A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND-2"

Transcript

1 Journal of Rlablty and Statstcal Studs; ISSN (Prnt: , (Onln: Vol. 0, Issu (07: 79-0 A NEW FORM OF MULTIVARIATE GENERALIZED DOUBLE EXPONENTIAL FAMILY OF DISTRIBUTIONS OF KIND- G.S. Davd Sam Jayaumar, A. Solarau and A. Sulthan 3 Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall, Inda Dtt.of Mathmatcs, Jamal Mohamd collg, Truchraall, Inda 3 Jamal Insttut of Managmnt, Truchraall, Inda E Mal: samaya77@gmal.com; Solarama@yahoo.co.n; contact@amsulthan.n Rcvd Octobr 04, 06 Modfd March 8, 07 Acctd Jun 4, 07 Abstract Ths ar rooss a gnralaton of doubl onntal famly of Sarmanov ty contnuous multvarat symmtrc robablty dstrbuton wth rfrnc to a nw form of Sam- Sola s multvarat gnrald doubl onntal famly of dstrbuton of nd- from unvarat cas. Furthr, w hav found t s Margnal, multvarat condtonal dstrbutons, gnratng functons n a closd srs rsson form and also dscussd ts scal cass. Th locaton, scal and sha aramtrs hav layd a sgnfcanc rol and t has dtrmnd th famly of som stng nown and famlar bvarat, mturs of bvarat dstrbutons, gnrald and multvarat dstrbutons as subclass of th roosd multvarat gnrald doubl onntal famly of dstrbutons of nd-. Ky Words: Sarmanov Ty, Sam-Sola s Multvarat Gnrald Eonntal Famly of Dstrbutons, Closd Srs, Sha Paramtr, Mturs of Bvarat Dstrbutons.. Introducton Th gnralaton of gnrald robablty dstrbutons and thr alcaton s vrsatl n all flds scally n fnanc, nsuranc and rs managmnt tc. For th 5 ast dcads, statstcans gav mor concntraton to th gnralaton of onntal dstrbuton and latr thy tndd thr nvstgaton to th doubl onntal dstrbuton n whch th unvarat gnralaton of gnrald doubl onntal dstrbuton dvrtd th ath of dstrbuton thory to nw way. Th authors Ban and Englhard (973 stmatd confdnc ntrval usng mamum llhood stmators and scal aramtr for th doubl onntal dstrbuton. On th othr hand Kanman (977 dvlod th tolranc ntrvals for th doubl onntal dstrbuton. Smlarly, Mr t al., (98 stmatd quantls basd on two ordr statstcs for onntal and doubl onntal dstrbuton. In a dffrnt mannr, Ulrch and Chn (987 dscussd a bvarat doubl onntal dstrbuton and ts gnralaton. Latr, Govndaraulu (00 charactrd doubl onntal dstrbuton usng th ctd valus of th sacng assocatd wth crtan trm ordr statstcs and th rlaton btwn th dffrncs of two roduct momnts of crtan trm ordr statstcs nducd by random samls of arbtrary ss. Basd on

2 80 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( th ast rvws, many authors studd th unvarat, b-varat doubl onntal dstrbuton and thy ald n many aras. In ths ar, th authors mad an attmt to brng out a famly of doubl onntal dstrbuton n a gnrald multvarat form whch lads to lor mor sub-class of Bvarat, mturs of Bvarat, gnrald and multvarat doubl onntal dstrbutons. Th structur of th roosd dstrbuton and ts scal cass ar dscussd n th subsqunt sctons.. Sam-Sola s Multvarat Gnrald Doubl onntal famly of Dstrbutons of Knd- Dfnton.: Lt X,X,X,X ar th random varabls followng contnuous 3 unvarat Gnrald doubl onntal famly of dstrbutons (or Gnrald Doubl Gamma dstrbuton havng th locaton (,scal( λ, and sha ( aramtrs( α, wth man ( and varanc (( / /(/ / α λ ( α / for all (= to.thn th Multvarat Sam-Sola s gnrald doubl onntal famly of dstrbutons of nd- and ts dnsty s dfnd as γ γ / α α (/ λ λ f(,,, = ρ 3 = = ( α / = ( whr,,, γ, γ and ral, λ,, α, > 0, ρ and ρ s th corrlaton co-ffcnt btwn th random varabls. th and Dfnton.: From ( and f = ( /,thn usng mult-dmnsonal Jacoban of transformaton, th Sam-Sola s multvarat Gnrald standard doubl onntal famly of dstrbuton of nd- and ts dnsty s dfnd as 3 / α (/ γ γ λ α λ = ρ = = = ( α / f(,,, ( whr,, γ, γ and ral, λ, α, > 0, Thorm.3: Th cumulatv dstrbuton functon of th Sam-sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- can also b rrsntd n trms of ts standardd form and t s gvn as (( α / (( / γ α γ F(,, 3, = ρ (γ / (γ / = = (/ λ ( α / (/ λ ( α / whr, φ( ; λ, α, =,, = = ϕ( ; λ, γ, α, ϕ( ; λ, γ, α, ρ φ( ; λ, α, (3 γ γ and ral,,, 0 ρ λ α >, ρ

3 A nw form of multvarat gnrald doubl onntal 8 Proof: Lt th Multvarat Cumulatv dstrbuton functon s gvn as F(,,, = 3 3 α / (/ u γ γ λ α λ ρu u u du = = = ( α / = F(,,, = α / (/ u γ γ λ α λ ρu u u du = = = ( α / = 3 α/ γ γ (/ λ u α λ ρu u = = ( α / = = F(,,, = 3 (( α γ / ρ (γ/ (γ / = = (/ λ ( α / (/ λ ( α / (( α γ / u du ( ;,,, ( ;,, ϕ λ γ α ϕ λ γ α, ( φ( ; λ, α, ρ = = = φ( ; λ, α, / λ ( α / whr s φ( ; λ, α, = s ds, ( α / 0 / λ (( α γ/ s ( ;,,, = s ds (( α / 0 γ ϕ λ γ α / λ (( α γ / s ( ;,,, = s ds (( α / 0 γ ϕ λ γ α ar th lowr Incomlt Gamma Intgrals. Thorm.4: Th Probablty dnsty functon of th Sam-sola s Multvarat Gnrald condtonal doubl onntal famly of dstrbutons of nd- of X on X, X3, X s γ γ α / α (/ λ λ ρ = = ( α / f(,, = 3 γ γ ρ = = (4 whr,, γ, γ and ral, λ,, α, > 0,, ρ and

4 8 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( Proof: Lt th Multvarat Condtonal dstrbuton of X on X, X3, X s gvn as f(,, = 3 f(,, = 3 f(,,, 3 f(,, 3 γ γ / α α (/ λ λ ρ = = = ( α / d γ γ α / α (/ λ λ ρ = = = ( α / γ γ α / α (/ λ λ ρ = = ( α/ f(,, = 3 γ γ ρ = = whr,,, γ, γ and ral, λ,, α, > 0, ρ Thorm.5: Man and Varanc of th Sam-sola s Multvarat Gnrald condtonal doubl onntal famly of dstrbutons of nd- ar γ ρ (( α γ/ = E( X X, X, X (5 = 3 γ/ γ γ (/ λ ( α/ ρ = = γ ρ (( α γ/ = V( X X, X, X 3 (6 = γ/ γ γ (/ λ ( α / ρ = = Proof: Th Condtonal ctaton and Condtonal varanc of a multvarat dstrbuton ar gvn as = E( X X, X, X f ( /,, d 3 3

5 A nw form of multvarat gnrald doubl onntal 83 E( X X, X, X = 3 γ γ α / α (/ λ λ ρ = = ( α / d γ γ ρ = = γ ρ (( α γ / = E( X X, X, X = 3 γ/ γ γ (/ λ ( α / ρ = = ( V( X X, X, X = E( X X, X, X f(,, d V( X X, X, X = 3 ( E( X X, X, X γ γ / α α (/ λ λ ρ = = ( α / d 3 γ γ ρ = = V( X X, X, X 3 γ ρ (( α γ / = = γ / γ γ (/ λ ( α / ρ = = Thorm.6: If thr ar =q random varabls, such that q random varabls X, X, X, X has a condtonal dndnc on th 3 q varablsx, X, X, X,thn th dnsty functon of th Sam-sola s Multvarat q q q 3 q Gnrald condtonal doubl onntal famly of dstrbutons of nd- s f(,,,,,, = 3 q q q q 3 q γ γ / q q q α α q (/ λ λ ρ ( ( α / = = = q q = q = q γ ρ γ (7

6 84 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( whr,, λ,, α, > 0, ρ, γ, γ and ral, Proof: Lt th multvarat condtonal law for q random varabls X, X, X3, Xq on th varabls Xq, Xq, Xq 3, Xq s gvn as f(,,,,,, = 3 q q q q 3 q f(,,,,,, = 3 q q q q 3 q f(,,,,,,, 3 q q q q 3 q f(,,, q q q 3 q γ γ / q q q q α α (/ λ λ ρ = = = ( α / γ γ q q q q α/ α q (/ λ ρ λ = = = ( α / = d f (,,,,,, = 3 q q q q 3 q γ γ / q q q α α q (/ λ λ ρ ( = = = ( α / γ γ q q ρ = q = q whr,, λ,, α, > 0, ρ, γ, γ and ral, Rmars: Th rsult of (7 can b dducd to th bvarat cas and t s gvn as f(,,,, = q q q 3 q γ γ / α α (/ λ λ ρ ( = ( α / γ γ q q ρ = q = q 3. Constants of Sam-Sola s Multvarat Gnrald Doubl onntal famly of Dstrbutons of nd- Thorm 3.: Th Margnal Co-varanc btwn th gnrald doubl onntal varabls X and X s gvn as

7 A nw form of multvarat gnrald doubl onntal 85 (( α γ / (( α γ / COV ( X,X = ρ ( / / γ γ ( / / λ λ ( α / ( α / (8 Proof: Lt th roduct momnt of th Sam-Sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- s gvn as n trms of co-varanc as CO V ( X, X = ( ( f (,, 3, d COVX (, X = γ γ / α α (/ λ λ ( ( ρ d = = = ( α / = (( α γ/ (( α γ / COV( X,X = ρ ( / / γ γ ( / / λ λ ( α / ( α / Rmar: Th rsult can b gnrald to th co-varanc btwn th th and th random varabl ar gvn as (( α γ / (( α γ / COV( X,X = ρ / / γ ( / λ ( / λ γ ( α / ( α / (9 γ / γ / COV( X,X ( / λ ( / λ ( α / ( α / ρ= (( α γ / (( α γ / whr, ρ = Thorm 3.: Th Momnt gnratng functon of th Sam-sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- s M, ( t, t t ( ;,,,, = ϕ t λ α = φ ( t ;,, λ, α, φ ( t ;,, λ, α, ( ;,,,, ( ;,,,, ρ = = ϕ t λ α ϕ t λ α Proof: Lt th momnt gnratng functon of a Multvarat dstrbuton s gvn as t M ( t, t, t t = f (,,, d M =,, 3, 3, 3 = ( t, t, t t =,, 3, 3, t γ γ / α α (/ λ = λ ρ d = = = ( α / = (0 (0a

8 86 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( From (0a, t s obsrvd that α / α ( / t λ λ d ( α / α q ( (( / t t q q / ( α / q = ( q!( / λ = α / γ α ( / t λ λ d ( α / ( α / (!( / t q ( t ( α ( γ q / ( γ q / q = q λ = Thus, by Intgraton M, ( t, t t = φ ( t;,, λ, γ, α, φ ( t;,, λ, γ, α, ϕ ( t;,, λ, α, ρ = = = ϕ ( t;,, λ, α, ϕ ( t;,, λ, α, whr φ ( t ;,, λ, γ, α, = t q ( t ( α ( γ q / ( γ q / ( α / q = (q!( / λ t q ( t ( α ( γ q / φ ( t ;,, λ, γ, α, = ( γ q/ ( α / q= (q!(/ λ q ( (( / t t α q ϕ ( t;,, λ, α, = q/ ( α / q= ( q!(/ λ q ( (( / t t α q ϕ ( t ;,, λ, α, = q/ ( α / q= ( q!(/ λ and s th Gamma functon rsctvly. Thorm 3.3: Th Cumulant of Sam-sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- s C ( t, t t =, P P φ ( t;,, λ, γ, α, φ ( t ;,, λ, γ, α, ( log ( ϕ ( t;,, λ, α, log ρ = = = ϕ ( t;,, λ, α, ϕ ( t;,, λ, α,

9 A nw form of multvarat gnrald doubl onntal 87 Proof: It s found from C,, ( t, t, t3, t = log ( M,, ( t, t, t3, t 3, 3, Thorm 3.4: Th Charactrstc functon of Sam-sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- s φ ( t, t t =, ω ( t;,, λ, γ, α, ω ( t;,, λ, γ, α, ψ ( t;,, λ, α, ρ ψ ( t ;,,,, ( ;,,,, λ α ψ t λ α = = = ( whr t q ( t ( α ( γ q / ω ( t;,, λ, γ, α, = ( γ q/ ( α / q= (q!(/ λ t q ( t ( α ( γ q / ω ( t ;,, λ, γ, α, = ( γ q/ ( α / q= (q!(/ λ q ( (( / t t α q ψ ( t;,, λ, α, = q / ( α / q= ( q!( / λ q ( (( / t t α q ψ ( t ;,, λ, α, = q/ ( α / q= ( q!(/ λ and s th Gamma functon rsctvly. Proof: Lt th charactrstc functon of a multvarat dstrbuton s gvn as φ t = φ,, ( 3, t, t, t3, t (,, 3, = f d = ( t, t, t t =,, 3, 3, t γ γ / α α (/ λ = λ ρ d = = = ( α / = (a From (a, t s obsrvd that α / α ( / t λ λ d ( α / q ( (( / t t α q q / ( α / q = ( q!( / λ α / α ( / t λ λ ( d ( α / ( α / (!( / λ t q ( t ( α ( γ q / ( γ q / q = q = =

10 88 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( Thus, by Intgraton φ ( t, t t =, ω ( t;,, λ, γ, α, ω ( t;,, λ, γ, α, ψ ( t;,, λ, α, ρ = = = ψ ( t;,, λ, α, ψ ( t;,, λ, α, 4. Som Scal cass Rsult 4.: If ρ = 0,whr,=,,, thn thr s no corrlaton btwn th random varabls and th Sam-Sola s multvarat Gnrald doubl onntal dnsty functon s rducd to roduct of un-varat Gnrald doubl onntal dstrbuton. Rsult 4.: From ( and f =, thn th dnsty of Sam-sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- rducs to γ γ f (, = ρ α / α / α α ( / λ (/ λ 4 ( α / ( α / whr,,,, γ, γ and ral, λ λ (3,, λ, λ, α, α,, > 0, ρ Ths s calld Sam-Sola s B-varat gnrald doubl onntal famly of dstrbutons of nd-. Rsult 4.3: From (0,f = ( / and = ( /, thn usng twodmnsonal Jacoban of transformaton, th Sam-sola s B-varat Gnrald standard doubl onntal famly of dstrbutons of nd- and ts dnsty s gvn as / / α α γ γ (/ λ (/ λ α α λ λ f(, = ( ρ 4 ( α / ( α / (4 whr,, γ, γ and ral,,, λ, λ, α, α,, > 0, ρ Ths s calld Sam-Sola s B-varat gnrald doubl onntal famly of dstrbutons of nd-.

11 A nw form of multvarat gnrald doubl onntal 89 Rsult 4.4: shown blow som Bvarat dstrbutons as scal cass of Sam-sola s Bvarat gnrald standard doubl onntal famly of dstrbutons of nd- from (4 for dffrnt sttngs of scal and sha aramtrs gvn Standard Lalac dstrbuton, Wth Scal aramtrs (, and Sha aramtrs ( γ, ( 4,, γ, γ and ral, ρ γ,,,,,( γ γ ρ whr Standard normal dstrbuton, Wth Scal aramtrs (, and Sha aramtrs ( γ, ( π γ γ γ,,,,,( ρ whr,, γ, γ and ral, ρ Doubl Gamma dstrbuton, Wth Scal aramtrs ( ν, and Sha aramtrs ν ( γ, γ, α, ( α α γ γ ν ν α α ν ν 4 ( α ( α α,,,( ρ whr,, γ, γ and ral, v, v, α, α > 0, ρ Standard Doubl Raylgh dstrbuton, Wth Scal aramtrs (, and Sha aramtrs ( γ, ( 4 γ γ γ,,,,, ( ρ whr,, γ, γ and ral, ρ Doubl ch-squar dstrbuton, Wth Scal aramtrs (, and Sha aramtrs ( γ, γ, n /, n /,,, ( n/ n/ (/ (/ ( n/ ( n/ 4 ( n / ( n / γ γ ( ρ whr,, γ, γ and ral, n, n > 0, ρ Doubl Mawll-Boltmann dstrbuton, Wth Scal aramtrs ( and Sha aramtrs ( γ, γ γ γ,3,3,,,( ρ, π whr,, γ, γ and ral,, > 0, ρ Doubl Nagaam dstrbuton, Wth Scal aramtrs ( Ω, ( γ, γ, m, m,,, γ γ ( ρ /m Ω /m and Sha aramtrs m m m m ( m / ( m / m m Ω Ω Ω Ω ( m ( m whr,, γ, γ and ral, m, m /, Ω, Ω > 0 ρ

12 90 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( Doubl ch dstrbuton, Wth Scal aramtrs (, and Sha aramtrs γ, γ, α, α,,, ( α / α / ( / ( / α α ( ( α / ( α / γ γ ( ρ whr,, γ, γ and ral, α, α > 0, ρ Doubl Erlang- dstrbuton, Wth Scal aramtrs ( /α, /α and Sha aramtrs ( γ, γ, α, α,,, γ γ ( α ( α α α ( α α α α 4 ( α ( α ( ρ whr,, γ, γ and ral, α, α,, > 0, ρ Doubl-Wbull dstrbuton, Wth Scal aramtrs ( α, α and Sha aramtrs ( γ, γ, α, α, α, α, α α α α γ γ α α ( / ( / α α 4 ( ρ whr,, γ, γ and ral, α, α,, > 0, ρ Rsult 4.5: shown blow som slctd B-varat mtur of dstrbuton as scal cass of Sam-sola s B-varat gnrald standard doubl onntal famly of dstrbutons of nd- from (4 for dffrnt sttngs of scal and sha aramtrs gvn Lalac-normal dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, π γ γ γ,,,,, ( ρ whr,, γ, γ and ral, ρ Lalac-Doubl Gamma dstrbuton, Wth Scal aramtrs (, /ν and sha α aramtrs ( γ, γ,,,,, v α ( v α / ( α γ γ ( ρ whr,, γ, γ and ral, v, α > 0, ρ Lalac-Doubl Raylgh dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,,,,, π γ γ ( ρ

13 A nw form of multvarat gnrald doubl onntal 9 whr,, γ, γ and ral, ρ Lalac-Doubl ch-squar dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, n /,,,, n/ ( (/ n/ 4 ( n / γ γ ( ρ whr,, γ, γ and ral, n > 0, ρ Lalac-Doubl Mawll Boltmann dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, 3,,, π γ γ ( ρ whr,, γ, γ and ral, > 0, ρ Lalac-Doubl Nagaam dstrbuton, Wth Scal aramtrs (, Ω / m and sha aramtrs ( γ, γ,, m,,,, m m ( m / m γ γ Ω Ω ( ρ ( m whr,, γ, γ and ral, m /, Ω > 0, ρ Lalac-Doubl ch dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, α,,, α / (/ α ( α / γ γ ( ρ whr,, γ, γ and ral, α > 0, ρ Lalac- Doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α and sha aramtrs ( γ, γ,, α,,, α γ γ ( α α ( α ( ρ 4 ( α whr,, γ, γ and ral,, α > 0, ρ Lalac- Doubl-Wbull dstrbuton, Wth Scal aramtrs (, α and sha aramtrs ( γ, γ,, α,, α,

14 9 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( α α γ α(/ α α 4 γ ( ρ whr,, γ, γ and ral,, α > 0, ρ Normal-Doubl Gamma dstrbuton, Wth Scal aramtrs (,/ ν and sha aramtrs ( γ, γ,, α,,, α v α v γ γ ( ρ π( ( α whr,, γ, γ and ral, v, α > 0, ρ Normal-Doubl Raylgh dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, ( π γ γ γ,,,,, ( ρ whr,, γ, γ and ral, ρ Normal-Doubl ch-squar dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, n /,,, n/ (/ ( n/ ( π( n / γ γ ( ρ whr,, γ, γ and ral, n > 0, ρ Normal-Doubl Mawll dstrbuton, Wth Scal aramtrs aramtrs ( γ, γ γ γ,, 3,,, ( ρ (, and sha π whr,, γ, γ and ral, > 0, ρ Normal Doubl Nagaam dstrbuton, Wth Scal aramtrs (, Ω / m and sha aramtrs ( γ, γ,,m,,, m m ( m / m γ γ Ω Ω ( ρ π( m whr,, γ, γ and ral, m /, Ω > 0, ρ Normal-Doubl ch dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, α/ (/ α ( π( α / γ γ γ,, α,,, ( ρ whr,, γ, γ and ral, α > 0, ρ

15 A nw form of multvarat gnrald doubl onntal 93 Normal- Doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α and sha aramtrs ( γ, γ,,α,,, α ( α γ γ α α ( ρ π ( α whr,, γ, γ and ral,, α > 0, ρ Normal- Doubl-Wbull dstrbuton, Wth Scal aramtrs (, α and sha aramtrs ( γ, γ,, α,,, α, α α γ γ α(/ α ( ρ π whr,, γ, γ and ral,, α > 0, ρ Doubl Gamma-Doubl Raylgh dstrbuton, Wth Scal aramtrs (/ ν, and sha aramtrs ( γ, γ, α,,,, α ( v α v γ γ ( ρ 4 ( α whr,, γ, γ and ral, v, α> 0, ρ Doubl Gamma-Doubl chsquar dstrbuton, Wth Scal aramtrs (/ ν, and sha aramtrs ( γ, γ, α, n /,,, α n/ v (/ α ( n/ ν γ γ ( ρ 4 ( α ( n / whr,, γ, γ and ral, v, α, n> 0, ρ Doubl Gamma-Doubl Mawll Boltmann dstrbuton, Wth Scal aramtrs ( (/ ν,, and sha aramtrs ( γ, γ,α, 3,,, α v ( v α ( α π γ γ ( ρ whr,, γ, γ and ral, v, α, > 0, ρ Doubl Gamma-Doubl Nagaam dstrbuton, Wth Scal aramtrs (/ ν, Ω / m and sha aramtrs ( γ, γ, α, m,,, m α m v v ( m / α m Ω Ω ( α ( m γ γ ( ρ

16 94 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( whr,, γ, γ and ral, m /, v, α, Ω > 0, ρ Doubl Gamma-Doubl Ch dstrbuton, Wth Scal aramtrs ((/ ν, and sha aramtrs ( γ, γ, α, α,,, α α/ v (/ α α v γ γ ( ρ ( α ( α / whr,, γ, γ and ral, v, α, α > 0, ρ Doubl Gamma-Doubl Erlang- dstrbuton, Wth Scal aramtrs (/ ν,/ α and sha aramtrs ( γ, γ, α, α,,, α α γ γ v ( α 4 ( α ( α ( ρ α α ( v α whr,, γ, γ and ral, v, α, α, > 0, ρ Doubl Gamma-Doubl Wbull dstrbuton, Wth Scal aramtrs (/ ν, and sha aramtrs ( γ, γ, α, α,, α, α α α v γ γ v α α α ( ρ 4 ( α whr,, γ, γ and ral, v, α, α, > 0, ρ α Doubl Raylgh-Doubl ch-squar dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, n /,,, n/ (/ ( n/ ( 4 ( n / γ γ ( ρ whr,, γ, γ and ral, n > 0, ρ Doubl Raylgh-Doubl Mawll Boltmann dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, 3,,, π γ γ ( ρ whr,, γ, γ and ral, > 0, ρ Doubl Raylgh-Doubl Nagaam dstrbuton, Wth Scal aramtrs (, Ω / m and sha aramtrs ( γ, γ,, m,,,

17 A nw form of multvarat gnrald doubl onntal 95 m m ( m / m Ω Ω ( m γ γ ( ρ whr,, γ, γ and ral, m /Ω > 0, ρ Doubl Raylgh-Doubl Ch dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, α,,,, α/ (/ α ( ( α / γ γ ( ρ whr,, γ, γ and ral, α > 0, ρ Doubl Raylgh-Doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α α and sha aramtrs ( γ, γ,,,,, α ( α γ γ α α ( ρ 4 ( α whr,, γ, γ and ral,, α > 0, ρ Doubl Raylgh-Doubl Wbull dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ,, α,, α, α α γ γ α α ( ρ 4 whr,, γ, γ and ral,, α > 0, ρ Doubl ch-squar-doubl Mawll Boltmann dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ, n /, 3,,, γ γ ( ρ α / n (/ ( n/ ( n / π whr,, γ, γ and ral, n, > 0, ρ Doubl ch-squar-doubl Nagaam dstrbuton, Wth Scal aramtrs (, Ω / m and sha aramtrs ( γ, γ, n /, m,,, / m n m ( (/ ( m / n/ m Ω Ω ( n / ( m γ γ ( ρ whr,, γ, γ and ral, m /, n, > 0, ρ

18 96 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( Doubl ch-squar-doubl Ch dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ, n /, α,,, n/ α/ (/ (/ ( n/ α ( ( n / ( α / γ γ ( ρ whr,, γ, γ and ral, n, α > 0, ρ Doubl ch-squar-doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α and sha aramtrs ( γ, γ, n /, α,,, n/ α ( (/ ( n/ α γ γ α α ( ρ 4 ( n / ( α whr,, γ, γ and ral, n, α, > 0, ρ Doubl ch-squar-doubl Wbull dstrbuton, Wth Scal aramtrs (, α and sha aramtrs ( γ, γ, n /, α,, α, / n ( / (/ n γ γ ( ρ ( n / π whr,, γ, γ and ral, n, α, > 0, ρ Doubl Mawll Boltmann- Doubl Nagaam dstrbuton, Wth Scal aramtrs (, Ω / m and sha aramtrs ( γ, γ, 3, m,,, m ( / m m m Ω Ω π ( m γ γ ( ρ whr,, γ, γ and ral, m /,, Ω > 0, ρ Doubl Mawll Boltmann- Doubl Ch dstrbuton, Wth Scal aramtrs (, and sha aramtrs ( γ, γ, 3, α,,, α/ (/ α π ( α / γ γ ( ρ whr,, γ, γ and ral,, α > 0, ρ Doubl Mawll Boltmann- Doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α and sha aramtrs ( γ, γ, 3, α,,,

19 A nw form of multvarat gnrald doubl onntal 97 α α γ γ ( α α π ( α ( ρ whr,, γ, γ and ral,, α, > 0, ρ Doubl Mawll Boltmann- Doubl Wbull dstrbuton, Wth Scal aramtrs (, α and sha aramtrs ( γ, γ, 3, α,, α, α α γ γ α (/ α π ( ρ whr,, γ, γ and ral,, α, > 0, ρ Doubl Nagaam-Doubl ch dstrbuton, Wth Scal aramtrs ( Ω / m, and sha aramtrs ( γ, γ, m, α,,, / m m α ( m / (/ m α γ γ Ω Ω ( ρ ( m ( α / whr,, γ, γ and ral, m /, Ω, α> 0, ρ Doubl Nagaam-Doubl Erlang- dstrbuton, Wth Scal aramtrs ( Ω / m,/ α and sha aramtrs ( γ, γ, m, α,,, m m α α γ γ ( m / ( α m α Ω Ω ( m ( α ( ρ whr,, γ, γ and ral, m /, Ω, α, > 0 ρ Doubl Nagaam-Doubl Wbull dstrbuton, Wth Scal aramtrs ( Ω / m, α and sha aramtrs ( γ, γ, m, α,, α, α m m α γ γ ( m / α(/ m α Ω Ω ( m ( ρ whr,, γ, γ and ral, m /, Ω, α, > 0, ρ Doubl ch- Doubl Erlang- dstrbuton, Wth Scal aramtrs (,/ α and sha aramtrs ( γ, γ, α, α,,, α / α (/ ( α γ γ α α α ( ρ ( α / ( α whr,, γ, γ and ral, α, α, > 0, ρ

20 98 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( Doubl ch- Doubl Wbull dstrbuton, Wth Scal aramtrs (, sha aramtrs ( γ, γ, α, α,, α, α / α α γ γ (/ α(/ α α ( ρ ( α / whr,, γ, γ and ral, α, α, > 0, ρ Doubl Erlang-- Doubl Wbull dstrbuton, Wth Scal aramtrs (/ α, α and sha aramtrs ( γ, γ, α, α,, α, α α α α γ γ ( α α(/ α α 4 ( α ( ρ whr,, γ, γ and ral, α, α, > 0, ρ Rsult 4.6: shown blow som slctd Multvarat dstrbutons as scal cass of Sam-Sola s Multvarat gnrald doubl onntal famly of dstrbuton of nd- from ( for dffrnt sttngs of Locaton, scal and sha aramtrs gvn Gnrald Lalac, dstrbuton wth locaton aramtrs (, scal aramtrs (,,, sha aramtrs ( γ,,,, γ γ ρ ( = = = (/ whr,, α, γ, γ and ral,, > 0, Lalac, dstrbuton wth locaton aramtrs ( scal aramtrs(,, sha aramtrs ( γ,,, γ γ ρ ( = = = whr,,, γ, γ and ral, > 0, Gnrald normal, dstrbuton wth locaton aramtrs ( scal aramtrs (,, sha aramtrs ( γ,,, γ γ (/ (/ ρ ( = = = (/ ρ ρ and

21 A nw form of multvarat gnrald doubl onntal 99 whr, ρ,, γ, γ and ral, λ,, > 0, Normal, dstrbuton wth locaton aramtrs ( scal aramtrs (,, sha aramtrs ( γ,,, γ γ / ρ ( = = π = whr,,, γ, γ and ral, Gnrald Doubl Gamma, dstrbuton wth locaton aramtrs (0, scal aramtrs(, / ν, sha aramtrs ( γ, α,, v v ( whr, α/ γ γ α ρ = = = ( α / γ, γ and ral,, v, α, > 0, Doubl Gamma, dstrbuton wth locaton aramtrs (0, scal aramtrs (, / ν, sha aramtrs ( γ, α,, v α v ( whr, α γ γ ρ = = = ( α, γ, γ and ral, v, α> 0, Doubl Raylgh, dstrbuton wth locaton aramtrs (0, scal aramtrs (,, sha aramtrs ( γ,,, γ γ ρ ( = = = whr,, γ, γ and ral, > 0, Doubl ch-squar, dstrbuton wth locaton aramtrs (0, scal aramtrs (,, sha aramtrs ( γ, n /,, (/ ( whr, n / γ ( n / γ ρ = = = ( n /, γ, γ and ral, n> 0, Doubl Mawll-Boltmann, dstrbuton wth locaton aramtrs (0, scal aramtrs (,, sha aramtrs ( γ, 3,, ρ ρ ρ ρ ρ

22 00 Journal of Rlablty and Statstcal Studs, Jun 07, Vol. 0( γ γ ρ ( = = π = whr,, γ, γ and ral, > 0, Doubl Nagaam, dstrbuton wth locaton aramtrs (0, scal aramtrs (, Ω / m, sha aramtrs ( γ, m,, / m α ( m / γ γ Ω m Ω ρ = = = ( m whr,, γ, γ and ral, m /, Ω> 0, Doubl ch, dstrbuton wth locaton aramtrs (0, Scal aramtrs (,, sha aramtrs ( γ, α,, whr, (/ α/ γ α γ ρ = = = ( α /, γ, γ and ral, α> 0, Doubl Erlang-, dstrbuton wth locaton aramtrs (0, scal aramtrs (,/ α, sha aramtrs ( γ, α,, ( α α ( whr, α γ γ α ρ = = = ( α, γ, γ and ral,, α> 0, Doubl-Wbull, dstrbuton wth locaton aramtrs (0, scal aramtrs (,, sha aramtrs ( γ, α, α, α γ γ α α ρ ( = = = whr,,, α> 0, Doubl rror, dstrbuton wth locaton aramtrs (0, scal aramtrs (,, sha aramtrs ( whr, ρ γ,,, ( γ γ ( / ρ = =, γ, γ and ral, Gnrald Doubl onntal of nd-, dstrbuton wth locaton aramtrs ( scal aramtrs (, λ, sha aramtrs (, α,, / α α (/ λ λ ρ ( = = = ( α / ρ ρ ρ ρ π ρ =

23 A nw form of multvarat gnrald doubl onntal 0 whr,,, γ, γ and ral, λ,, α, > 0, ρ 5. Concluson Th multvarat gnralaton of gnrald doubl onntal famly of dstrbutons n a natural form s mossbl and th authors adotd th Sarmanov systm of multvarat gnralaton of dstrbutons. At frst, th margnal unvarat dstrbutons of th Sam-Sola s Multvarat Gnrald doubl onntal famly of dstrbutons of nd- ar unvarat Gnrald doubl onntal dstrbutons. Scondly, th co-varanc and corrlaton co-ffcnt of any two gnrald doubl onntal varabls wll chang basd on th sha aramtrs of th dstrbuton. Smlarly, basd on th aramtr sttngs of th multvarat gnrald doubl onntal famly of dstrbutons of nd-, th authors furthr drvd th multvarat dstrbutons for th stng unvarat contnuous dstrbutons. Thus th authors rcommnd that th gnralaton of Sarmanov ty famly of symmtrc multvarat dstrbuton ons th way for logcal tnson of th gnralaton of symmtrc famly of all unvarat contnuous robablty dstrbutons n th statstcal ltratur. Rfrncs. Ban, L. J. and Englhardt, M. (973. Intrval stmaton for th twoaramtr doubl onntal dstrbuton, Tchnomtrcs, 5(4, Govndaraulu, Z. (00. Charactraton of doubl onntal dstrbuton usng momnts of ordr statstcs, Communcatons n Statstcs-Thory and Mthods, 30(, Kanman, R. F. (977. Tolranc ntrvals for th doubl onntal dstrbuton, Journal of th Amrcan Statstcal Assocaton, 7(360a, Mr, M. A., Dal, U., and Hassann, K. M. (98. Estmaton of quantls of onntal and doubl onntal dstrbutons basd on two ordr statstcs, Communcatons n Statstcs-Thory and Mthods, 0(9, Ulrch, G., and Chn, C. C. (987. A bvarat doubl onntal dstrbuton and ts gnralaton, In ASA Procdngs on Statstcal Comutng (. 7-9.

General theorems of Optical Imaging systems

General theorems of Optical Imaging systems Gnral thorms of Optcal Imagng sstms Tratonal Optcal Imagng Topcs Imagng qualt harp: mags a pont sourc to a pont Dstorton fr: mags a shap to a smlar shap tgmatc Imagng Imags a pont sourc to a nfntl sharp

Διαβάστε περισσότερα

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity

Homework #6. A circular cylinder of radius R rotates about the long axis with angular velocity Homwork #6 1. (Kittl 5.1) Cntrifug. A circular cylindr of radius R rotats about th long axis with angular vlocity ω. Th cylindr contains an idal gas of atoms of mass m at tmpratur. Find an xprssion for

Διαβάστε περισσότερα

UNIT 13: TRIGONOMETRIC SERIES

UNIT 13: TRIGONOMETRIC SERIES UNIT : TRIGONOMETRIC SERIES UNIT STUCTURE. Larg Objctvs. Itroducto. Grgory s Srs.. Gral Thorm o Grgory s Srs. Summato of Trgoomtrc Srs.. CS Mthod.. Srs Basd o Gomtrc or Arthmtco-Gomtrc Srs.. Sum of a Srs

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Generalized Linear Model [GLM]

Generalized Linear Model [GLM] Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:

Διαβάστε περισσότερα

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I Itrtol Mthtcl Foru Vol 6 0 o 64 379-388 So otrc Proprts o Clss o Uvlt Fuctos wth Ntv Cocts Dd y Hdrd Product wth Frctol Clculus I Huss Jr Adul Huss Dprtt o Mthtcs d Coputr pplctos Coll o Sccs Uvrsty o

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師 A G C T Juks and Cantor s (969) on-aramtr modl A T C G A G 0 0 0-3 C T A() A( t ) ( 3 ) ( ) A() A() ( 3 ) ( ) A( A( A( A( t ) A( 3 A( t ) ( ) A( A( Juks and Cantor s (969) on-aramtr modl A( A( t ) A( d

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Pairs of Random Variables

Pairs of Random Variables Pairs of Random Variabls Rading: Chaptr 4. 4. Homwork: (do at last 5 out of th following problms 4..4, 4..6, 4.., 4.3.4, 4.3.5, 4.4., 4.4.4, 4.5.3, 4.6.3, 4.6.7, 4.6., 4.7.9, 4.7., 4.8.3, 4.8.7, 4.9.,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

Transparency and liquidity in securities markets*

Transparency and liquidity in securities markets* Trasarcy ad lqudty scurts marts Taash U Isttut for Motary ad Ecoomc Studs Ba of Jaa (E-mal: taashu@bojorj Abstract Ths ar rods a framwor whch dals wth arous tys of trasarcy cocr th comosto of ordr flow

Διαβάστε περισσότερα

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ EV ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ ΚΑΙ ΑΠΛΟΥ ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ

ΣΥΓΚΡΙΣΗ EV ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ ΚΑΙ ΑΠΛΟΥ ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 1 ου Πανελληνίου Συνεδρίου Στατιστικής (8), σελ 115-1 ΣΥΓΚΡΙΣΗ EV ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ ΚΑΙ ΑΠΛΟΥ ΓΡΑΜΜΙΚΟΥ ΜΟΝΤΕΛΟΥ Χαράλαμπος Δαμιανού, Ξανθή Καρταλά Τμήμα Μαθηματικών,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF

IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF 100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS

Calculus and Differential Equations page 1 of 17 CALCULUS and DIFFERENTIAL EQUATIONS alculus and Diffrnial Equaions pag of 7 ALULUS and DIFFERENTIAL EQUATIONS Th following 55 qusions concrn calculus and diffrnial quaions. In his vrsion of h am, h firs choic is always h corrc on. In h acual

Διαβάστε περισσότερα

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών

Relative Valuation. Relative Valuation. Relative Valuation. Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Rlativ Valuatio Αρτίκης Γ. Παναγιώτης Rlativ Valuatio Rlativ Valuatio Υπολογισµός αξίας επιχείρησης µε βάση τρέχουσες αποτιµήσεις οµοειδών εταιρειών Ø Επιλογή οµοειδών επιχειρήσεων σε όρους κινδύνου, ανάπτυξης

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1. Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <

Διαβάστε περισσότερα

Stochastic Finite Element Analysis for Composite Pressure Vessel

Stochastic Finite Element Analysis for Composite Pressure Vessel * ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά ου Πανελληνίου Συνεδρίου Στατιστικής 008, σελ 9-98 ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ Γεώργιος

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

1.19 Curvilinear Coordinates: Curved Geometries

1.19 Curvilinear Coordinates: Curved Geometries Scton.9.9 Curlnr Coordnts: Curd Gomtrs In ths scton s mnd th spcl cs of two-dmnsonl curd surfc..9. Monoclnc Coordnt Systms Bs Vctors curd surfc cn b dfnd usn two cornt bs ctors wth th thrd bs ctor rywhr

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Concomitants of generalized order statistics from bivariate Lomax distribution

Concomitants of generalized order statistics from bivariate Lomax distribution ProbStat Forum, Volume 6, October 23, Pages 73 88 ISSN 974-3235 ProbStat Forum s an e-ournal. For detals please vst www.probstat.org.n Concomtants of generalzed order statstcs from bvarate Lomax dstrbuton

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Qualitative Analysis of SIR Epidemic Models in two Competing Species

Qualitative Analysis of SIR Epidemic Models in two Competing Species ntrnatnal Jurnal f Basc & Appld cncs JBA-J Vl: : 87 Qualtatv Analyss f pdmc Mdls n tw Cmptng pcs Abstract Almst all mathmatcal mdls f nfctus dsass dpnd n subdvdng th ppulatn nt a st f dstnctv classs dpndnt

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII

Relativsitic Quantum Mechanics. 3.1 Dirac Equation Summary and notation 3.1. DIRAC EQUATION SUMMARY AND NOTATION. April 22, 2015 Lecture XXXIII 3.1. DIRAC EQUATION SUMMARY AND NOTATION April, 015 Lctur XXXIII Rlativsitic Quantum Mchanics 3.1 Dirac Equation Summary and notation W found that th two componnt spinors transform according to A = ± σ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ

Διαβάστε περισσότερα

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679 APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared

Διαβάστε περισσότερα

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k

Φυγόκεντρος αποθήκευσης Κανονική n 1k Αγωγή n 2k Άσκηση 3. Τα παρακάτω δεδομένα δίνουν το πλήθος y των φυτών που διατήρησαν μια ιδιότητα όταν n φυτά βρέθηκαν κάτω από διαφορετικές συνθήκες. Ένας ποιοτικός παράγοντας (αγωγή) ήταν η αποθήκευση σε θερμοκρασία

Διαβάστε περισσότερα

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards

PULLEYS 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS. Groove dimensions and tolerances for Hi-Power PowerBand according to RMA engineering standards 1. GROOVE SPECIFICATIONS FOR V-BELT PULLEYS Figur 3 - Groov dimnsion nomnclatur or V-blts α go lp b Ectiv diamtr Datum diamtr d Tabl No. 1 - Groov dimnsions and tolrancs or Hi-Powr PowrBand according to

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

16 Electromagnetic induction

16 Electromagnetic induction Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Appendix A. Stability of the logistic semi-discrete model.

Appendix A. Stability of the logistic semi-discrete model. Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Constant Elasticity of Substitution in Applied General Equilibrium

Constant Elasticity of Substitution in Applied General Equilibrium Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ±

ψ(x) ψ (x) =exp[iγ a Θ a ] ψ(x) =1+iΓ a Θ a ψ ± CHPR III: SYMMRIS Sytrs OFo CD CD CD s b on local SU( c gag sytry In aton: global sytrs. Nöthr s hor L CD ( ( [γ D ] ( 4 Ga ν(g ν a ( (a 8 whr D g ( ( a( λ a an (. s Lt L CD b nvarant nr a global transoraton

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Verification. Lecture 12. Martin Zimmermann

Verification. Lecture 12. Martin Zimmermann Verification Lecture 12 Martin Zimmermann Plan for today LTL FairnessinLTL LTL Model Checking Review: Syntax modal logic over infinite sequences[pnueli 1977] Propositional logic a AP ϕandϕ ψ Temporal operators

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

Theorem 8 Let φ be the most powerful size α test of H

Theorem 8 Let φ be the most powerful size α test of H Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

ECE 222b Applied Electromagnetics Notes Set 3b

ECE 222b Applied Electromagnetics Notes Set 3b C b Appl lcomancs Nos S 3b Insuco: Pof. Val Loman Dpamn of lccal an Compu nnn Unvs of Calfona San Do Rflcon an Tansmsson. Nomal ncnc T R T R Fs fn h manc fls: 3 Rflcon an Tansmsson T R T R T R T R R T

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Additional Results for the Pareto/NBD Model

Additional Results for the Pareto/NBD Model Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

The Finite Element Method

The Finite Element Method Th Finit Elmnt Mthod Plan (D) Truss and Fram Elmnts Rad: Sctions 4.6 and 5.4 CONTENTS Rviw of bar finit lmnt in th local coordinats Plan truss lmnt Rviw of bam finit lmnt in th local coordinats Plan fram

Διαβάστε περισσότερα

Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία

Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 16 (σσ. 14-) DATA ANALYSIS BULLETIN, ISSUE 16 (pp. 14-) Συνεχείς συναρτήσεις και συντελεστής µεταβλητότητας: Προσέγγιση µέσα από δειγµατοληψία Νικόλαος Φαρµάκης Τµήµα

Διαβάστε περισσότερα