Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII
|
|
- Θεόδωρος Ταρσούλη
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ ξ/ whr ± rfrs to th two indpndnt transformations that ar rlatd by parity, th dirction of th vctor χ is paralll to th vlocity, and ξ is th rapidity, tanh ξ = v. Two distinct transformations produc two distinct spinors that ar quivalnt in th rspt fram. To transform from on to th othr, transform to th rst fram with A + and thn back to th moving fram with A. χ + = σ ξ/ ζ χ = σ ξ/ ζ σ ξ χ + = χ (E σ p = mχ (E + σ p = mχ + χ ± ar ignkts of hlicity with ignvalus λ = ± /. In th ultra-rlativistic limit χ ± ar dcoupld and nvr mix. Hlicity is consrvd. And in th low nrgy limit, χ + = χ. Th coordinat stat rprsntation is (i t + iσ φ +(r, t = mφ (r, t (i t iσ φ (r, t = mφ + (r, t whr φ ± (r, t = d 3 p iet ip r χ ± (p Dfin A = Thn th Dirac quation is writtn φ ( φ+ ( A+ 0 = 0 A ψ 1 ψ ψ 3 ψ 4 ( σ ξ/ 0 0 σ ξ/ ( Σ i σi 0 = 0 σ i ( t + Σi x i + imγ0 ψ = 0 (3.1 ( or i t + iσ m ( φ+ m i t iσ = 0 φ 1
2 3.1. DIRAC EQUATION SUMMARY AND NOTATION Dfin γ 0 = ( 0 I I 0 Thn γ 0 = I and γ 0 Σ i = γ i = ( 0 σi σ i 0 Thn multiply Equation 3.1 from th lft by γ 0 and w hav γ 0 ( t + Σi x i + imγ0 ψ = 0 (γ 0 t + γi x i + imψ = 0 (γ γ i i + imψ = 0 (γ µ µ + imψ = 0 (iγ µ µ mψ = 0 Just as σ transforms as a thr vctor, γ µ = (γ 0, γ transforms lik a four vctor.
3 3.. CURRENT DENSITY 3. Currnt dnsity Go back to coordinat rprsntation Th complx conjugats ar i t φ + = iσ φ + + mφ (3. i t φ = iσ φ + + mφ + (3.3 (3.4 i t φ + = i (φ +σ + mφ (3.5 i t φ = i (φ σ + mφ + (3.6 Now multiply Equations 3. and 3.3 from th right by φ + and φ rspctivly and Equations 3.5 and 3.6 from th right by φ + and φ and add and w hav i t (φ +φ + = i (φ +σφ + + m(φ φ + φ φ + i t (φ φ = i (φ σφ + m(φ + φ φ +φ (3.7 (W hav usd Th continuity quation suggsts and (MΘ α = (M αβ Θ β = M αβ Θ β = Θ βm βα = (Θ M α (σφ α = (φ σ α ρ t + j = 0 ρ = φ +φ + + φ φ j = φ +σφ + φ σφ Not that thr is no mixing of lft and right stats. Mor notation. Also j µ = (ρ, j, µ j µ = 0 ρ = ψ ψ = ψ γ 0 γ 0 ψ = ψγ 0 ψ whr ψ = ψ γ 0 is th Pauli adjoint. Thn ( j = ψ σ 0 ψ = ψ γ 0 γ i ψ = 0 σ ψγψ and Coupling trm is ψγ µ ψa µ j µ = ψγ µ ψ 3
4 3.3. FERMION MAGNETIC MOMENT 3.3 Frmion magntic momnt First w introduc th EM fild by th usual stratgy, p p c A or in coordinat spac i µ i µ A µ. Thn th Dirac quation bcoms In trms of th lft and right handd spinors iγ µ ( µ A µ ψ = mψ [(i 0 V + σ ( i A]φ + = mφ [(i 0 V σ ( i A]φ = mφ + or mor compactly (P 0 σ Pφ + = mφ (P 0 + σ Pφ = mφ + Tak th sum and diffrnc and dfin Ψ = 1 (φ + + φ Φ = 1 (φ + φ Thn P 0 Ψ σ P Φ = m Ψ (3.8 P 0 Φ σ P Ψ = m Φ (3.9 Now dfin Substitution into th abov givs Φ = imt Φ, Ψ = imt Ψ Now that last quation can b rwrittn P 0 Ψ σ PΦ = 0 (3.10 P 0 Φ σ PΨ = Φ (3.11 σ PΨ = ( i 0 + V Φ Φ (3.1 in th non-rlativistic limit. Thn substitution into th nxt to last givs P 0 Ψ 1 σ Pσ PΨ = (P 0 1 (σ P Ψ = 0 4
5 3.3. FERMION MAGNETIC MOMENT which lads us to 0 = (i 0 V 1 (P iσ (P PΨ = (i 0 V 1 (P iσ k ɛ ijk P i P j Ψ = (i 0 V 1 (P i 1 σ kɛ ijk [P i, P j ]Ψ = (i 0 V 1 (P + 1 σ kɛ ijk [ i A j j A i ]Ψ = (i 0 V 1 (P + σ BΨ ( 1 ( i A + Th frmion magntic momnt µ = σ = g s g =. σ B + V Ψ = i 0Ψ 5
6 3.4. FINE STRUCTURE HAMILTONIAN 3.4 Fin Structur Hamiltonian Lt s writ an approximation of th Dirac quation to ordr (v/c 4. W bgin with a pair of coupld quations for th two spinors. In th non-rlativistic limit w solv for Φ in trms of Ψ and thn writ an quation with only Ψ which is th solution to th Schrodingr quation whn v = 0. W ar trying to driv th fin structur hamiltonian in th Schrodingr limit, sinc w will in th nd still rly on prturbation thory and that dpnds on knowing th unprturbd nrgis for H 0 = p + V. Rfring back to quations 3.10 and 3.11, in th non-rlativistic limit, Equation 3.11 bcom Substitution back into 3.11 givs Φ to nxt highr ordr Φ = ( P 0 and thn substituting into 3.10 P 0 Ψ = σ P ( P 0 Φ σ P Ψ (3.13 σ P + σ P Ψ σ P + σ P ( = σ P P 0 σ P 4m + σ P Ψ (3.14 Ψ (3.15 Our goal hr is to driv th Schrodingr quation to ordr (v/c 6. But Ψ is not th sam as ψ. Aftr all ψ d 3 r = d 3 r( Ψ + Φ d 3 r( Ψ + Ψ σ P σ P Ψ Thrfor, in ordr that ψ b proprly normalizd ψ = (1 + 1 ( σ P Ψ and Ψ = (1 1 ( σ P ψ and substitution into 3.15 givs an quation for th Schrodingr wav function P 0 (1 1 ( ( σ P ψ = σ P P 0 σ P 4m + σ P (1 1 ( σ P ψ Lt s xpand and rarrang that last ( P 0 ψ = σ P P 0 σ P 4m + σ P = = (σ P (σ P (1 1 ( σ P ψ + P 0 1 ( σ P ψ (σ P4 16m m ([P 0, (σ P ] + (σ P P 0 σ P 4m ([P 0, σ P] + σ PP 0 ψ (σ P4 16m m ([P 0, (σ P ] σ P 4m ([P 0, σ P] 6 (σ P 8m P 0 ψ
7 3.5. FINE STRUCTURE HAMILTONIAN (SAKURAI S TREATMENT V/C As w ar intrstd in a hydrogn atom, w know that P 0 = i t V and as w ar in an nrgy ignstat i t ψ = Eψ. Also σ P = σ p. (σ p (σ p4 (E V ψ = ( 16m m ([V, (σ p ] σ p (σ p ([V, σ p] 4m 8m (E V ψ = ( (p (p4 16m 3 + 8m ( V σ p (σ p (σ [V, p] 4m 8m (E V ψ = ( (p (p4 16m 3 + 8m ( V + (σ p (p [p, V ] iσ (p [p, V ] 4m 8m (E V ψ = ( (p (p4 16m 3 + 8m ( V + (σ 4m ( p V iσ ( ip V 8m (E V ψ = ( (p (p4 16m 3 + 8m ( V + 4m ( V iσ ( ip 1 dv (σ p r r dr 8m ( p ψ = ( (p (p4 16m 3 8m δ3 (r + 4m (σ L1 dv r dr ( p4 16m 3 ψ = ( (p (p4 8m 3 8m δ3 (r + 4m (σ L1 dv r dr ψ Th scond trm is th rlativistic corrction. Th third, th Darwin trm, and th last, th spin orbit coupling. Not that th factor of two that in th nonrlativistic approach coms from th Thomas prcssion is alrady thr. 3.5 Fin Structur Hamiltonian (Sakurai s tratmnt v/c To rcovr th fin structur hamiltonian w nd to kp trms to nxt ordr in v/c lik w startd to do in Equation?? and w nd to pay attntion to th normalization. Th solution to th Schrodingr must b normalizd and Ψ and Φ ar not, but rathr w should hav that ψ d 3 r = d 3 r( Ψ + Φ = d 3 r( Ψ (1 + p 4m c +... whr w us?? to lowst nonzro ordr. Now dfin so that ψ = ΩΨ = (1 + ψ = Ψ (1 + p 8m c ψ p 4m c Thn multiply?? from th lft by Ω 1 and for simplicity assum that A = 0. To ordr (v/c w hav [ p + V { p 8m c, ( p + V Ω 1 ( cp σ (c (1 + V E nr c cp σ + V Ω 1 ψ = E nr Ω ψ } σ p ( ] Enr V c σ p ψ = E nr (1 p 4m c ψ 7
8 3.6. DARWIN With som manipulation, using V = E and E = 0 w gt [ ] p + V p4 σ (E p 8m 3 c 4m c 8m c E ψ = E nr ψ Using w gt that th fourth trm is E = 1 r dv dr x 1 4m c r dv σ (x p = dr Th last is th Darwin trm. For hydrogn 3.6 Darwin 1 4m c r dv dr σ L = 8m c E = 8m c δ3 (x 1 c r dv dr S L W associat th Darwin trm with th fact that for a rlativistic lctron w cannot localiz it bttr than th compton wavlngth λ = 1/m. Thrfor, th intraction with th Coulomb fild is smard out and bcoms a bit wakr. W can stimat th siz of th ffct in ths trms by first considring th avrag of th Coulomb potntial ovr a small rgion of spac. Finally approximat δr 1/m and V (r = V (r 0 + V r i + 1 V δr i δr j +... r i r i,j i r j V (r 1 6 V (δr = 1 6 δ 3 (r(δr H D = 1 6 m δ3 (r which is prtty clos to what w gt from th Dirac quation. Not that it will only shift th nrgy of l = 0 stats, and it turns out by th sam amount as th contribution from L S whn l = 0 and spin orbit rally cannot b contributing at all. 8
Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity
Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Pairs of Random Variables
Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
General theorems of Optical Imaging systems
Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS
. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS. Givn :.53 Å 3?? n n ε πm n n Radius of n t Bo obit, n n ε πm n n 3 n 3 n 3 (3) () (.53).77Å n n ( ) () (.53) 53 Å. Givn : 3 7.7 x m? n n ε πm Radius of
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
16 Electromagnetic induction
Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION. Zhihao Ge
Mathmatical and Computational Applications, Vol. 5, No. 5, pp. 76-767, 00. Association for Scintific Rsarch DYNAMICAL BEHAVIORS OF A DELAYED REACTION-DIFFUSION EQUATION Zhihao G Institut of Applid Mathmatics
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
The Finite Element Method
Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola
Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Κύµατα παρουσία βαρύτητας
Κύµατα παουσία βαύτητας 8. Grait as in th ocan Sarantis Sofianos Dpt. of hsics, Unirsit of thns Was in th ocan Srfac grait as Short and long limit in grait as Wa charactristics Intrnal as Charactristic
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc
4 Dirac Equation To solve the negative probability density problem of the Klein-Gordon equation, people were looking for an equation which is first order in / t. Such an equation is found by Dirac. It
α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師
A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d
E + m. m + E 2m (σ p)/(2m) v. i( p) x = v(p, 97/389
97/389 Χρησιμοποιώντας τον ίδιο νορμαλισμό N = E + m έχουμε vp, s = σ p E + m E +m χs χ s, s =, 2 και ψ = vp, se i p x = vp, se ip x με p = E, p. Η επιλογή είναι χ = και χ 2 = γιατί η απουσία ενός άνω
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0
TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some
ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ.
ΕΝΙΣΧΥΣΗ ΠΛΑΚΩΝ ΚΑΙ ΔΟΚΩΝ ΣΕ ΚΑΜΨΗ ΜΕ ΜΑΝΔΥΕΣ Η ΕΛΑΣΜΑΤΑ ΣΥΝΘΕΤΩΝ ΥΛΙΚΩΝ. Σύμφωνα με τον Κανονιμό Επεμβάεων, ο νέος οπλιμός υπολοίζεται έτι ώτε ε υνεραία με τον υφιτάμενο παλαιό οπλιμό να αναλαμβάνονται
108/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματ
8/389 Διγραμμικές αναλλοίωτες ποσότητες Είναι χρήσιμο να βρούμε όρους της μορφής ψγψ, όπου Γ γινόμενο γ πινάκων, με καθορισμένους κανόνες μετασχηματισμού κάτω από μετασχηματισμούς Lorentz ώστε να φτιάξουμε
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u