s s p 1 =P 3 P 4 är π ür P 3 t Q 5 3 s s P 1 s P s P 3 ür r P r 3 P 4 p 5 =P P 3 ür s t s r ÿ r s p 4 ä r P r 3 P 4 s ätt 3 r ss s s P t r t s P t s ür ü P t P 1,P,P 3,P 4,P 5 ür r r s är s r s r r r r p i röÿ r s π ä 3 r r P t r s s är r t r 1 s s r r ür t r r r r t ss p i < π, i = 1,...,5 t s s s r P t P 1 P P 3 P 4 P 5 s t 1
36 r t ÿ s P t r r ÿ s rr s t r ts t t r r r r ÿ r r s r ür s s tt t r ÿ s rä t t t s r ts s t r r t s r r ür3 st r t tür s rt ÿ tt r t ss s s P r st 3 s r r r s t ÿ 3 ä st s s s ät r s r s t s s s ö rs r3 r s rs tät ött ÿ r r s ät r r ÿ ÿ ött r rt s ss r s 3 rü r rts r är ss s r3 är ÿ 3 ü r3 s t r rs tät st t 3 s ÿ s t t ÿ 3 r t r ss rt t ü r t s t3 r r s ÿ t ÿ 3 ä st s t t r r s r sst s rst s r ÿ s r s q s t s r t t s r r s s s s ä t t s röÿt t s t t r s r t st r str t s r äÿ s t r t r r rü st s r t t r ts ä r s s t s r rts t ss s s s r str t röÿt rt s r tt s t r s t r üt 3 t r r s r s r rst 3 t r s s ÿ ö rs s ät r tr t ÿ s r r t s t r s ött r s r t r s r3 r rst r s t r s r s 3 t s r s ät r r t t ÿ r t rö t t s 3 t s s 3 r r s ör r rt 3 tr rt r s r t r t s r str s r r t t s s s s s r s rs r tr s t ä r s s r t r t s t r P t t t r s rs äs s ä rt s t r ss ür t s r t tr t r t t s ss rü r ÿ r t s s st s rs s 3 rt s r sq s t s r s r s r s r 3 s r r P t t t r tt ÿ r ts r t 3 r 3 rö t t r 3 tr rt s r r
37 r t s r P s rö t t r s r t r t 3 r t s s t r s t P s Pr ss r r rs t ÿ st r ÿ r t 3 P t r r Ü r s ts trä 3 r t t P s s r ÿ r rst r s t s r t r t P t r r s r s t3t t r r ärt s P t r r 3 t ÿ r ts r s t rs ü r s r t s är s r t3t s ü s r 3 P r s t rst t r ü r t r s s s t t r t r ss t3 s t s P t r r r r ts t t r ä t rt t ss 3 P t r r ÿ s st 3 rü t ü r s t r s r t ss rü r s st rö t t s s r t s s t r rs s ss r r t t ss s s s r rs t st ts r s 3 s s s t st 3 t s P t r r s ÿ rst r t r t s P t r r ÿ r r t ÿ t P t r r 3 s r t p i s P t s P 1 P P 3 P 4 P 5 s r ÿ rt p i = P i+ P i+3, i = 1,...,5. t s t3 r P i P i+1 Q i+3 i = 1,,3,4,5 3 r är ( p i, p i+3,
38 p i+1, p i+4, p i+ ) t rs ür s s r r sin p i = tan p i+ tan p i+3. s ö r t t r tr tr s r s t3 r ÿ r s t3t ÿ sin p i =tan p i+ tan p i+3 cosp i =cotp i+ cotp i+3 1 cosp i = tanp i+ tanp i+3 sec p i =tan p i+ tan p i+3. α:= tan p 1, β := tan p, γ := tan p 3, δ:= tan p 4, ǫ := tan p 5. s st r röÿ ür s s ÿ Ü r ür t r r r r t ö r ss α,β,γ,δ,ǫ > 0 t r st t tt ss 0 < p i < π ür i t t st tan p i r röÿ r s r s t r s sec p 1 = γδ, sec p = δǫ, sec p 3 = ǫα, sec p 4 = αβ, sec p 5 = βγ. tr tr s s t3 t ür t ss 1+tan = sec ür r s r t s s t 1+α = γδ, 1+β = δǫ, 1+γ = ǫα, 1+δ= αβ, 1+ǫ = βγ. s s ä ör 3 t st s s s 3 s r tt r t s r r t r r s r r t r r s r s t st ts ss t s r r röÿ r t r rs r s 3 röÿ r st r st r sät3 s 3 ä 3 t rs r ss röÿ r 3 r r ss s s t t s s s r röÿ α β ö t γ δ ǫ r ÿ r t γ = 1+α, δ = αβ 1, ǫ = 1+β δ δ
39 = 1+α αβ 1, = 1+β αβ 1. 3 t r röÿ 3 s α γ s ö t ü r t s r β = δǫ 1, δ = 1+α, ǫ = 1+γ γ α = 1+α 1+γ γ α 1 = 1+α+γ. αγ s s t s r ü t ä p i,i = 1,...,5 s s är s P t s P 1 P P 3 P 4 P 5 s r ö s r t t ä r s s är s r s t3t s s P t r r 3 r ts r r r s s ss s t p i,i = 1,...,5 s P t s P 1 P P 3 P 4 P 5 t r t r s s s t sec p 1 = γδ cos p 1 = 1 γδ 1 p 1 = arccos( ), γδ ür ü r t p = arccos( 1 δǫ ), 1 p 4 = arccos( ), αβ 1 p 3 = arccos( ) ǫα 1 p 5 = arccos( ). βγ t r t ss s p i r arctan s s r st t r r s r tt r t s t ÿ s rs s ö r r s t ä t3 ö ür α, β, γ, δ, ǫ t 3+α+β +γ +δ +ǫ = αβγδǫ = (1+α)(1+β)(1+γ)(1+δ)(1+ǫ). s t r r s t αβγδǫ = αβγ( 1+α )( 1+γ γ α ) = β +αβ +βγ +αβγ = β +1+δ +1+ǫ+α(1+ǫ)
40 = +α+β +δ +ǫ+1+γ = 3+α+β +γ +δ +ǫ. 3 t r s ö 3 s t3 r s (1+α)(1+β)(1+γ)(1+δ)(1+ǫ) = γδ δǫ ǫα αβ βγ (1+α)(1+β)(1+γ)(1+δ)(1+ǫ) = α β γ δ ǫ (1+α)(1+β)(1+γ)(1+δ)(1+ǫ) = αβγδǫ. rü r s t t ÿ s r t t r s 3 s s röÿ t3 ür α,β,γ,δ,ǫ t ǫ((1+β)α (1+γ)δ) = ǫ((αβ δ 1) (γδ α 1)) = (1+γ)(1+β δǫ) (1+β)(1+γ ǫα). s ür s s s t3 s öt t s ä s t t ǫ((1+β)α (1+γ)δ) = ǫ(α+αβ δ γδ +1 1) = ǫ((αβ δ 1) (γδ α 1)) s ǫ((1+β)α (1+γ)δ) = ǫα(1+β) δǫ(1+γ) ǫαδǫ+δǫǫα = ǫα(1+β δǫ) δǫ(1+γ ǫα) = (1+γ)(1+β δǫ) (1+β)(1+γ δǫ). ÿ s s s r r t 3 P t r r r t ÿ r r st t s s 3 rü ä t r röÿ s är s P t r ÿ α = 9, β = 3, γ =, δ = 5, ǫ = 1 3. ür r t s s r t p i s r t s t sec p 1 = γδ = 10, sec p = δǫ = 5 3, sec p 3 = ǫα = 3, sec p 4 = αβ = 6, sec p 5 = βγ = 4 3.
41 t ä s är s P t P 1 P P 3 P 4 P 5 tr s 1 1 p 1 = arccos( ) = arccos( ) 71,6 arctan( α), γδ 10 p = arccos( 1 3 ) = arccos( δǫ 5 ) 39,3 arctan( β), 1 p 3 = arccos( ) = arccos( 1 ) 54,7 arctan( γ), ǫα 3 1 p 4 = arccos( ) = arccos( 1 ) 65,9 arctan( δ), αβ p 5 = arccos( ) = arccos( βγ ) 30,0 arctan( ǫ). rü r s r ü s röÿ tür r s s ät3 s ässt s r s t3 r t ü r rü ür αβγδǫ s r s ö r ä t αβγδǫ = 0. s r äÿ P t st s P t P 1 P P 3 P 4 P 5 r äÿ t s p 1 = p = p 3 = p 4 = p 5 s t tür α = β = γ = δ = ǫ. t r r s s t 3 s s r ässt s α t r 1+α = α. α = 1+α 1 = α α 5 4 = (α 1 ) α = 1± 5. r t α = 1 5 t s ös r r st t ss α > 0 t ss r är t s α = 1+ 5, s s tt ts r t s t r r t s ür α = β =... ss α = sec p i = 3+ 5, i = 1,...,5.
42 ÿ r t t ür t ä s r äÿ P t s p i = 1 = α 1+ 5 = = arccos( ) 51,8 arctan( α). 4 ür αβγδǫ s r s ö t3 t t r t r αβγδǫ = α 5 = α α α = (1+α) (1+α) α = α+α +(1+α) α = α++α+(1+α) = 5α+3 = r r stä t r r3 t3 3 s r r rs r äÿ r är s s P t t r s s r tr t s r t s P t s 3 tr rt t rs r s t t s r 3 t r ÿ ü t s r t s r r t r t 3 ä st r t t r ärt P i MP i+ π = P i P i+ =, i = 1,...,5. s t t s s s ssmp 1 rt 3 MP 3 t P s t s P t r r r s t s r s P t s P 1 P P 3 P 4 P 5 t st t st s t3 r P 1 = (0,1,0), P 3 = (1,0,0). P 1 P 3 s t3 s t st tt t s t r rü r s t MP 5 MP 3 s MP 4 MP 1. tr t r 3 ä st MP 5 MP 3 P 3 r t r t s t3t ss ür P 5 t r t (x 5,y 5,z 5 ) r r t t ss x 5 = 0 s t3t r r P t P 5 t s t r 3 ä r s t P 5 s s s tst t r t s r t t s MP 5 = 1
43 t t P 1 MP 5 =P 1 P 5= p3 ür r t y 5,z 5 P 5 r t s s t y 5 = cosp 3, z 5 = sinp 3. r ä rt ür r t P 4 s r t r s s t P 5 = (0,cosp 3,sinp 3 ), P 4 = (cosp 1,0,sinp 1 ). s P t s t3 s t st s t r ts s ÿ tr t r P t P t r t (x,y,z ) tr MP t rt 3 MP 4 MP 5 r s t 3 ä st ss s r r t MP MP 4 s ss 0 = x cosp 1 +z sinp 1 z = x cosp 1 sinp 1 z = x cotp 1. t ss MP rt 3 MP 5 t y cosp 3 +z sinp 3 = 0. r s t3 r ä t 0 = y cosp 3 x cotp 1 sinp 3 y = x cotp 1 sinp 3 cosp 3 y = x cotp 1 tanp 3. P s t3t s r t (x,x cotp 1 tanp 3,x cotp 1 ) x s ä t r ss ss r st P 3 st s ss s t x +x cot p 1 tan p 3 +x cot p 1 = 1. r s t t ür x x (1+cot p 1 tan p 3 +cot p 1 ) = 1 x tan p 1 +tan p 3 +1 tan = 1 p 1 tan p 1 tan p 1 +sec = x p 3 tan p 1 tan p 1 +tan p 5 tan = x p 1
44 1 1+tan p 5 = x cosp 5 = x. t3t s rt ür x s r t s y = x cotp 1 tanp 3 = cosp 5 cotp 1 tanp 3 = tanp 3 = 1 = cosp 4, tanp tanp 3 tanp 1 secp 4 z = x cotp 1 = cosp 5 tanp 5 = = sinp 5 = cosp 3 sinp 5. tanp 1 secp 5 tanp 5 tanp 1 secp 3 s r t s ür r t P s s t s P = (cosp 5,cosp 4, cosp 3 sinp 5 ). t r r t r t s P t s ä t t ä rr t s r r ss ts r ÿ ü t r t t r ö r tt t r 3 ss t t r s r r 3 t ä p i s P t s ä s s ü t s s 3 s ÿ r ür P s r ts r t r t ä t r 3 rs t ä ä p 1 p r t P ss s t r r s s s r s s ä t p 1 p 3 s t ä cosp 5 = 1 secp 5 = 1 βγ 1 = 1+α+γ γ αγ α = 1+α+γ = = tanp 1 1+tan p 1 +tan p 3 tanp 1 sec p 1 +tan p 3, cosp 4 = 1 secp 4 = 1 αβ = 1 α 1+α+γ αγ
45 = = γ 1+α+γ tanp 3 sec p 1 +tan p 3. sinp 5 = 1 cos p 5 tan p 1 = 1 sec p 1 +tan p 3 1+tan p 3 = sec p 1 +tan p 3 secp 3 =, sec p 1 +tan p 3 s r r ss ö r r t P s t3 r t s tanp 1 tanp P = ( 3 1,, ). sec p 1 +tan p 3 sec p 1 +tan p 3 sec p 1 +tan p 3 s rst r r t s t sp st 3 r 3 s 3 rt r s s 3 ÿ st t r ts r r ss s P t r r 3 r ts r s t3t s ss ö r s r s st t P 1 = (0,1,0), P 4 = (cosp 1,0,sinp 1 ) P 3 = (1,0,0), P 5 = (0,cosp 3,sinp 3 ), tanp 1 tanp P = ( 3 1,, ). sec p 1 +tan p 3 sec p 1 +tan p 3 sec p 1 +tan p 3 r Ü rs t t r st r r t r t P i t r röÿ s r s r r t r r r s 1 1 P 1 = (0,1,0), P = (,, 1 ), βγ αβ αβγ 1 P 3 = (1,0,0), P 4 = (,0, γδ α γδ ), P 5 = (0, 1 γ, αǫ αǫ ). t s r r t ö r s s r t P i s P t s r r t t3 t s P t s P 1 P P 3 P 4 P 5 t z β αγxy αxz γyz = 0 t3 P t M = (0,0,0)
46 s s st t s s r s ü P t P 1,P,P 3,P 4 P 5 r ü ür st t a,b,c,d,e,f R ax +by +cz +dxy +exz +fyz = 0. s t ä t s t r r tr s t t s ss r t 3 s r t rs r s t rs st ss s t3 rs r 3 tt t r t r s t t tsä st t3 r 3 ä st P t P 1 P 3 r s rt t ss t ss a = b = 0. s t t ss r 3 t c z t s r s s s st t r s t s s r r ür s ö r r r z + d c xy + e c xz + f c yz = 0 : z +pxy +qxz +ryz = 0. t3 r P t P,P 4 P 5 r s s r s r t r r p,q,r s ös ss 3 p = sec p 1 +tan p 3 tanp 1 tanp 3, q = tanp 1, r = tanp 3. s rt ö r s t3 s t ä t s r 3 r ts r ä p 1 p 3 s ss tür s s s P t r r r 3 r ts r s t3t r ü rs t r r s r rt ür p, q r t s r r t r p = β αγ, q = α, r = γ. t3 r p,q,r s r t r s r P i,i = 1,...,5 r ü t r z β αγxy αxz γyz = 0. t 3 t 3 ü P t ässt s r s ä 3 t ö t s s r s t rt t
47 ÿ s s ür ÿ s s α, β, γ, δ, ǫ 3 ä s r t s ts r 0 = z 3 9 xy 9xz yz = z xy 3xz yz. r t r P i ö r t ür s s s P 1 = (0,1,0), P = ( 1 P 4 = (,0, ), P 5 = (0, 3, 1 6, 1 1 3, 3 ), P 3 = (1,0,0), ). 3 z P 4 P 5 x P 3 P 1 y P t s s s är s P t s r ts z P 4 P P 1 P 5 P 3 x P 3 P P 1 y t s s s är s P t s
48 s r äÿ P t t α = β =... t α = 1+ 5 s t t 0 = z 1+ 5 = z 3+ 5 xy (1+ 5) 1+ 5 xy xz xz yz. r t r P i s s r 1+ 5 yz P 1 = (0,1,0), P = (,, ( 5 3) + 5 ), P 3 = (1,0,0) P 4 = (,0, ( 5 1) ), P 5 = (0,, ( 5 1) + 5 ). 4 4 z P 4 P 5 x P 3 P 1 y P t s s s är s P t s r ts P 4 P 5 P 3 P 4 P 5 P 3 P 1 P P 1 P t s s s är s P t s
49 t s tr s r t s s r s t3t r s rst ts r s r s r ä s s t ä r r tt s r r tt t r s 3 r t3 s s st s r tt s st t s r ts ss s t3 s t r s t3t ässt s r ss s s r s s t t s 3 r 3 r t s s s st 3 r3 r r s r t sst ts r s s t t r t s tr s r t s r t ü s s st t ÿ ä Ü r r r t s tr s r t t s r r tt 3 ür st r 3 ä st t r tr 1 r q r t s r tr 1 s rü 0 = n i,j=1, i=j a ij x i x j + n i,j=1, i<j 0 = x T A x + b T x +c, a ij x i x j + n b i x i +c x 1 x = Rn, b 1 b = Rn, A = (a ij ) R n n,a ji = a ij, c R x n b n s r st n = 3, x = (x,y,z) T, b = c = 0 A = (a ij ) R 3 3 a 1 = a 1 = p, a 13 = a 31 = q, a 3 = a 3 = r ür tr 1 A t s r s 0 p A = p q r 0 q r 1 ür s r s t = 0 β αγ β αγ 0 α i=1 γ 1 α γ, 0 = z β αγxy αxz γyz β αγ α 0 x β 0 = (x,y,z) αγ y. 0 α γ γ 1 t s tr s r t 3 3 ss tr 1 A tr 1 A r t r trä A s r rt A st s r t r st s P s A st r s 3 ä st s r t r st s P r 3 t I 3 ts tr 1 t s det(t I 3 A) = t (t 1) pqr 8 pqr 8 (p 4 q r (t 1)+ t+ 4 4 t) z
50 = t 3 t p t p q 4 4 = t 3 t p +q +r 4 r pqr t t 4 4 t+ p pqr 4 = t 3 t αβ γ +α+γ t+ αβγ +αβ γ 4 4 = t 3 t (1+δ)(1+ǫ)+α+γ (1+δ)γ +(1+δ)(1+ǫ) t+ 4 4 = t 3 t 1+δ +ǫ+1+β +α+γ γ +1+α+1+δ +ǫ+1+β t+ = t 3 t = t 3 t αβγδǫ α+β +γ +δ +ǫ t+ 4 t+ αβγδǫ α+β +γ +δ +ǫ 4 t3 r r t r ω := αβγδǫ s r t s s ür s r t r st s P p 3 A p(t) = t 3 t ω 1 t+ ω 4 4. s t t ss ω > 0 α,β,γ,δ,ǫ > 0 r ö t s ä st s st s P s p st 0 = t 3 t ω 1 t+ ω 4 4 = 4t 3 4t +(1 ω) t+ω. ös s r ts r rt A s ür s r r t 3 rt r t ö 3 t r st s ös 3 st r 3 ä st r r r st s P p ü r t s t3t r s 3 ω ä t s t rt t s r t3 ä ω 1 st r 1 r st t st s t 1 = G < 0 ür t r st t st ω röÿ r s st t r r t s r rt ω 0 s t s 3 t r r s t st t = G,t 3 = G st ω < ω 0 s t s t 1 = G t r r st st r s ω = ω 0 s t s t r t st t = t 3 = G > 0 r r t s rt ω 0 ts r t α 5 t α = 1+ 5 s s t3 3 s r r 1tr st s r t r st s P s t rs s r P s t 3 r P s t r st r 3 ö r s 3 ä st rst t s P s p (t) = 1t 8t+1 ω. ö 1tr st 3 st s t3 r rst t
51 ös t 0 = 1t 8t+1 ω t 1 = 1+3ω, 6 t = + 1+3ω. 6 s t3 r s rt ür t 3 t t st3 st s s t tsä 1tr st t ü r rü t t ss s st s s t 1 t t t t s ä st s t rs r rt r 1tr st r t 1 t p(t) s t3 s ässt s t r ss p(t 1 ) ür ω > 0 t röÿ r st ä r p(t ) ä r ω s r s s röÿ r s t p(t ) = 0 ω = = ( 1+ 5 ) 5 = α 5 t t ä 3 t rs p(t 1 ) > 0, p(t ) > 0 s t3t st ω < α 5, p(t 1 ) > 0, p(t ) = 0 s t3t 3 st ω = α 5, p(t 1 ) > 0, p(t ) < 0 s t3t r st ω > α 5. ω > 0 t ss 1 st rt r ä t st t = G 3 t st t rü r s s t s st t st s t = G = G ä r s r tt s r 3 t r st t röÿ r s s üss t = G > 0 t = G > 0 s r t r s st ω s ss röÿ ω 0 = α 5 r r t s rt ss ω α 5 st s t3t s r t r st s P A s r r st r t 3 s 3 s s st s t3t s r 3 1 st t s r st 3 r rt A r t G,G,G 3 t3 s G < 0 t ässt s tr 1 A s tr 1 rst G 0 0 A = 0 G G s tr 1 s r t tr 1 A r t rs st r ss tr 1 A r t sst s r t ss s s ts r ä r A t r r t s st t 1 3 s t r t r (1,0,0) T,(0,1,0) T 3 (0,0,1) T s r t s s r t sst s s t s r r tür t r t r t r s s t r s r t r 3 r rt s rt r rt t r 3
52 rt G,G,G ör r 3 s s t x,y z s s s r t s 3 r rs r s r t sst s t s t rä rt s r r tr 1 A 3 t s tr s r t s r s s t ür s q 3 0 = x T A x 0 = x T A x G = (x,y,z ) 0 G G 0 = G x +G y +Gz. x 0 = G ( G ) y + G ( ) G x y z z 1. s r r t s P t s t ä t t s 3 s r t r t sst s s s r t s s x y z s ä r s r s ss r ö z = 1 G ts r r rt r 3 t x y s G G G r 3 rx 3 y s z s ts r t r t s r t3 M r ä t s ss ässt s s r s st t ss s r s är s s P t P 1 P P 3 P 4 P 5 t ss r t s tr s r t r s ts r t tür t s s s r t ss r t r ss s P t s r P t s r s s är P t s P t s r r ä t r r t r ö t s r P t t 1 s s r r ss t3 p i ss s t 3 ÿ s s ä r α, β, γ, δ, ǫ r t s r ω = 0 > α 5 s ss s t3 r r st p t p(t) = t 3 t 19 4 t+5 s t r rt G,G,G A ür s ss s ä r s s rt r G,197, G 1,069, G,18.
53 s r t sst ss s s s s tr s r rt r ss s s t r t r s r rt r s s ä r s s r t r r rst r 3 G ör t r st r 3 t r 3 G r r tt r 3 G ör st 0,680 0,351 0,644 0,581, 0, 793, 0, ,447 0,498 0, 743 t s r t r ss s t r t r t P i s P t s r s 3 r t P i P 1 = ( 0,181, 0,793,0,581), P 3 = (0,644,0,351,0,680), P 5 = ( 0,711, 0,05,0,701). P = (0,699, 0,164,0,697), P 4 = ( 0,501,0,583,0,639), t r t s ür r rt ä r s s 0 x (,055) + y ( 1,03) z 1. t s s r s s ts r t s r r 3 s ä r s r s s s z = 1 t r ä t s t rs (1,0,0) T t r ä t (0,1,0) T 3 r r t r s r r t s tr s r t s r äÿ P t s r äÿ P t t α = β =... = 1+ 5 ω = α 5 rt r r 3 t ω = ω 0 s t r 3 rs
54 rt G < 0 G = G > 0 t ür t rt G G = 1+ 5 = α. t ss ässt s r 3 t t rt t r G = G = = α. r ss s r t sst s s tr s r rt r ss r t s t r rt s rt r rt t r 3 s rt r s t ä r s s 0 0,743 0,669 0,437, 0, 60, 0,669, 0, 899 0, 9 0,35 rst s r t r 3 t rt G ör r r tt t r 3 rt G r t r t P i s P t s t r t sst P 1 = (0,437, 0,60,0,669), P = (0,707,0,30,0,669), P 3 = (0,0,743,0,669), P 4 = ( 0,707,0,30,0,669), P 5 = ( 0,437, 0,60,0,669). r t s tr s r t t t r äÿ 0 = x ( 5 1) + y ( 5 1) z 1. s r r t s tr s r t
55 ür s t t s s r s z = 1 ä 5 1 r t r x y s r tt s ts r t r r 3 s ts ss s s r s t t s q 3 r ä s r s s st t r s s r s r r s s t s s r r äÿ s r s s P t s 13 tr s s rü r t r r x r s x y r s y z r s z s t s t r z s s r s r 3 r x y s P y P a b y φ b x a φ x φ 13 tr s t s t x a + y = 1, a > b, b C r r s t tt t rs r s a r r s s r st A = (a,0) r r rü r t E C 3 P t P = (x,y) r s 3 ör P t P = (x,y ) r s C st 13 tr s P rt s r φ = AOP ür r t x,y R P t x = a cosφ, y = b sinφ. s r ä 3 ä st s t P = (x,y ) r P = (x,y) 1 s tt t s t s t r 1 s 3 r tf r t r t F = (x,0) tr t r s r t r FP O t r t F FOP = AOP = φ s r t cosφ = OF OP
56 cosφ = x a x = a cosφ. t3 r s rt ür x r s ös y s r t r (a cosφ) a + y b = 1 b cos φ+y = b y = b sinφ. t r s r t r s ss ü t s s är s P t s P 1 P P 3 P 4 P 5 t r r ts s r ss s r t s tr s r t r z s s r t sst s ts r t ä st r tt r t E ts P t (0, 0, 1) rü rt s r rü r t st 3 r tt t r s t r ÿ 3 t s t r E st r E : z = 1 r 3 r r s s är s P t s E r t P i s t r r r tt t M r ä t E rs r Pr t s t s P i r E 3 r t R i ss r t 3 r t R i := (x i,y i,1) r t r s s r s är s P t P 1 P P 3 P 4 P 5 r ts s P t R 1 R R 3 R 4 R 5 r E ÿ r R i r Pr t s t r s r r ä s s ts r t r r s t r tt ä s s t r E s P t st s r s s s r t s t G G 3 s s r s ä G ö G x y r t r R i t s r s s rü t r x i = G G G cosφ i, y i = G sinφ i. r 3 t r φ i,i = 1,...,5 r rt 13 tr s r t R i,i 1,...,5 R i r t r E : z = 1 t ür r t r R i G G R i = ( G cosφ i, G sinφ i,1), i = 1,...,5. s Ü r t ÿ s t r t s r r t 3 P t r r 3 r s s s t r t st s r ür3 st
57 st t s t 3 s 13 tr s r t R i r rs s r t r 3 r r t r 3 ä st r3 s r s 3 s r ÿ s s R i s P t s t r t ür s r ä r s s t R 1 = ( 0,31, 1,364,1), R 3 = (0,948,0,516,1), R = (1,00, 0,35,1), R 4 = ( 0,784,0,91,1), R 5 = ( 1,015, 0,074,1). t R i r s r z = 1 s s r t t r r ss s r s 3 t s r s s r äÿ P t s t s s r t s r r 3 r r t R i R 1 = (0,653, 0,899,1), R = (1,057,0,343,1), R 3 = (0,1,11,1), R 4 = ( 1,057,0,344,1), R 5 = ( 0,653, 0,899,1). t R i r s r z = 1
58 r 3 rü 3 t s r t s r 3 r r t 3 r 3 s r t R i s P t s r rts t r t ri := (x i,y i,1) T,i = 1,...,5. s x i y i tür 3 ä s t p i s P t s rt s p i = P i+ P i+3 = Pi+ MP i+3, i = 1,...,5. r r t r r Pr t t R i s P t s tr r rs r M t P i s s är s P t s s s t tür 3 s t 3 s rs r s ü r i, r i+1 = R i MR i+1 = P i MP i+1 = p i+3, 3 p i = r i+, r i+3. t t ss P t r r ä π P i P i+ = Pi MP i+ = π, i = 1,...,5. tt ts r ü r ä t ü r st t r s ür s r t R i π = P imp i+ π = R imr i+ π = r i 1,r i+1 0 = x i 1 x i+1 +y i 1 y i s s t3 r rt ür x i y i s r r t 1 = 0 = x i 1 x i+1 +y i 1 y i+1 +1 G G cosφ i 1 G G cosφ i+1 + G G = cosφ i 1cosφ i+1 + G G sinφ i 1sinφ i+1. G G G sinφ i 1 G sinφ i+1 ür t ss r s rst s st r r ä st t t 3 3 rü 3 ÿ s t r t r s t 3 s 13 tr s r t s P t s st
59 s s t rt t r t3 ür 13 tr s φ i,i = 1,...,5 r t R i,i = 1,...,5 s r s s P t s t sin( φ i +φ i+ ) cos( φ i φ i+ ) sin( φ i 1 +φ i+1 ) cos( φ i 1 φ i+1 ) cos( φ i 1 +φ i+1 ) cos( φ i 1 φ i+1 ) = G G sinφ i, = G(G 1) G (G 1) sinφ i = cos( φ i +φ i+ ) cos( φ = G i φ i+ G ) cosφ i, G(G 1) G (G 1) sinφ i, = G(G 1) G (G 1) cosφ G(G 1) i = G (G 1) cosφ i. s r ts r ä t t ÿ r s r t s r ss r rt s r s r r r ö t ä st 3 r s s s s st r r st r r s r φ i r φ i 1 φ i+1 rs t3 r t r x i x i +y i y i +1 = 0, x i x i+ +y i y i+ +1 = 0. ös r rst s r x i r t r x i = y i y i +1 x i. s s t3 r 3 t r t ös y i r y i = x i x i+ x i+ y i x i y i+. s t3 s s r ss s rst r t s ÿ s ös x i r t x i = y i+ y i x i+ y i x i y i+. s s t3 r ür x i s r r s s r x i = y i+ y i x i+ y i x i y i+
60 G G cosφ i = G G cosφ i = G G cosφ i+ G G G sinφ i+ G sinφ i G G G G sinφ i G cosφ i G sinφ i+ sinφ i+ sinφ i cosφ i+ sinφ i cosφ i sinφ i+. tr tr s s t3 t ür 3 x y s t3 sinx siny = cos( x+y cosx cosy = sin( x+y )sin( x y ), )sin( x y ). rst s r t3 r ä r 3 r r r t st r r ür s s r G G cosφ i = G G cosφ i = G G cosφ i = G G cosφ i = cos( φ i+ +φ i )sin( φ i+ φ i ) sin(φ i+ φ i ) cos( φ i+ +φ i cos( φ i+ +φ i sin( φ i+ φ i cos( φ i+ +φ i )sin( φ i+ φ i ) sin( φ i+ φ i ) ). cos( φ i+ φ i ) )sin( φ i+ φ i ) )cos( φ i+ φ i ) s ts r t r 3 t s rst s r t r r s t3 r r t3 r 3 s ä st t x i x i+1 G 1 + y iy i+1 G G 1 = 0. r t s r st ür s r 3 r r s s ss r s s st r ü rs t s s rt s r s ür x i 3 y i r t ö r s t x i = G 1 G 1 y i = G 1 G 1 ür s s y i+1 y i 1 x i 1 y i+1 x i+1 y i 1 x i+1 x i 1 x i 1 y i+1 x i+1 y i 1
61 r s r t r r tr tr s s 3 s rst t s t 3 3 ss t G(G 1) G (G 1) = G(G 1) G (G 1), G(G 1) G (G 1) = G(G 1) G (G 1). r r rst s r 3 3 t s ö s ässt st s r rst ö r q r rt s G (G 1) G (G 1) = G(G 1) G (G 1). s st s t äq t 3 G (G 1) G(G 1) = G (G 1) G (G 1) s 3 G(G 1) G 1 = G (G 1) G. 1 s ss t s G s G r t ös r 0 = 4t 3 4t +(1 ω) t+ω s s ö r r ÿ r 0 = 4t 3 4t +(1 ω) t+ω ω = t(t 1). t 1 G G s s ös s r r s t ss r ü t s ss t rst s G ös st ässt s 3 t s 3 s ÿ r r s s t t r r r s r rö ÿ α,β,γ,δ ǫ s r s t3 α i := tan p i+3, i = 1,...5. t t s α 1 = δ, α = ǫ, α 3 = α, α 4 = β, α 5 = γ, α i = α i+5.
62 ÿ r ö r t r t r α i 1+α = γδ, 1+β = δǫ, 1+γ = ǫα, 1+δ= αβ, 1+ǫ = βγ s r ÿ r r 1+α i = α i α i+. s ss ässt s t ss r r s t3 r 3 r s r t r r r r t 3 tr s t t r s t3 r r tr r t rr ö r s r α i t r rts t r r i r t s s P t s s rü α i = tan p i+3 = r i r i+1 < r i r i+1 >. t r t3t s t3 r ür r ä st t β i := sin p i+3. st rstä ö r β i ä t r t r r i β i = sin p i+3 = r i r i+1 r i r i+1. r P r 3 tät r p i s s t3 β i tür s s s t β i = β i+5. tr tr s s t3 t ür x r s β i s t sin x = tan x cos x = tan x sec x = tan x tan x+1. β i = α i α i +1. r st α i ö r t r β i sα i r r t s r rt β i = α i α i +1 α i = β i 1 β i.
63 s röÿ α i β i s s t s r t 3 tr s
64 t s t s P t r r r ÿ ss t3 P t P t s ÿ ss t3 t r P t r t3 r r tr t r s t t tt 3 ä st r r 3ös s r r s r s t r r3 r s s t r ü r t t tt r r r s ss 3 t 3 rst ü r r r s s t t r s ÿ tt s r s 3 rü r r ä r s r t s r s r s r r r ÿ s t st r s r té s r r étés r t s s r s s r r r t tr t ä t rö t t r t tr rs r rts r är ss s s r s P t s r rü r s r r r r t tr 3 ö s r t t P t s Pr ss r ür r rs tät t3 t r s t r r 3 3 r ss rrä r s t 3 r ss r r t ss 3ü s s s Pr 3 s r 3 r t r ät r r r t r r tärs r r s st rs s st rt tt P t st r P r s r s r r3 s t t 3 P ts ÿ ss t3 r s r ä t r r té s r r étés r t s s r s t t st s t3 t str t 3 r K 1 K 3 r s t tt t M 1 3 M R 1 3 R s R 1 röÿ r s s R K r K 1 rü r s 3 r st M 1 M r tt t t a s t s t r r M 1 M röÿ r r r s K 1 3 P t P P s ss s t M 1 P = M 1 P = R 1, M P = R 1 +a, M P = R 1 a. s ä st s ä r P t A 0 röÿ r r s K 1 t t 0 s r r s s K r s P t A 0 s t K 1 t r P t A 1 3 r 3 t t t 1 K r A 1 t r P t A A 0 K 1 r ä t s str t r r r r s ss r tt t A n r t t K 1 3 t t n 1 t n K r s r Pr 3 ss s s ÿ s ss ür s r A n t A n = A 0, n N, n >, r ss s t ÿt s str t n s ü r r s K 1 s r s K s r s s t3t P t
65 A 1 t 0 t1 M A 0 A 3 t M 1 K A K 1 s r str t s t rs s r str t 3 t r ss t s t t t3 P ts ÿ ss t3 r 3 3 rs t t s s r s s r r r s r st s t s t s r s t ÿ ss t3 P t t r rt ÿt s s r t str t n r tt s r s s r t P t A 0 r s s s t r str t ä s t t3 3 rt P t s t r r té s r r étés r t s s r s r r ts r t tür t s r r r t s tt t s t3 3 r3 t r s r t à s t q q q t s ér ts s ts à 1 t s rt t à tr s s t s q s t ê s t t s s r èr s t q rs ê s t q r q s s t s t q r à s s rs s t q t t s s s t s q s s t s q rs t êtr q q r èr rr q s t r r rès s t s s t r t t s s ts rs s ôtés é r r t é t tr s s t s q s t ê s t t s s s r sé s
r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t
r t t r t ts r3 s r r t r r t t r t P s r t r P s r s r P s r 1 s r rs tr t r r t s ss r P s s t r t t tr r 2s s r t t r t r r t t s r t rr t Ü rs t 3 r t r 3 s3 Ü rs t 3 r r r 3 rträ 3 röÿ r t r r r rs
P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ
P P Ó P r r t r r r s 1 r r ó t t ó rr r rr r rí st s t s Pr s t P r s rr r t r s s s é 3 ñ í sé 3 ñ 3 é1 r P P Ó P str r r r t é t r r r s 1 t r P r s rr 1 1 s t r r ó s r s st rr t s r t s rr s r q s
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
P r s r r t. tr t. r P
P r s r r t tr t r P r t s rés t t rs s r s r r t é ér s r q s t r r r r t str t q q s r s P rs t s r st r q r P P r s r r t t s rés t t r t s rés t t é ér s r q s t r r r r t r st r q rs s r s r r t str
Assessment of otoacoustic emission probe fit at the workfloor
Assessment of otoacoustic emission probe fit at the workfloor t s st tt r st s s r r t rs t2 t P t rs str t t r 1 t s ér r tr st tr r2 t r r t s t t t r t s r ss r rr t 2 s r r 1 s r r t s s s r t s t
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r
r s s s t t P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r t t s st ä r t str t st t tt2 t s s t st
P P Ô. ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
P P Ô P ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FELIPE ANDRADE APOLÔNIO UM MODELO PARA DEFEITOS ESTRUTURAIS EM NANOMAGNETOS Dissertação apresentada à Universidade Federal
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis
Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis Daniel García-Lorenzo To cite this version: Daniel García-Lorenzo. Robust Segmentation of Focal Lesions on Multi-Sequence
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté
Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Jeux d inondation dans les graphes
Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488
Couplage dans les applications interactives de grande taille
Couplage dans les applications interactives de grande taille Jean-Denis Lesage To cite this version: Jean-Denis Lesage. Couplage dans les applications interactives de grande taille. Réseaux et télécommunications
Consommation marchande et contraintes non monétaires au Canada ( )
Consommation marchande et contraintes non monétaires au Canada (1969-2008) Julien Boelaert, François Gardes To cite this version: Julien Boelaert, François Gardes. Consommation marchande et contraintes
Forêts aléatoires : aspects théoriques, sélection de variables et applications
Forêts aléatoires : aspects théoriques, sélection de variables et applications Robin Genuer To cite this version: Robin Genuer. Forêts aléatoires : aspects théoriques, sélection de variables et applications.
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage
Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage José Marconi Rodrigues To cite this version: José Marconi Rodrigues. Transfert sécurisé d Images par combinaison
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
Vers un assistant à la preuve en langue naturelle
Vers un assistant à la preuve en langue naturelle Thévenon Patrick To cite this version: Thévenon Patrick. Vers un assistant à la preuve en langue naturelle. Autre [cs.oh]. Université de Savoie, 2006.
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets
E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets Benoît Combès To cite this version: Benoît Combès. E fficient computational tools for the statistical
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t
ss rt çã r s t à rs r ç s rt s 1 ê s Pr r Pós r çã ís r t çã tít st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica preparada
La naissance de la cohomologie des groupes
La naissance de la cohomologie des groupes Nicolas Basbois To cite this version: Nicolas Basbois. La naissance de la cohomologie des groupes. Mathématiques [math]. Université Nice Sophia Antipolis, 2009.
Multi-GPU numerical simulation of electromagnetic waves
Multi-GPU numerical simulation of electromagnetic waves Philippe Helluy, Thomas Strub To cite this version: Philippe Helluy, Thomas Strub. Multi-GPU numerical simulation of electromagnetic waves. ESAIM:
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle
Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle Anahita Basirat To cite this version: Anahita Basirat.
Mesh Parameterization: Theory and Practice
Mesh Parameterization: Theory and Practice Kai Hormann, Bruno Lévy, Alla Sheffer To cite this version: Kai Hormann, Bruno Lévy, Alla Sheffer. Mesh Parameterization: Theory and Practice. This document is
Analysis of a discrete element method and coupling with a compressible fluid flow method
Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a
ACI sécurité informatique KAA (Key Authentification Ambient)
ACI sécurité informatique KAA (Key Authentification Ambient) Samuel Galice, Veronique Legrand, Frédéric Le Mouël, Marine Minier, Stéphane Ubéda, Michel Morvan, Sylvain Sené, Laurent Guihéry, Agnès Rabagny,
Points de torsion des courbes elliptiques et équations diophantiennes
Points de torsion des courbes elliptiques et équations diophantiennes Nicolas Billerey To cite this version: Nicolas Billerey. Points de torsion des courbes elliptiques et équations diophantiennes. Mathématiques
Logique et Interaction : une Étude Sémantique de la
Logique et Interaction : une Étude Sémantique de la Totalité Pierre Clairambault To cite this version: Pierre Clairambault. Logique et Interaction : une Étude Sémantique de la Totalité. Autre [cs.oh].
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)
Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE) Khadija Idlemouden To cite this version: Khadija Idlemouden. Annulations de la dette extérieure
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes
Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes Jérôme Baril To cite this version: Jérôme Baril. Modèles de représentation multi-résolution pour le rendu
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques
Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques Raphael Chenouard, Patrick Sébastian, Laurent Granvilliers To cite this version: Raphael
ON THE MEASUREMENT OF
ON THE MEASUREMENT OF INVESTMENT TYPES: HETEROGENEITY IN CORPORATE TAX ELASTICITIES HENDRIK JUNGMANN, SIMON LORETZ WORKING PAPER NO. 2016-01 t s r t st t t2 s t r t2 r r t t 1 st t s r r t3 str t s r ts
❷ s é 2s é í t é Pr 3
❷ s é 2s é í t é Pr 3 t tr t á t r í í t 2 ➄ P á r í3 í str t s tr t r t r s 3 í rá P r t P P á í 2 rá í s é rá P r t P 3 é r 2 í r 3 t é str á 2 rá rt 3 3 t str 3 str ýr t ý í r t t2 str s í P á í t
UNIVERSITE DE PERPIGNAN VIA DOMITIA
Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA Préparée au sein de l école doctorale Energie et Environnement Et de l unité de recherche Procédés, Matériaux et Énergie Solaire (PROMES-CNRS, UPR 8521)
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation
Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation Florent Jousse To cite this version: Florent Jousse. Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation.
Pathological synchronization in neuronal populations : a control theoretic perspective
Pathological synchronization in neuronal populations : a control theoretic perspective Alessio Franci To cite this version: Alessio Franci. Pathological synchronization in neuronal populations : a control
Langages dédiés au développement de services de communications
Langages dédiés au développement de services de communications Nicolas Palix To cite this version: Nicolas Palix. Langages dédiés au développement de services de communications. Réseaux et télécommunications
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..
இர மத ப பண கள வ ன க கள 1.கணங கள ம ச ப கள ம 1. A ={4,6.7.8.9}, B = {2,4,6} C= {1,2,3,4,5,6 } i. A U (B C) ii. A \ (C \ B). 2.. i. (A B)' ii. A (BUC) iii. A U (B C) iv. A' B' v. A\ (B C) 3. A = { 1,4,9,16
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation
Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation Bertrand Marcon To cite this version: Bertrand Marcon. Hygromécanique des
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées
Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées Noureddine Rhayma To cite this version: Noureddine Rhayma. Contribution à l évolution des méthodologies
ITU-R P (2012/02)
ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU
LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni
LEM WORKING PAPER SERIES Non-linear externalities in firm localization Giulio Bottazzi Ugo Gragnolati * Fabio Vanni Institute of Economics, Scuola Superiore Sant'Anna, Pisa, Italy * University of Paris
ts s ts tr s t tr r n s s q t r t rs d n i : X n X n 1 r n 1 0 i n s t s 2 d n i dn+1 j = d n j dn+1 i+1 r 2 s s s s ts
r s r t r t t tr t t 2 t2 str t s s t2 s r PP rs t P r s r t r2 s r r s ts t 2 t2 str t s s s ts t2 t r2 r s ts r t t t2 s s r ss s q st r s t t s 2 r t t s t t st t t t 2 tr t s s s t r t s t s 2 s ts
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s
Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr st t t t Ø t q s ss P r s P 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t P r røs r Łs t r t t Ø t q s r Ø r t t r t q t rs tø
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation
Three essays on trade and transfers: country heterogeneity, preferential treatment and habit formation Jean-Marc Malambwe Kilolo To cite this version: Jean-Marc Malambwe Kilolo. Three essays on trade and
Conditions aux bords dans des theories conformes non unitaires
Conditions aux bords dans des theories conformes non unitaires Jerome Dubail To cite this version: Jerome Dubail. Conditions aux bords dans des theories conformes non unitaires. Physique mathématique [math-ph].
QBER DISCUSSION PAPER No. 8/2013. On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks
QBER DISCUSSION PAPER No. 8/2013 On Assortative and Disassortative Mixing in Scale-Free Networks: The Case of Interbank Credit Networks Karl Finger, Daniel Fricke and Thomas Lux ss rt t s ss rt t 1 r t
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels.
Stratégies Efficaces et Modèles d Implantation pour les Langages Fonctionnels. François-Régis Sinot To cite this version: François-Régis Sinot. Stratégies Efficaces et Modèles d Implantation pour les Langages
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat
Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat Pierre Coucheney, Patrick Maillé, runo Tuffin To cite this version: Pierre Coucheney, Patrick
Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc
Profiterole : un protocole de partage équitable de la bande passante dans les réseaux ad hoc Rémi Vannier To cite this version: Rémi Vannier. Profiterole : un protocole de partage équitable de la bande
Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
Imagerie Quantitative du Collagène par Génération de Seconde Harmonique Stéphane Bancelin To cite this version: Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.
ϕ n n n n = 1,..., N n n {X I, Y I } {X r, Y r } (x c, y c ) q r = x a y a θ X r = [x r, y r, θ r ] X I = [x I, y I, θ I ] X I = R(θ)X r R(θ) R(θ) = cosθ sinθ 0 sinθ cosθ 0 0 0 1 Ẋ I = R(θ)Ẋr y r ẏa r
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU
Traitement STAP en environnement hétérogène. Application à la détection radar et implémentation sur GPU Jean-François Degurse To cite this version: Jean-François Degurse. Traitement STAP en environnement
Une Théorie des Constructions Inductives
Une Théorie des Constructions Inductives Benjamin Werner To cite this version: Benjamin Werner. Une Théorie des Constructions Inductives. Génie logiciel [cs.se]. Université Paris- Diderot - Paris VII,
Développement d un nouveau multi-détecteur de neutrons
Développement d un nouveau multi-détecteur de neutrons M. Sénoville To cite this version: M. Sénoville. Développement d un nouveau multi-détecteur de neutrons. Physique Nucléaire Expérimentale [nucl-ex].
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles
Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles Alexandre Birolleau To cite this version: Alexandre Birolleau. Résolution de problème inverse
ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t
Ô P ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t FichaCatalografica :: Fichacatalografica https://www3.dti.ufv.br/bbt/ficha/cadastrarficha/visua... Ficha catalográfica
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
CAMI Wiskunde: Graad 10
10.9 Trigonometrie ie GRA RAAD 10_KABV Kurrikulum 1.1 Definieer ieer trigonometriese verhoudings as sinθ, cosθ en tanθ deur reghoekige driehoeke te gebruik. (a (b cosa sinc tana... sina tanc cosc (c (d
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Aboa Centre for Economics. Discussion paper No. 122 Turku 2018
Joonas Ollonqvist Accounting for the role of tax-benefit changes in shaping income inequality: A new method, with application to income inequality in Finland Aboa Centre for Economics Discussion paper
IJAO ISSN Introduction ORIGINAL ARTICLE
IJAO Int ISSN 0391-3988 J Artif Organs 2015; 38(11): 600-606 OI: 10 5301 a 5000 52 ORIGINAL ARTICLE Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da
BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1 Equations r(t) = x(t) î + y(t) ĵ + z(t) k r = r (t) t s = r = r (t) t r(u, v) = x(u, v) î + y(u, v) ĵ + z(u, v) k S = ( ( ) r r u r v = u
7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS 1. INTRODUCTION 2. TRIGONOMETRIC FUNCTIONS (CIRCULAR FUNCTIONS)
7. TRIGONOMETRIC RATIOS, IDENTITIES AND EQUATIONS. INTRODUCTION The equations involving trigonometric functions of unknown angles are known as Trigonometric equations e.g. cos 0,cos cos,sin + sin cos sin..
Voice over IP Vulnerability Assessment
Voice over IP Vulnerability Assessment Humberto Abdelnur To cite this version: Humberto Abdelnur. Voice over IP Vulnerability Assessment. Networking and Internet Architecture [cs.ni]. Université Henri
AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle
Fusion de données multicapteurs pour la construction incrémentale du modèle tridimensionnel texturé d un environnement intérieur par un robot mobile
Fusion de données multicapteurs pour la construction incrémentale du modèle tridimensionnel texturé d un environnement intérieur par un robot mobile Ayman Zureiki To cite this version: Ayman Zureiki. Fusion
Sheet H d-2 3D Pythagoras - Answers
1. 1.4cm 1.6cm 5cm 1cm. 5cm 1cm IGCSE Higher Sheet H7-1 4-08d-1 D Pythagoras - Answers. (i) 10.8cm (ii) 9.85cm 11.5cm 4. 7.81m 19.6m 19.0m 1. 90m 40m. 10cm 11.cm. 70.7m 4. 8.6km 5. 1600m 6. 85m 7. 6cm
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
Επιμέλεια:xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 8ο ΑΣΚΗΣΕΙΣ 701-800 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς Τσιφάκης
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
Bandwidth mismatch calibration in time-interleaved analog-to-digital converters
Bandwidth mismatch calibration in time-interleaved analog-to-digital converters Fatima Ghanem To cite this version: Fatima Ghanem. Bandwidth mismatch calibration in time-interleaved analog-to-digital converters.
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe
Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe Jérémy Lecoeur To cite this version: Jérémy Lecoeur. Segmentation d IRM cérébrales multidimensionnelles par coupe de graphe. Informatique
A hybrid PSTD/DG method to solve the linearized Euler equations
A hybrid PSTD/ method to solve the linearized Euler equations ú P á ñ 3 rt r 1 rt t t t r t rs t2 2 t r s r2 r r Ps s tr r r P t s s t t 2 r t r r P s s r r 2s s s2 t s s t t t s t r t s t r q t r r t
Efectos de la cromodinámica cuántica en la física del bosón de Higgs Mazzitelli, Javier
Efectos de la cromodinámica cuántica en la física del bosón de Higgs Mazzitelli, Javier 2016 07 22 Tesis Doctoral Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires www.digital.bl.fcen.uba.ar
Εφαρμοσμένα Μαθηματικά ΙΙ 1ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες 2ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ ο Σετ Ασκήσεων (Λύσεις) Διανύσματα, Ευθείες Επίπεδα, Επιφάνειες ου βαθμού Επιμέλεια: Ι. Λυχναρόπουλος. Βρείτε το διάνυσμα με άκρα το Α(3,-,5) και Β(5,,-) ΑΒ=< 5 3, ( ), 5 >=
Approximation de haute précision des problèmes de diffraction.
Approximation de haute précision des problèmes de diffraction. Sophie Laurens To cite this version: Sophie Laurens. Approximation de haute précision des problèmes de diffraction.. Mathématiques [math].
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
Interaction hydrodynamique entre deux vésicules dans un cisaillement simple
Interaction hydrodynamique entre deux vésicules dans un cisaillement simple Pierre-Yves Gires To cite this version: Pierre-Yves Gires. Interaction hydrodynamique entre deux vésicules dans un cisaillement
Déformation et quantification par groupoïde des variétés toriques
Défomation et uantification pa goupoïde de vaiété toiue Fédéic Cadet To cite thi veion: Fédéic Cadet. Défomation et uantification pa goupoïde de vaiété toiue. Mathématiue [math]. Univeité d Oléan, 200.
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Measurement-driven mobile data traffic modeling in a large metropolitan area
Measurement-driven mobile data traffic modeling in a large metropolitan area Eduardo Mucelli Rezende Oliveira, Aline Carneiro Viana, Kolar Purushothama Naveen, Carlos Sarraute To cite this version: Eduardo
http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΤΕΥΧΟΣ 6ο ΑΣΚΗΣΕΙΣ 501-600 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς
Geometric Tomography With Topological Guarantees
Geometric Tomography With Topological Guarantees Omid Amini, Jean-Daniel Boissonnat, Pooran Memari To cite this version: Omid Amini, Jean-Daniel Boissonnat, Pooran Memari. Geometric Tomography With Topological