Diplomová práca. Žilinská univerzita v Žiline. Striedavý prenos trakčného výkonu na rušňoch nezávislej trakcie Ján Závodský

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Diplomová práca. Žilinská univerzita v Žiline. Striedavý prenos trakčného výkonu na rušňoch nezávislej trakcie Ján Závodský"

Transcript

1 Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra výkonových elektrotechnických systémov Diplomová práca Striedavý prenos trakčného výkonu na rušňoch nezávislej trakcie 2007 Ján Závodský

2 Anotačný záznam Priezvisko a meno : Závodský Ján Šk. Rok : 2006/2007 Téma diplomovej práce : Striedavý prenos trakčného výkonu na rušňoch nezávislej trakcie Fakulta : Elektrotechnická Katedra: Elektrickej trakcie a energetiky Počet strán : 67 Počet obrázkov : 44 Počet tabuliek : 6 Počet grafov : 0 Počet príloh : 3 Počet použ. lit. : 31 ANOTÁCIA / slovenský jazyk / V diplomovej práci som sa zaoberal problematikou striedavého prenosu trakčného výkonu. Zistil som stav vozidiel s týmto druhom prenosu u nás i v zahraničí. Ďalej som zhrnul technické požiadavky pre jednotlivé komponenty elektrického prenosu výkonu a štatisticky zistil niektoré parametre pre určenie optimálneho výkonu rušňa. V poslednej časti práce som zvolil vhodný spôsob riadenia trakčných motorov a navrhol schému riadenia (spolupráce) jednotlivých uzlov elektrického prenosu trakčného výkonu. ANOTÁCIA / anglický jazyk / In my diploma work I deal with the problem of an alternate transmission of tractive power. At first I find out status of AC/AC locomotives in our country and in foreign countries. Next I summarize technical requirements for individual components of electrical power transmission and I determine some constants for estimating of optimal locomotive power. In last part of my diploma work I select suitable control method of asynchronous traction motors and I design co-operation scheme of particular components of electrical power transmission. Kľúčové slová : dieselový motor, alternátor, usmerňovač, striedač, asynchrónny motor, optimálny výkon, trakčná charakteristika, priame momentové riadenie Vedúci DP : doc. Mgr. Ing. Milan Pospíšil, PhD. Recenzent : Dátum :

3 ŽILINSKÁ UNIVERZITA V ŽILINE ELEKTROTECHNICKÁ FAKULTA Katedra výkonových elektrotechnických systémov Ak. rok 2006/2007 ZADANIE DIPLOMOVEJ PRÁCE Meno: Študijný odbor: Ján ZÁVODSKÝ Elektroenergetické a silnoprúdové inžinierstvo Téma diplomovej práce: Striedavý prenos trakčného výkonu na rušňoch nezávislej trakcie Pokyny pre vypracovanie diplomovej práce: 1. Súčasný stav striedavého prenosu trakčného výkonu u vozidiel nezávislej trakcie 2. Návrh požiadaviek na jednotlivé uzly striedavého elektrického výkonu 3. Návrh riadenia striedavého elektrického prenosu výkonu Zoznam odbornej literatúry: [1] Firemná literatúra [2] Jansa, F.: Vozidla elektrické trakce, Nadas Praha, 1987 [3] Danzer, J.: Elektrická trakce 1, 2, 3, ZČU Plzeň, 2000 [4] Bednárik, B. a kol.: Elektrické pohony dieselelektrických vozidiel, EDIS Žilina, 2003 Predpokladaný rozsah práce počet strán textu: počet strán grafických príloh: max. 10 Vedúci diplomovej práce: Konzultant diplomovej práce: Recenzent diplomovej práce: doc. Mgr. Ing. Milan Pospíšil, PhD. doc. Ing. Bernard Bednárik, PhD. Dátum odovzdania diplomovej práce: Žilina

4 Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra výkonových elektrotechnických systémov Diplomová práca Textová časť 2007 Ján Závodský 3

5 Obsah Zoznam použitých skratiek a symbolov... 2 Úvod Súčasný stav striedavého prenosu trakčného výkonu u vozidiel nezávislej trakcie Návrh požiadaviek na jednotlivé komponenty striedavého prenosu trakčného výkonu Spaľovací motor Trakčný alternátor Trakčný usmerňovač a vyhladzovací kondenzátor Trakčný striedač Elektrodynamická brzda (EDB) Trakčný motor Predbežný návrh hlavných uzlov striedavého elektrického prenosu rušňa pre osobnú a rýchlikovú prepravu Metóda určenia P OPT pomocou štatistiky získaných koeficientov K OPT Metóda určovania P OPT pomocou koeficientov ρ a ν Určenie parametrov dieselového motora, alternátora a trakčných motorov Návrh riadenia striedavého elektrického prenosu výkonu Skalárne riadenie Vektorové riadenie Priame momentové riadenie Priame momentové riadenie s hexagonálnou dráhou vektora toku Elektronický systém spolupráce dieselového motora s trakčným generátorom a s trakčným motorom Záver Zoznam použitej literatúry

6 Zoznam použitých skratiek a symbolov 2p... [-]... počet pólových párov a adh...[m.s -2 ]... zrýchlenie vlakovej súpravy na medzi adhézie a t...[m.s -2 ]... výkonové zrýchlenie vlakovej súpravy AC... striedavý (z angl. Alternating Current = striedavý prúd) ALT... alternátor AS... asynchrónny stroj ATM... asynchrónny trakčný motor b min... [%]... minimálne brzdiace percento cosφ... [-]... účinník C... kondenzátor C F... [F]... filtračná kapacita DC... jednosmerný (z angl. Direct Current = striedavý prúd) DM... dieselový motor DTC... priame momentové riadenie ( Direct Torque Control ) EDB... elektrodynamická brzda EV... elektrické vykurovanie f 1... [Hz]... frekvencia prislúchajúca prvej harmonickej napätia f 1N... [Hz]... menovitá frekvencia prislúchajúca prvej harmonickej napätia f max... [Hz]... maximálna frekvencia (statora) f N... [Hz]... menovitá frekvencia f S... [Hz]... frekvencia statora F 0L... [kn]... odporová jazdná sila lokomotívy F al... [kn]... urýchľujúca sila lokomotívy F b...[kn]... brzdná sila F bmax... [kn]... maximálna brzdná sila F t... [kn]... ťažná sila F tadh... [kn]... ťažná sila na medzi adhézie F tk...[kn]... ťažná sila so zapnutým kúrením / klimatizáciou F tmax...[kn]... maximálna ťažná sila F treal... [kn]... ťažná sila s rešpektovaním jazdného odporu a urýchľujúcej sily F t... [kn]... trvalá ťažná sila 5

7 G al... [Hz]... adhézna tiaž lokomotívy G V... [Hz]... tiaž záťaže (vlaku) GTO... Gate Turn-Off (GTO tyristor tyristor vypínaný hradlom) HG... hlavný generátor HV... hnacie vozidlo i a, b, c...[a]... prúdy fáz a, b, c i αs...[a]... α-zložka statorového prúdu i βs...[a]... β-zložka statorového prúdu I m...[a]... amplitúda prúdu I N... [A]... menovitý prúd IM... impulzný menič IGBT... Insulated Gate Bipolar Transistor (Tranzistor s izolovaným hradlom) JMO... jednosmerný medziobvod JS... jednofázový striedač K OPT... [kw.t -1 ]... optimálny merný hmotný výkon L F... [mh]... filtračná indukčnosť m ALT... [kg]... hmotnosť alternátora m DM...[kg]... hmotnosť dieselového motora m ref... [N.m]... referenčný elektromagnetický moment m TM... [kg]... hmotnosť trakčného motora m vyp... [N.m]... vypočítaný elektromagnetický moment M al...[t]... adhézna hmotnosť lokomotívy M b... [N.m]... brzdný moment M bmax..[n.m]... maximálny brzdný moment M L... [t]... hmotnosť lokomotívy M V...[t]... hmotnosť záťaže (vlaku) M záb... [N.m]... záberový moment M zv... [N.m]... moment zvratu M zvg... [N.m]... moment zvratu asynchrónneho generátora M zvm...[n.m]... moment zvratu asynchrónneho motora MK... motor kompresora n 0...[min -1 ]... otáčky naprázdno n max...[min -1 ]... maximálne otáčky n N... [min -1 ]... menovité otáčky 6

8 n S...[min -1 ]... synchrónne otáčky n TP... [min -1 ]... maximálne otáčky turbodúchadla N V... počet valcov NB... nabíjačka batérie NS... napäťový striedač p 0L... [N.kN -1 ]... merný jazdný odpor lokomotívy p 0V... [N.kN -1 ]... merný jazdný odpor vlaku p al... [N.kN -1 ]... merná urýchľujúca sila lokomotívy p av... [N.kN -1 ]... merná urýchľujúca sila vlaku p e... [MPa]... stredný efektívny tlak p max...[mpa]... maximálny tlak vo valcoch p Sred... [N.kN -1 ]... merný odpor zo stúpania P ALT...[kW]... výkon alternátora P DM...[kW]... výkon dieselového motora P EK... [kw]... optimálny výkon dieselového motora P N... [kw]... menovitý výkon P OPT... [kw]... optimálny výkon P PP... [kw]... príkon pomocných pohonov P T... [kw]... trakčný výkon P Tk... [kw]... trakčný výkon so zapnutým kúrením / klimatizáciou P TM... [kw]... výkon trakčných motorov P 1TM...[kW]... výkon jedného trakčného motora P Tmax...[kW]... maximálny trakčný výkon P Tmin... [kw]... minimálny trakčný výkon P TA...[kW]... výkon trakčného alternátora PP... pomocné pohony PS... prúdový striedač R B...[Ω]... brzdný odpor R S... [Ω]... odpor statora RS... riadiaci systém s... [%]... sklz asynchrónneho motora s red... [ ]... redukované stúpanie s zvg... [%]... sklz zvratu asynchrónneho generátora s zvm...[%]... sklz zvratu asynchrónneho motora 7

9 SM... spaľovací motor STR... striedač t C... [s]... čas vybíjania kondenzátora do záťaže T... tlmivka TA... trakčný alternátor TM... trakčný motor TRV... transformátor vykurovania TU... trakčný usmerňovač u a, b, c...[v]... napätia fáz a, b, c U 1... [V]... prvá harmonická napätia U 1N... [V]... menovitá hodnota prvej harmonickej napätia U A... [V]... hodnota napätia fázy A U A0... [V]... potenciál svorky A voči zemi U AB...[V]... združené napätie fázy A a B U B...[V]... hodnota napätia fázy B U B0... [V]... potenciál svorky B voči zemi U BC...[V]... združené napätie fázy B a C U C...[V]... hodnota napätia fázy C U C0... [V]... potenciál svorky C voči zemi U CA...[V]... združené napätie fázy C a A U d... [V]... napätie jednosmerného medziobvodu U dav... [V]... stredná hodnota usmerneného napätia medziobvodu U N... [V]... menovité napätie U s... [V]... vektor statorového napätia U TAzdr.. [V]... združené napätie trakčného alternátora U TAmaxf.. [V]... amplitúda fázového napätia trakčného alternátora U zdr... [V]... združené napätie U αs...[v]... α-zložka statorového napätia U βs... [V]... β-zložka statorového napätia USM... usmerňovač V...[km.h -1 ]... trvalá rýchlosť V max...[km.h -1 ]... maximálna rýchlosť V Z...[MPa]... zdvihový objem valcov VDM... ventilátor chladenia dieselového motora 8

10 VS... verejná sieť VTM... ventilátory chladenia trakčných motorov VUS... ventilátory chladenia usmerňovača VYK... vykurovací obvod ε... [-]... koeficient využitia adhézie η ALT... [%]... účinnosť alternátora η STR... [%]... účinnosť striedača η TA...[%]... účinnosť trakčného alternátora η TM... [%]... účinnosť trakčného motora η U... [%]... účinnosť prevodu η USM... [%]... účinnosť usmerňovača m... [N.m]... šírka hysterézy momentového regulátora λ... obmedzenie množstvom (prebytkom) vzduchu ν... [-]... optimálny rýchlostný súčiniteľ ρ... [-]... koeficient adhézneho preťaženia φ a...[n.kn -1 ]... koeficient adhézie Ψ as...[wb]... zložka vektora statorového toku fázy a Ψ bs...[wb]... zložka vektora statorového toku fázy b Ψ cs...[wb]... zložka vektora statorového toku fázy c Ψ ref... [Wb]... referenčná hodnota statorového toku Ψ S...[Wb]... vektor statorového toku Ψ αs... [Wb]... α-zložka statorového vektora toku Ψ βas... [Wb]... projekcia β-zložky statorového vektora toku do fázy a Ψ βbs... [Wb]... projekcia β-zložky statorového vektora toku do fázy b Ψ βcs... [Wb]... projekcia β-zložky statorového vektora toku do fázy c Ψ βs... [Wb]... β-zložka statorového vektora toku ω max... [rad.s -1 ]... maximálna uhlová rýchlosť ω DM... [rad.s -1 ]... uhlová rýchlosť dieselového motora ω S... [rad.s -1 ]... synchrónna uhlová rýchlosť 9

11 Úvod V Slovenskej Republike je km tratí normálneho rozchodu (1435 mm), toho km elektrifikovaných [1]. To je o niečo viac ako 40%. Na zvyšných skoro 60-tich percentách tratí preto musíme použiť ako primárny zdroj energie iný ako elektrický (ak vylúčime akumulátorové hnacie vozidlá). Najčastejšie sa stretneme s dieselovým spaľovacím motorom. Tento nám umožňuje premeniť chemickú energiu nafty na mechanickú energiu. Zostáva nám otázka, ako túto mechanickú energiu preniesť na hnacie kolesá koľajového vozidla. Spaľovací motor nemôžeme použiť priamo na pohon hnacích kolies, pretože nie je možné regulovať točivý moment v takom rozsahu, ako pri trakčnom pohone treba (a nie je možné ho rozbehnúť z pokoja). Užitočný výkon dieselového motora je možné využiť len v rozsahu asi 50% - 100% menovitých otáčok. Preto musíme mechanický výkon preniesť na hnacie kolesá buď: 1. mechanickou prevodovkou a spojkou, 2. hydraulickou prevodovkou a spojkou alebo 3. elektricky. Použitie mechanickej prevodovky má svoje uplatnenie hlavne pri menších výkonoch (využívaná hlavne na cestných vozidlách). Má pomerne dobrú účinnosť, malú hmotnosť, je nenáročný na údržbu, ale jej hlavným nedostatkom je to, že je možné využiť plný výkon spaľovacieho motora iba pri niektorých konkrétnych otáčkach (porovnanie s elektrickým prenosom vidno na Obr. 1). Ďalším problémom pri použití mechanickej prevodovky pri väčších výkonoch (trakčné vozidlá s veľkou prívesnou záťažou) je, že potrebujeme rozmernú a drahú treciu spojku. Systém prenosu výkonu s hydraulickou spojkou nám umožňuje prenášať maximálny výkon prvotného motora pri všetkých rýchlostiach (podobne ako pri elektrickom prenose, ktorému sa budem venovať ďalej). Je pomerne rozšírený u koľajových vozidiel menších a stredných výkonov (cca do 1400 kw). Predstavuje len 35% hmotnosti rovnako výkonného elektrického prenosu trakčného výkonu a je asi o polovicu lacnejší. Hlavným problémom, prečo sa väčšinou používa elektrický systém prenosu trakčného výkonu, je častý vznik porúch hydraulického systému, spôsobený napr. netesnosťami spojov a poškodením hadíc, čo spôsobuje znečistenie životného prostredia [2]. 10

12 Obr. 1. Porovnanie priebehu trakčných výkonov vozidla so spaľovacím motorom A s mechanickým prenosom a 4 stupňovou prevodovkou B s elektrickým prenosom, krivka odpovedá rovnici P Tmax = F t.v pri ω max diesela C krivka odpovedá rovnici P Tmin = F t.v pri ω min diesela FS1 až FS4 priebehy ťažných síl pri jednotlivých stupňoch mech. prevodovky F ZA až F ZC priebehy síl jazdného odporu pri rôznych sklonoch trate Elektrický prenos trakčného výkonu nepredstavuje mechanickú väzbu medzi prvotným motorom a hnacími kolesami. Umožňuje plynulé využitie výkonu spaľovacieho motora pri všetkých rýchlostiach (0 V max ) vozidla, čo vidno z obr. 1 krivka B. K tomuto druhu prenosu trakčného výkonu ale potrebujeme generátor, trakčný(é) motor(y), prípadne polovodičové zariadenia (najčastejšie usmerňovače, striedače, 4 Q meniče). Systém takto nadobudne väčších rozmerov, hmotnosti a zložitosti v porovnaní s použitím prevodovky, či už mechanickej alebo hydraulickej. 11

13 Elektrický prenos trakčného výkonu sa ale nehodí pre menšie výkony (do cca 300 kw), pretože sa tu viac oplatia lacnejšie mechanické prevodovky s veľmi dobrou účinnosťou (cestné vozidlá). Podľa druhu použitého generátora (jednosmerný, striedavý) a motora (jednosmerný, striedavý) rozlišujeme tri druhy prenosu trakčného výkonu (P T ): 1. jednosmerný (DC/DC) 2. zmiešaný (AC/DC) 3. striedavý (AC/AC) Jednosmerný (DC/DC) prenos P T patrí medzi najstaršie a najjednoduchšie. Pozostáva zo spaľovacieho motora ktorý poháňa jednosmerné dynamo (spravidla umiestnené v jednej osi) a z jednosmerných trakčných motorov (najčastejšie sériových alebo cudzobudených). Riadenie výkonu je realizované zmenou výkonu prvotného motora (plný alebo dielčie výkony) a zoslabovaním budenia trakčných motorov (šuntovaním). Maximálny dosiahnuteľný výkon hnacieho vozidla s DC/DC prenosom P T je obmedzený rozmermi dynama asi do 1800 kw. Dynamo s väčším výkonom by presiahlo vozidlový profil. Zmiešaný (AC/DC) elektrický prenos P T je tvorený spaľovacím motorom, striedavým generátorom (alternátorom), usmerňovačom a jednosmernými trakčnými motormi. Jeho výhodou oproti DC/DC prenosu P T je vyšší dosiahnuteľný výkon (>2000 kw), pretože dynamo je v porovnaní s alternátorom (synchrónnym i asynchrónnym; pre trakčné účely sa ale používajú v drvivej väčšine synchrónne generátory) pri rovnakom výkone a otáčavej rýchlosti 2-3 násobne väčšie a ťažšie. Striedavé generátory sa taktiež vyznačujú vyššou účinnosťou a spoľahlivosťou, pretože nemajú komutátor, ktorý je najchúlostivejšou a najopravovanejšou časťou jednosmerných strojov. Striedavé trojfázové napätie je usmernené v trakčnom usmerňovači a napája jednosmerné trakčné motory. Nasadením synchrónneho generátora ale vzniká problém so štartovaním spaľovacieho motora. U DC/DC systémov sa na jeho roztočenie používalo jednosmerné trakčné dynamo s batériou. Tu musíme doplniť spaľovací motor štartérom (spúšťačom). Striedavý (AC/AC) prenos P T je pozostáva takisto ako AC/DC zo spaľovacieho motora, synchrónneho generátora a usmerňovača, ale namiesto jednosmerných trakčných motorov (TM) sú použité striedavé TM (najčastejšie asynchrónne s klietkou nakrátko, prípadne synchrónne). Týmto sme sa nadobro zbavili komutátorov v trakčnom reťazci, čím výrazne stúpla spoľahlivosť systému. Takisto stúpla i účinnosť a robustnosť, zmenšili sa 12

14 rozmery a hmotnosť systému, pretože AC motory majú v porovnaní s DC motormi vyšší pomer výkon/hmotnosť stroja. Asynchrónne trakčné motory sú bežne asi 2x ľahšie oproti jednosmerným trakčným motorom rovnakého výkonu. Môžeme tak dosiahnuť ešte väčší výkon hnacieho vozidla (HV). Použitie AC motorov v trakcii ale nebolo možné do 70-tych rokov 20. storočia, pretože neboli vyvinuté tak výkonné polovodičové prvky. Tie totiž umožňujú stavbu zdroja s regulovateľnou frekvenciou, ktorý je nevyhnutný pre hospodárnu reguláciu striedavého pohonu. Pri výkonoch používaných v trakcii je totiž odporová regulácia veľmi nehospodárna. Rozmery a hmotnosti trakčných meničov sa od počiatku používania značne zredukovali. Kým striedače prvých DE AC/AC rušňov v 70. rokoch obsahovali 96 tyristorov a 48 diód, rušeň v 80. rokoch obsahoval už len 24 tyristorov a 12 diód. Nasadením GTO tyristorov v roku 1987 znamenalo, že striedač obsahoval 6 GTO a 12 diód. Všeobecne možno konštatovať, že potreba polovodičov na DE rušeň rovnakého výkonu sa od 70-tych rokov zredukovala na cca 8% [3]. Tieto striedače umožňujú hospodárny rozjazd pri maximálnom momente TM a využitie konštantného trakčného výkonu v celom regulačnom rozsahu rýchlostí HV. Daňou za to je ale oveľa väčšia zložitosť a nákladnosť systému. 13

15 1 Súčasný stav striedavého prenosu trakčného výkonu u vozidiel nezávislej trakcie V roku 1971 spoločnosť Henschel - BBC predstavila verejnosti prvú DE lokomotívu so striedavým prenosom trakčného výkonu v Európe. Niesla označenie DE 2500 (Obr. 1.1) a vyrobené boli 4 aj 6-nápravové verzie. Jej výkon bol 1840 kw pre obe verzie. V striedačoch boli použité obyčajné tyristory. Obr Rušeň DE 2500 Podrobnejší prehľad parametrov tohto rušňa i ostatných HV uvedených nižšie nájdete v Tab.1.1 na strane 12. Vybral som 10 zaujímavých rušňov a dve motorové jednotky. Počty vyrobených kusov niektorých typov môžu byť vyššie. V roku 1980 vyrobila firma Siemens AG lokomotívu pre ťažký posun DE 500 (Obr. 1.2). V striedači už boli tento krát použité GTO tyristory. Vyznačovala sa vysokou ťažnou silou pri nízkych rýchlostiach a výbornou účinnosťou. Obr Rušeň DE

16 Ďalšou lokomotívou, ktorú by som rád spomenul bola F 69 PHAC (Obr. 2.3) od firiem EMD a Siemens. Bola to prvá DE lokomotíva s AC/AC prenosom trakčného výkonu v USA. Vyrobené boli len 2 kusy a slúžili hlavne na testovanie nového typu prenosu. Maximálna rýchlosť tohto typu je 177 km/h. Obr Lokomotíva F 69 PHAC V rokoch vyrobila firma BBC 4 kusy rušňov DE 1003 (Obr. 2.4). Boli určené na ťahanie vlakov s uhlím. Každý rušeň mal 2 spaľovacie motory, čo je vzhľadom na úspory pohonných hmôt veľmi výhodné pre tento typ vlaku. Ak šiel vlak prázdny, využíval iba jeden spaľovací motor a druhý bol vypnutý. Ak bol vlak naložený, využívané boli oba spaľovacie motory. Týmto riešením je možné ušetriť až 30% energií v porovnaní s jednomotorovou verziou. Obr Rušeň DE

17 Ďalší rušeň uvedený v tabuľke je univerzálny rušeň pre nákladné, osobné a hlavne rýchlikové vlaky DE 1024 (resp. BR 240) určený pre Deutche Bahne (Obr. 2.5). Vyrobila ho firma ABB. Má šesť hnacích náprav, dva striedače napájajú dve skupiny trakčných motorov (3 a 3). Menovitý výkon dieselového motora je 2650 kw, z toho pre trakciu možno použiť 2450 kw. Maximálna rýchlosť je 160 km/h. Obr Rušeň DE 1024 Najviac vyrobených kusov DE lokomotív so striedavým prenosom výkonu prináleží americkej lokomotíve pre ťažkú nákladnú dopravu SD 70 MAC (Obr. 2.6), ktorá vznikla spoluprácou firiem EMD a Siemens. Už prvotnou objednávkou 350 kusov pre U.S. Railroad Company Burlington Northern sa zaradila do histórie ako jedna z najväčších objednávok rušňov vôbec. Ďalšie rušne boli vyrobené pre Aljašku, Mexiko a Veľkú Britániu. Dodnes bolo vyrobených vyše 1100 kusov. Existuje viacero výkonových verzií, vyznačujú sa obrovskou ťažnou silou 780/640 kn (F tmax /F t ) a vysokou hmotnosťou (188 ton). Obr Rušeň SD 70 MAC 16

18 Mladším bratom SD 70 MAC je SD 90 MAC (Obr. 2.7). Vyznačuje sa ešte vyššou ťažnou silou a maximálnou rýchlosťou (viď tabuľka). Taktiež bolo vyrobených niekoľko výkonových variant (3210 až 4475 kw). Použité boli striedače s GTO tyristormi a odparovacím chladením. Vyrobených bolo úctyhodných 477 kusov. Obr Rušeň SD 90 MAC Akýmsi vrcholom techniky DE rušňov s AC/AC prenosom P T možno označiť vozidlo firmy ADtranz a GE Transportation Systems postavené v Kasseli (Nemecko) v roku Nesie označenie DE AC 33C a prezývku Blue Tiger (Obr. 2.8). Vyznačuje sa vysokou modularitou celé vozidlo je poskladané z jednotlivých modulov: rámov vozidla, podvozkov, kabín, trakčných striedačov, nízkonapäťových rozvádzačov, kabeláže a potrubných systémov. Takýto systém umožňuje vytvárať rôzne varianty vozidla (úzkorozchodné/ normálne/ širokorozchodné; úzka/ široká zástavba; jedno/ dve koncové stanovištia; nápravový tlak 16/ 18/ 22 ton; výkony spaľovacieho 1640/ 2460/ 3285 kw). Obr Rušeň DE AC 33C ( Modrý tiger ) 17

19 V roku 1999 vyrobila spoločnosť Siemens pre španielske dráhy ultraľahkú motorovú jednotku Talgo BT (Obr. 2.9). Vyznačovala sa možnosťou automatickej zmeny rozchodu z 1435 na 1668 mm a naopak a naklápacou konštrukciou. Dosahuje rýchlosti 220 km/h, no pri testovaní s ňou dosiahli rýchlosť až 254 km/h, čím si drží rekord medzi DE vozidlami. Je schopná vyvinúť zrýchlenie 1,5 m/s 2. Samotné hnacie vozidlo váži 44 ton, celá súprava 230 až 290 ton. Počet miest pre cestujúcich je 300 až 400. Obr Motorová jednotka Talgo BT V roku 1998 si objednala rakúska spoločnosť ÖBB (Spolkové rakúske dráhy) 70 ks DE rušňov pre univerzálne použite (nákladná i osobná doprava) s výkonom 1600 kw na obvode kolies (výkon dieselového motora je 2000 kw). Nesú označenie Rh 2016, resp. EuroRunner 20 (Obr. 2.10). Vyznačujú sa výbornou účinnosťou, vysokou spoľahlivosťou a nízkymi emisiami. Herkules je najtichší DE rušeň vo svojej triede. V súčasnosti je objednaných ďalších 80 kusov Rh Obr Rušeň Rh 2016 ( Herkules ) 18

20 Potreba modernizácie DE rušňov neobišla ani České dráhy. Bolo treba vytvoriť posunovaciu lokomotívu, ktorá prakticky nepotrebuje údržbu a má vysokú účinnosť a spoľahlivosť. Lokomotíva radu (T239.2 obr. 2.11) vznikla rekonštrukciou staršej lokomotívy (T239.1) so zmiešaným AC/DC prenosom P T. Kvôli dosiahnutiu vysokej spoľahlivosti boli odstránené prvky vyžadujúce údržbu, ako sú: relé, stýkače, komutátory, zberné krúžky, klinové remene, piestový kompresor a pod. Ďalej bol rušeň obohatený o schopnosť rekuperácie (energia použitá pre pomocné pohony) a o dva individuálne riadené IGBT striedače. Obr Rušeň Jediným DE vozidlom s AC/AC prenosom trakčného výkonu jazdiacim na Slovensku je motorová jednotka radu 840 (GTW 2/6 Obr. 2.12). Vznikla v spolupráci konzorcia GTW Vysoké Tatry, ktoré tvorili tieto tri firmy: Stadler (výroba hnacích modulov a podvozkov), Bombardier (elektrická výzbroj a riadiaci systém) a ŽOS Vrútky (výroba čelných modulov a konečná montáž). Vznikli kvôli potrebe nahradiť prestarnuté motorové jednotky radov 830, 850 a 851 pre regionálnu a prímestskú dopravu. Pôvodným zámerom bolo nakúpiť 70 kusov týchto jednotiek, neskôr už len 35 kusov, až nakoniec celá akcia skončila škandálom, vedúcim k odvolaniu ministra dopravy, pôšt a telekomunikácií a nákupu iba šiestich jednotiek 840. Tieto jednotky premávajú od roku 2004 na regionálnych tratiach v okolí Zvolena. Ak je potrebné zvýšiť prepravnú kapacitu vlaku, môžu sa spojiť dve jednotky radu 840, pričom riadiaci systém Mitrac umožňuje riadenie oboch jednotiek z jedného stanoviska. Motorová jednotka obsahuje 110 miest na sedenie (z toho 16 sklopných) a 119 miest na státie. Skladá sa z dvoch čelných častí určených pre cestujúcich a rušňovodiča a stredovej časti hnacieho modulu, kde je umiestnený spaľovací motor s trakčným generátorom, nádrž 19

21 na naftu, kompresor + elektromotor, hlavný zásobník vzduchu, batérie, trakčný menič, ventilátory a pod. Brzdové odporníky sú umiestnené na strechách postranných (čelných) modulov a využívajú prirodzené prúdenie vzduchu pri jazde. Spaľovací motor je značky MTU, 12-válcový s výkonom 550 kw. Synchrónny generátor je trojfázový, bezkartáčový, so zabudovaným budičom a výkonom 530 kw. Použité sú dva trakčné motory, sú asynchrónne s kotvou nakrátko a menovitým výkonom 262 kw. Trakčný menič je napäťového typu s použitím IGBT prvkov. Jeho menovitý výkon je 550 kw, výstupné menovité napätie 1170 V a frekvencia 0 až 270 Hz. Samozrejmosťou je použitie elektrodynamickej brzdy (prevádzková brzda riadená mikroprocesorom). Okrem nej sú použité aj: elektro-pneumatická kotúčová brzda (zastavovacia) a pružinová brzda (parkovacia). Obr Motorová jednotka radu 840 Informácie o DE vozidlách som čerpal z literatúry [3], [4], [5], [6] a [7]. 20

22 Tab. 1.1 Prehľad parametrov vybraných dieselelektrických vozidiel s AC/AC prenosom trakčného výkonu Typ rušňa DE 2500 DE 500 Výrobca Výkon diesel. Motora [kw] Usporiadanie náprav Henschel - BBC Siemens F 69 PHAC EMD + Siemens DE 1003 DE 1024 BBC ABB SD 70 MAC EMD + Siemens SD 90 MAC EMD + Siemens DE AC 33C Adtranz + GE Trans. Talgo BT Rh 2016 (ER 20) DE 1435 (709.6) Siemens Siemens ČKD GTW 2/6 (840) Stadler + Bombardier x / / Bo'Bo' / Co'Co' Bo Bo'Bo' Bo'Bo' Co'Co' Co'Co' Co'Co' Co'Co' B' Bo'Bo' Bo 2' + B'o + 2' Rozchod [mm] 1435 / / / Maximálna ťažná sila [kn] Trvalá ťažná sila [kn] Maximálna rýchlosť [km/h] / / / / Hmotnosť [t] 78 / ( ) Rok výroby Počet kusov >1097 >477 >60 2 >

23 2 Návrh požiadaviek na jednotlivé komponenty striedavého prenosu trakčného výkonu Principiálna schéma usporiadania systému pre striedavý elektrický prenos výkonu je na obrázku 2.1. Schéma v sebe zahŕňa aj pomocné pohony, obvod vykurovania a EDB. Dieselový motor DM poháňa alternátor ALT. ALT vyrába 3-fázové striedavé napätie, ktoré sa usmerní v usmerňovači USM a pokračuje do jednosmerného medziobvodu JMO. V ňom sa nachádza filtračná indukčnosť L F a filtračná kapacita C F potrebná pre vyhladenie napätia pre štyri napäťové striedače STR. Z každého napäťového striedača je individuálne napájaný trojfázový asynchrónny trakčný motor ATM. Môže byť použitý i menší počet striedačov, keď by každý napájal skupinu ATM. Paralelne s filtračným kondenzátorom C F je v JMO zapojený brzdný odporník R B s impulzným meničom, ktorý mení efektívnu hodnotu R B pri EDB. ATM ATM US ST ST ST ST ATM ATM Obr Principiálna schéma AC/AC prenosu trakčného výkonu Tento systém premeny striedavého prúdu (napätia) z alternátora cez JMO a striedač do trakčných motorov sa nazýva nepriamy. Existuje i priamy systém premeny, kedy je frekvencia striedavých veličín menená pomocou cyklokonvertora (obalového meniča) a nie je potreba vytvárať jednosmerný 22

24 medziobvod. K dosiahnutiu kvázisínusovej krivky výstupného napätia ale musí byť dodržaná podmienka, že vstupné striedavé napätie musí mať niekoľkonásobne vyššiu frekvenciu ako výstupné napätie cyklokonvertora [4]. Asynchrónne motory ale chceme využívať na vyšších frekvenciách (až do 200 Hz), aby mohli mať menšie rozmery. Na to, aby alternátor vyrábal napätie niekoľkokrát vyššej frekvencie (napr Hz), musel by mať asi 24 až 32 pólov, čo vedie ku konštrukcii stroja veľkého priemeru a malej dĺžky železa, čím by sa stal nevhodným k použitiu na vstavanie do skrine lokomotívy. Uvažujeme pritom, že spaľovací dieselový motor vyššieho výkonu (1500 kw a viac) má maximálne otáčky min -1. Ďalšou možnosťou ako dosiahnuť vyššiu frekvenciu výstupného napätia alternátora, je použiť namiesto spaľovacieho motora plynovú turbínu. Plynové turbíny bežne dosahujú otáčok min -1. Potom by vychádzala frekvencia výstupného napätia štvorpólového synchrónneho alternátora 600 až 1200 Hz. Takto je striedavý prenos trakčného výkonu riešiteľný s cyklokonvertorom v celom rozsahu pracovných otáčok prvotného motora i jazdných rýchlostí vozidla. Týmto spôsobom bol napr. riešený turboelektrický pohon mestského a diaľkového autobusa (300 kw) v bývalom ZSSR, s el. strojmi vyvinutými vo VÚES Brno a cyklokonvertorom v EVPÚ Nová Dubnica v rokoch Nevýhodou plynovej turbíny bol veľký hluk. Frekvenčne a napäťovo regulovaný výstup cyklokonvertora však vyžaduje vyhladenie základnej harmonickej, aby v TM nevznikali prídavné straty a parazitné momenty. Zhrnutím sa dá povedať, že v cyklokonvertore možno dosiahnuť určité úspory vo výkonovej elektronike, ale za cenu pomerne zložitých problémov v stavbe alternátora na vyššiu frekvenciu, v riadiacej elektronike a vo filtrácii výstupného striedavého napätia regulovaného závisle na frekvencii. Veľkosť napätia v JMO (Obr. 2.1) môžeme riadiť zmenou budenia trakčného alternátora alebo zmenou otáčavej rýchlosti DM (a tým vlastne i alternátora). Oproti riadiacemu systému (RS) u jednosmerného alebo zmiešaného prenosu trakčného výkonu je RS pre striedavý prenos oveľa zložitejší, pretože musí navyše riadiť jednotlivé statické výkonové meniče (striedače, prípadne riadené usmerňovača). Na druhej strane to má však veľkú výhodu, pretože to dovoľuje dokonalejšie riadenie HV. Môžeme napríklad eliminovať sklz náprav vhodným rozdelením momentov ATM pri rozdielnom zaťažení náprav pri rozjazde (lepšie využitie adhézie). 23

25 2.1 Spaľovací motor Ako prvotný motor sa pri trakčných aplikáciách a u samohybných HV veľkých výkonov (rušne, lode, dumpery) používa dieselový (naftový) motor, pretože je hospodárnejší ako benzínový (zážihový). Pre porovnanie: zážihový motor dokáže vyrobiť z jedného litra benzínu cca 3 kwh mechanickej energie a dieselový motor z litra nafty 4 kwh mechanickej energie [2]. Úlohou DM je premeniť chemickú energiu paliva (nafty) na mechanickú energiu. Tá sa získa spaľovaním paliva zmiešaného so vzduchom vo valcoch motora. Do valcov sa nasáva (prípadne vháňa) vzduch, ktorý sa pri kompresii zohreje na takú teplotu, ktorá zapáli vo vhodnom okamihu vstrieknuté palivo. Veľkosť DM podobne ako u elektrických strojov závisí aj od otáčavej rýchlosti. Pomalobežné DM sú väčšie a ťažšie, ale majú dlhú životnosť. Vysokootáčkové DM sú zasa (pri rovnakom výkone) menšie, ale s nižšou životnosťou. Preto volíme väčšinou kompromis strednootáčkové dieselové motory. Pri rozmerovo malých rušňoch (posunovacie rušne pre priemyselné využitie alebo ľahké motorové jednotky) sa z dôvodu úspory miesta a hmotnosti volia vyššie otáčky dieselového motora ( min -1 ). Podobne je to s dvojtaktnými a štvortaktnými DM: dvojtaktné sú menšie, ale menej hospodárne (palivo sa dodáva pri každej otáčke). Štvortaktné vychádzajú pri tom istom výkone väčšie, ale sú hospodárnejšie (palivo sa dodáva pri každej druhej otáčke) a ekologickejšie (dokonalejšie spaľovanie). Takže volíme najčastejšie štvortaktné strednootáčkové dieselové motory. Výkon DM závisí okrem otáčavej rýchlosti i od zdvihového objemu a od stredného efektívneho tlaku, ktorý ovplyvňuje množstvo paliva [28]. Od množstva paliva taktiež závisí moment DM. K dodanému palivu je ale potrebné primiešať dostatočné množstvo vzduchu, potrebného k jeho spáleniu. V skutočnosti musí byť vzduchu prebytok a preto sa vzduch do motora nesaje, ale vháňa turbodúchadlom. Tomuto systému sa hovorí preplňovanie. Stredný efektívny tlak a tým aj moment DM sa tak zvýši 1,5 až 2 krát. Riadiacou veličinou je teda množstvo paliva, ktoré regulujeme pomocou palivovej páky so servopohonom. Otáčavú rýchlosť nastavujeme podľa záťaže a je obmedzená: najnižšími prevádzkovými otáčkami voľnobežnými otáčkami a najvyššími prevádzkovými otáčkami menovitou otáčavou rýchlosťou. Voľnobežné otáčky sú také, pri ktorých stačí moment DM (privádzané palivo) práve na krytie strát v DM a zaistí ešte jeho plynulý chod. 24

26 Pomer otáčok naprázdno n 0 a maximálnych (menovitých) otáčok n max DM býva okolo 1 : 2,2 3,2. Ďalšie prevádzkové obmedzenia súvisia predovšetkým s teplotou resp. chladením a s mazaním. Výkon 4-taktného spaľovacieho motora je daný vzťahom: P DM 1 =. VZ. pe. ωdm [W; 1, m 3, Pa, rad/s] 4π kde: V Z...zdvihový objem p e...stredný efektívny tlak ω DM...otáčavá rýchlosť DM Pri návrhu DE vozidla vyberáme z dieselových motorov, ktoré výrobcovia ponúkajú v určitých výkonových radoch. Vývoj alebo prestavba DM je veľmi finančne a časovo náročná, preto sa rad typových výkonov DM obyčajne odvodzuje od určitého realizovaného objemu a typu valca. Jednotlivé výkonnostné stupne sa potom určujú združením niekoľkých valcov. Najčastejšie sa stretneme s 8, 12 a 16 valcovým prevedením DM s usporiadaním valcov do V pod uhlom 90. V tabuľke 2.1 sú niektoré údaje o DM od firmy Caterpillar. Motor typu 3512B je v trakcii veľmi často používaný. Je možné ho zaťažovať až na 1500 kw. Tab. 2.1 Porovnanie vybraných výkonových radov DM od firmy Caterpillar Typ motora Počet valcov Výkon [kw] n max / n 0 Hmotnosť [kg] 3508B / B / B / Pri určovaní potrebného výkonu DM musíme okrem výkonu pre trakčné účely uvažovať i s výkonom pre pomocné potreby (P PP = 8 10 % P DM ). Vyberáme najbližší vyšší výkon DM z daného typového radu. Na základe toho sa potom dimenzuje elektrický výkon zariadení na prenos trakčného výkonu. Pri riadení DM vychádzame z tzv. vajíčkového diagramu (Obr. 2.2), ktorý udáva závislosť stredného efektívneho tlaku p e na otáčkach motora. Nulovému momentu zodpovedá množstvo paliva pri voľnobehu. Čiary stáleho výkonu sú teda rovnoosé hyperboly. Do charakteristiky sa zakresľujú čiary, ktoré znázorňujú stále merné spotreby paliva v g/kwh (sústava oválov) a čiary obmedzení prevádzkových režimov. 25

27 Obr Charakteristika spaľovacieho motora (vajíčkový diagram) Jednotlivé obmedzenia predstavujú: λ obmedzenie množstvom (prebytkom) vzduchu, pump. medza pumpovacia medza turbodúchadla, p max zodpovedá maximálnemu tlaku vo valcoch, n TP maximálnym otáčkam turbodúchadla a čiarkovaná čiara medzi dymivosti. Z vajíčkového diagramu si pospájaním bodov s najnižšou spotrebou pre jednotlivé výkony zostavíme tzv. optimalizačnú charakteristiku (Obr. 2.3), ktorá priradzuje ku každému výkonu DM otáčky s najmenšou spotrebou. Pri riadení DM a elektrického generátora automatika priraďuje k požadovanému výkonu DM otáčky podľa optimalizačnej závislosti výkonu P EK = f(n). Pri AC/AC (i AC/DC) prenose trakčného výkonu musí byť DM doplnený o spúšťač, ktorý ho rozbehne, pretože synchrónny stroj nemá schopnosť roztočiť sa z kľudu (má nulový záberový moment). Pri DC/DC prenose sa na tento účel používa trakčné dynamo s batériou. Na obr. 2.4 a 2.5 sú ukážky moderných DM od firiem Caterpillar a MTU. 26

28 Obr Optimalizačné charakteristiky najvýhodnejšieho prevádzkového výkonu P priebeh kritickej medze zvládnuteľného výkonu pri plynulej práci DM Obr Caterpillar 3512B Obr MTU Serie

29 2.2 Trakčný alternátor Hlavnou úlohou generátora je premieňať mechanickú energiu z DM na elektrickú energiu. Trakčný alternátor (TA) je spojený so spaľovacím motorom, ktorý ho roztáča. Často tvorí DM s TA kompaktný celok, ukážka je na Obr Na trakčné účely sa používa zatiaľ hlavne synchrónny alternátor. Dôvodom, prečo sa pre trakčné účely nepoužíva asynchrónny generátor, je vyššia cena impulzného meniča potrebného na jeho reguláciu. Platí to hlavne pre stredné a veľké výkony prvotného motora (>1000 kw). Navyše spínacia frekvencia meničov takéhoto výkonu je pomerne nízka. Stretneme sa s ním skôr pri napájaní pomocných pohonov. Chladenie alternátora je väčšinou vlastné (ventilátor na rotore). Synchrónny generátor môže byť: s vinutým rotorom s permanentnými magnetmi v bezkefovom vyhotovení Obr Zeppelin CAT Power Module 3512B Synchrónny generátor s vinutým rotorom sa v trakcii často používa v spojení so statickým meničom budenia. Z hľadiska dynamiky je to najlepší spôsob pre reguláciu budenia TA. TA s permanentnými magnetmi má výbornú účinnosť, ale je veľmi drahý kvôli materiálom použitým v magnetoch. S ohľadom na cenu je ho možné použiť len do určitých výkonov (asi do 200 kw). TA v bezkefovom vyhotovení je v trakcii používaný najčastejšie, pretože nemá komutátor ani krúžky, čo značne zvyšuje jeho spoľahlivosť. Na rotore je umiestnený rotačný menič (usmerňovač). Principiálna schéma takéhoto typu alternátora je uvedená na Obr Dynamika riadenia je však horšia v porovnaní s alternátorom so statickým meničom budenia. Stator bezkefového alternátora obsahuje budiace cievky budiča a zároveň rozložené trojfázové vinutie samotného generátora. Na hriadeli spolu s rotorom hlavného generátora je 28

30 umiestnený budič, ktorý je tvorený zase trojfázovým synchrónnym generátorom, ale opačnej konštrukcie t.j. budenie budiča je umiestnené v statore stroja a rozložené trojfázové vinutie je na rotore stroja a napája cez usmerňovač budiace vinutie hlavného generátora. Takéto usporiadanie stroja sa väčšinou dodáva priamo s vbudovaným regulátorom, ktorý je umiestnený na svorkovnici stroja. Tento regulátor je nastavený tak, aby na výstupných svorkách generátora udržal menovité napätie a to i pri poklese otáčok na 2/3 nominálnych otáčok. Generátory tohto typu sa vyrábajú i optimalizované pre elektrickú trakciu a dajú sa zakúpiť spolu so spaľovacím motorom [29]. Obr Usporiadanie bezkefového synchrónneho generátora Synchrónne generátory pre trakciu mávajú 4 12 pólov (obyčajne však 10 12, aby bolo možné dosiahnuť vyššiu frekvenciu trojfázového napätia). Používa sa konštrukcia s vyniknutými pólmi. Vzhľadom na spoluprácu s usmerňovačom je statorové vinutie zapojené vždy do hviezdy. Veľkosť výstupného napätia TA regulujeme otáčkami DM alebo zmenou budenia TA. Výkon trakčného generátora určíme podľa vzťahu: TA ( P DM P PP ) TA P = η. kde: P DM...výkon dieselového motora P PP...príkon pomocných pohonov (8 10 % P DM ) 29

31 η TA...účinnosť TA (0,94 0,96) Pri použití alternátora s dvomi statorovými vinutiami je výhodné posunúť ich vzájomne o 30 elektrických, takže výsledné pulzovanie usmerneného napätia zodpovedá 12- impulznému usmerneniu. Charakteristiky alternátora pri konštantnom budení a na rôznych otáčkových stupňoch sú na Obr Pre všetky charakteristiky je spoločný bod nakrátko, pretože ak zanedbáme činné odpory, s klesajúcimi otáčkami klesá i indukované napätie a reaktancia nakrátko. Prúd nakrátko je daný pomerom indukovaného napätia a reaktancie nakrátko. Na každom otáčkovom stupni n 1 n 5 môže dieselový motor odovzdávať iba určitý výkon, čo v diagrame U = f(i) predstavuje približne rovnoosé hyperboly P 1 P 5. Obr Charakteristiky alternátora pri konštantnom budení 2.3 Trakčný usmerňovač a vyhladzovací kondenzátor Používa sa neriadený, šesťpulzný usmerňovač v mostíkovom zapojení (Obr. 2.9). Na vyhladenie usmerneného napätia a uzavretie obvodu pre vyššie harmonické sa za usmerňovač do jednosmerného medziobvodu umiestňuje filtračný kondenzátor C F. U vozidiel nezávislej trakcie s elektrickým prenosom výkonu, pokiaľ sa trakčný prúd uzatvára len na vozidle, tlmivka nemusí byť použitá. Nebezpečie rušenia môže ale vzniknúť pri napájaní vykurovania vlaku, kde sa spätný prúd uzatvára cez koľajnice [28]. 30

32 Obr Neriadený 3-fázový mostíkový usmerňovač Stredná hodnota usmerneného napätia (ideálna) je: U dav = U TAmax f = U TAzdr = 1,3505. U π π. 3 TAzdr Pri dimenzovaní usmerňovača musíme rátať s preťažením počas rozjazdu, ktoré vyvolá 1,5 až 2-násobok strednej hodnoty prúdu diódami. Ďalej treba usmerňovač nadimenzovať na maximálne napätie alternátora (napätie naprázdno). Kvôli dostatočnej odolnosti a spoľahlivosti usmerňovača musíme brať ohľad aj na prípadný skrat. Chladenie trakčného usmerňovača je možné realizovať tak, že ho umiestnime do sacieho kanála chladiaceho vzduchu generátora. Ten sa otáča len jedným smerom a preto je možné dosiahnuť dobrej účinnosti ventilátora vhodným zakrivením lopatiek [30]. Usmernené napätie v JMO má určité zvlnenie (Obr. 2.10), čiže na jednosmerné napätie je nasuperponovaná striedavá zložka, ktorá obvykle nemá sínusový priebeh a obsahuje vyššie harmonické. Frekvencia výstupného napätia alternátora sa podstatne mení s napätím, takže pri vyššom napätí je aj vyššia frekvencia. A pretože je zvlnenie priamo úmerné amplitúde striedavého napätia a nepriamo úmerné frekvencii, pôsobí to priaznivo na vyhladenie usmerneného prúdu. Pre návrh filtra (v našom prípade kondenzátora) v prevažnej väčšine postačia údaje o zvlnení, ktoré je definované ako pomer efektívnej hodnoty striedavej zložky k strednej hodnote jednosmerného prúdu. 31

33 Obr Priebeh napätia a prúdu v JMO Výpočet potrebnej veľkosti filtračnej kapacity: U pp F t c 1 =. I. dt I. t C 0 c = C F. U pp U pp = U U d max d min C F = I. t U c pp U pp rešpektuje zvlnenie výstupného napätia, v praxi je U pp = (3-20)%.U dav a pre aplikácie výkonovej elektroniky je U pp < 10% U dav. t c je autonómny časový interval, t.j. čas vybíjania kondenzátora do záťaže. 2.4 Trakčný striedač Základnou funkciou striedača je vytvoriť z jednosmerného napätia striedavé. Striedač si môžeme predstaviť ako synchrónny spínač, ktorý alternatívne pripája záťaž ku kladnému a zápornému pólu jednosmerného zdroja. Spínanie jednotlivých prvkov sa synchronizuje so signálom riadiaceho oscilátora, ktorým sa nastavuje pracovná frekvencia striedača. Rozoznávame dva typy striedačov: napäťový a prúdový. Využívajú sa hlavne napäťové striedače v kombinácii s kondenzátorom v JMO (Obr. 2.11). Výhody napäťového striedača oproti prúdovému (Obr. 2.12): jednoduchší JMO využiteľný pri EDB zo spoločného JMO je možné napájať viacero striedačov (napr. pre každý trakčný motor zvlášť) nepotrebuje riadený usmerňovač 32

34 má menšie zvlnenie prúdu chod naprázdno je možný aj bez pripojenej záťaže Napäťový striedač však má v porovnaní s prúdovým aj nevýhody: zložitejšie riadenie problém ochrán je zložitejší, pretože v JMO je kondenzátor v meniči vystupujú oscilačné prúdy, ktoré spôsobujú prídavné zaťaženie polovodičových výkonových prvkov Obr AC/AC systém prenosu P T s napäťovým striedačom Obr AC/AC systém prenosu P T s prúdovým striedačom V súčasnosti sa v striedačoch používajú GTO tyristory (vypínateľné tyristory), IGBT tranzistory a najnovšie i IGCT tyristory firmy ABB. Na obrázku 2.13 je schéma napäťového striedača s IGBT prvkami. Ku každému IGBT tranzistoru je pripojená antiparalelne dióda, ktorá slúži na uzavretie obvodu pre doznievacie prúdy pri prepínaní spínacích prvkov a na usmernenie pre spätný tok energie z motora (v generátorickom režime) do JMO. Táto dióda býva štandardne obsiahnutá v puzdre IGBT prvku. 33

35 Obr Schéma napäťového striedača s IGBT prvkami Základný princíp činnosti trojfázového striedača vyplýva z Obr. 2.14, pričom predpokladáme trojfázovú záťaž zapojenú do hviezdy. Napätie jednosmerného medziobvodu je pre účely analýzy rozdelené na dve polovice s hodnotami U d /2, čím je definovaný bod nulového potenciálu. Výkonové polovodičové prvky T 1 T 6 sú spínané riadiacimi impulzmi S a, S b, S c, S a, S b, S c. Obr Schéma striedača s IGBT prvkami Stavy spínacích impulzov pre jednu periódu výstupného napätia s jednoduchým stupňovitým tvarom sú zobrazené na Obr Je zrejmé, že dvojice riadiacich impulzov pre každú vetvu striedača sú navzájom komplementárne. Uvedený predpoklad logicky vyplýva z toho, že v prípade súčastného zopnutia obidvoch prvkov v tej istej vetve striedača by prakticky nastalo skratovanie jednosmerného medziobvodu a následné zničenie striedača. 34

36 Výstupná svorka fázy A je spojená s prvkami T 1 a T 2. Po dobu zopnutia prvku T 1 je svorka A pripojená cez T 1 na kladnú svorku jednosmerného medziobvodu, takže jej potenciál U A0 je rovný + U d /2. Po dobu zopnutia prvku T 2 je svorka A pripojená cez T 2 na zápornú svorku jednosmerného medziobvodu, takže jej potenciál U A0 je v tomto prípade rovný - U d /2. Analogický princíp platí aj pre odvodenie zodpovedajúcich potenciálov zvyšných dvoch svoriek striedača B a C. Pre jednotlivé potenciály môžeme písať: U U U A0 B0 C0 1 = Sa U 2 1 = Sb U 2 1 = Sc U 2 d d d Obr Priebeh napätí trojfázového striedača 35

37 Pričom spínacie impulzy majú hodnotu +1 ak má byť príslušný prvok striedača vo vodivom stave, a hodnotu 1, ak má byť tento prvok vypnutý. Z Obr a 2.15 vyplývajú vzťahy pre výpočet združených napätí striedača: U U U AB BC CA = U = U = U A0 B0 C 0 U U U B0 C 0 A0 Združené napätia majú obdĺžnikový tvar so šírkou obdĺžnika 120 a môžu nadobúdať veľkosť ± U d, ako je vidieť z Obr Všetky tri združené napätia sú fázovo posunuté o uhol 120, takže tvoria symetrickú trojfázovú sústavu napätí. Za predpokladu symetrickej záťaže striedača je možné aplikáciou Kirchhoffových zákonov získať vzťahy pre výpočet fázových napätí: U U U A B C = = = ( U U ) AB ( U U ) BC ( U U ) CA CA AB BC Spínanie prvkov striedača podľa Obr predstavuje veľmi jednoduchý spôsob riadenia striedača, ktoré bolo zvolené pre názornosť. Pomocou striedača je možné bezkontaktne meniť zmenu smeru jazdy, čiže reverzovať. Robí sa to riadením sledu fáz (prehodením ľubovolných dvoch fáz). Štandardnou požiadavkou je i možnosť práce ATM v generátorovom režime kvôli EDB. 2.5 Elektrodynamická brzda (EDB) Elektrodynamické brzdenie na dieselových a elektrických lokomotívach má veľký význam. Pri elektrodynamickom brzdení nedochádza k žiadnemu mechanickému opotrebeniu brzdného systému, čím sa podstatne ušetrí na nákladoch spojených s výmenou brzdových zdrží a je to napokon i ekolologickejšie. Jeho jediným nedostatkom je, že pri malých rýchlostiach (5 10 km/hod) nie je možné udržať potrebnú brzdnú silu (viď Obr. 2.16). V tejto oblasti je potrebné použiť mechanickú brzdu, ktorá slúži na dobrzdenie a zastavenie hnacieho vozidla. Taktiež sa EDB nedá použiť, ako parkovacia brzda. Z bezpečnostného hľadiska musí byť každé hnacie vozidlo vybavené výkonnou mechanickou brzdou. Výhoda použitia elektrodynamickej brzdy je v tom, že ju možno použiť cca 36

38 v rozsahu od 10% až do 100% maximálnej rýchlosti vozidla. Takto je možné zmariť až 99% kinetickej energie, pretože kinetická energia je priamo úmerná kvadrátu rýchlosti. V dnešnej dobe sa na hnacích vozidlách používajú ovládače bŕzd, ktoré zabezpečujú automatický prechod medzi EDB a mechanickou brzdou na HV. Obr Dosiahnuteľný brzdný moment v závislosti na rýchlosti Pri EDB je trakčný motor v generátorickom režime. Striedač mu dodáva potrebný jalový výkon a súčasne usmerňuje a upravuje veľkosť indukovaného napätia, ktoré je cez antipatalelné diódy privádzané do JMO, kde sa nabíja filtračný kondenzátor. Po dosiahnutí určitého napätia na kondenzátore začne spínať impulzný menič, ktorý slúži pre riadenie efektívnej hodnoty brzdného odporu R B, kde sa energia vyprodukovaná brzdením marí (Obr. 2.17). Okrem marenia v brzdnom odpore sa môže táto energia využiť na napájanie pomocných pohonov (ventilátory, kompresory) alebo na napájanie vlastnej spotreby vozidla (kúrenie). Obr Pripojenie brzdového odporníka do JMO Najjednoduchší prípad funkcie EDB predstavuje prechod z ťahu do brzdy pri dostatočne vysokej a konštantnej rýchlosti. Pri tomto sa frekvencia statora znižuje a motor prechádza z ťahu cez chod naprázdno do brzdenia. Začiatok brzdenia odpovedá stavu, kedy rekuperovaná energia práve kryje straty v motore a v meniči. 37

39 Ak je JMO napájaný len brzdnou energiou, možno brzdiť požadovaným momentom len do určitej rýchlosti. Ďalej brzdná sila, moment a výkon klesajú s rýchlosťou postupne až do nuly. Pre zahájenie elektrodynamického brzdenia je potrebné v JMO udržať aspoň percent menovitého napätia. Štart EDB je potom spoľahlivé a nezávislé od rýchlosti. Dimenzovanie brzdného odporu je závislé na hodnote predpokladaného brzdného výkonu a veľkosti napätia v jednosmernom medziobvode. Materiál brzdového odporu sa vyrába z chrómových ocelí (Fechral, čo je zliatina železa, chrómu a hliníka, alebo Thermal) alebo z niklových bronzov (Tio, Nikelín). U P = R 2 U R = P 2 kde: P...potrebný brzdný výkon U...napätie v JMO R...potrebný brzdný odpor 2.6 Trakčný motor Úlohou trakčného motora je poháňať hnacie vozidlo. Najčastejšie sa používa asynchrónny motor s klietkou nakrátko. Na zníženie strát sa v rotore používa klietka z medi. Motor má jednoduchú robustnú konštrukciu a je v porovnaní s DC motormi asi dva až tri krát ľahší a menší (pre porovnanie pozri Tab. 2.2). Je veľmi spoľahlivý a nepotrebuje temer žiadnu údržbu okrem občasného premazania ložísk (každých až km). Tab. 2.2 Porovnanie hmotných výkonov asynchrónneho TM Škoda MD 4148 K/6 a DC sériových TM TE 005 a AD 4346 gt Typ motora MD 4148 K/6 TE 005 AD 4346 gt Menovitý výkon [kw] Hmotnosť [kg] Hmotný výkon [kw/kg] 0,294 0,158 0,095 Tento rozdiel hmotností nie je daný len väčšou účinnosťou ATM, ale predovšetkým tým, že striedače umožňujú pracovať ATM na vyšších frekvenciách, až do 250 Hz. Obvykle 38

40 ale maximálna frekvencia nepresahuje 200 Hz s ohľadom na rast strát v magnetickom obvode, i keď je stroj v tomto režime silno odbudený. Menovitá pracovná frekvencia ATM je približne 1/3 maximálnej frekvencie. Ďalšie zmenšenie hmotnosti a rozmerov súvisí s absenciou komutátora. Ten totiž zaberá až 1/3 axiálnej dĺžky jednosmerného motora. Obr Asynchrónny trakčný motor od firmy Siemens Na Obr je moderný asynchrónny trakčný motor firmy Siemens použitý v rušni Taurus (1016/1116). Motor má výkon cca 1700 kw. Pre rozšírenie otáčkového rozsahu sa podobne ako u DC motorov používa odbudenie a výrazne sa tu uplatňuje obmedzenie momentom zvratu. Z hľadiska motora je maximálna otáčavá rýchlosť obmedzená ložiskami a odstredivými silami, pôsobiacimi na rotor a pri vlastnej ventilácii tiež hlukom a mechanickou pevnosťou ventilátora [28]. Menšie a stredné stroje sa stavajú najčastejšie ako štvorpólové (2p=4) a veľké stroje ako šesťpólové (2p=6). Šesťpólové stroje majú nižšie jarmo a teda väčší priemer vzduchovej medzery a dutiny v rotore, ale menší počet drážok na pól a fázu (vinutie) a vyššiu potrebnú frekvenciu pre rovnaké otáčky (Tab. 2.3 hrubým sú vyznačené najčastejšie prípady). Tab. 2.3 Maximálna (synchrónna) otáčavá rýchlosť ATM pre bežné prípady f max [Hz] Menšie stroje (2p=4) 3600 ot/min ot/min ot/min. Väčšie stroje (2p=6) 2400 ot/min ot/min ot/min. Vzhľadom ku kompaktnému prevedeniu rotora a vynechanie komutátora môžu mať asynchrónne motory zhruba dvojnásobnú otáčavú rýchlosť v porovnaní s obdobnými jednosmernými motormi. Takže vyžadujú tiež dvojnásobný prevod, čo v mnohých prípadoch 39

Meranie na jednofázovom transformátore

Meranie na jednofázovom transformátore Fakulta elektrotechniky a informatiky TU v Košiciach Katedra elektrotechniky a mechatroniky Meranie na jednofázovom transformátore Návod na cvičenia z predmetu Elektrotechnika Meno a priezvisko :..........................

Διαβάστε περισσότερα

STRIEDAVÝ PRÚD - PRÍKLADY

STRIEDAVÝ PRÚD - PRÍKLADY STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =

Διαβάστε περισσότερα

3. Striedavé prúdy. Sínusoida

3. Striedavé prúdy. Sínusoida . Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa

Διαβάστε περισσότερα

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S

HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv

Διαβάστε περισσότερα

Obvod a obsah štvoruholníka

Obvod a obsah štvoruholníka Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka

Διαβάστε περισσότερα

Matematika Funkcia viac premenných, Parciálne derivácie

Matematika Funkcia viac premenných, Parciálne derivácie Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x

Διαβάστε περισσότερα

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s

Διαβάστε περισσότερα

Odporníky. 1. Príklad1. TESLA TR

Odporníky. 1. Príklad1. TESLA TR Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

1. písomná práca z matematiky Skupina A

1. písomná práca z matematiky Skupina A 1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi

Διαβάστε περισσότερα

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.

Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,

Διαβάστε περισσότερα

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických

REZISTORY. Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických REZISTORY Rezistory (súčiastky) sú pasívne prvky. Používajú sa vo všetkých elektrických obvodoch. Základnou vlastnosťou rezistora je jeho odpor. Odpor je fyzikálna vlastnosť, ktorá je daná štruktúrou materiálu

Διαβάστε περισσότερα

,Zohrievanie vody indukčným varičom bez pokrievky,

,Zohrievanie vody indukčným varičom bez pokrievky, Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť

Διαβάστε περισσότερα

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP

Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP Analýza poruchových stavov s využitím rôznych modelov transformátorov v programe EMTP-ATP 7 Obsah Analýza poruchových stavov pri skrate na sekundárnej strane transformátora... Nastavenie parametrov prvkov

Διαβάστε περισσότερα

OBSAH TEMATICKÉHO CELKU

OBSAH TEMATICKÉHO CELKU Ing. Jozef Klus 2012 USMERŇOVAČE A MENIČE OBSAH TEMATICKÉHO CELKU Blokové zapojenie sieťového napájacieho zdroja Jednocestný a dvojcestný usmerňovač, základné zapojenia Mostíkové zapojenie usmerňovačov

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

Riadenie elektrizačných sústav

Riadenie elektrizačných sústav Riaenie elektrizačných sústav Paralelné spínanie (fázovanie a kruhovanie) Pomienky paralelného spínania 1. Rovnaký sle fáz. 2. Rovnaká veľkosť efektívnych honôt napätí. 3. Rovnaká frekvencia. 4. Rovnaký

Διαβάστε περισσότερα

Miniatúrne a motorové stýkače, stýkače kondenzátora, pomocné stýkače a nadprúdové relé

Miniatúrne a motorové stýkače, stýkače kondenzátora, pomocné stýkače a nadprúdové relé Motorové stýkače Použitie: Stýkače sa používajú na diaľkové ovládanie a ochranu (v kombinácii s nadprúdovými relé) elektrických motorov a iných elektrických spotrebičov s menovitým výkonom do 160 kw (pri

Διαβάστε περισσότερα

Matematika 2. časť: Analytická geometria

Matematika 2. časť: Analytická geometria Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové

Διαβάστε περισσότερα

Ekvačná a kvantifikačná logika

Ekvačná a kvantifikačná logika a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Servopohon vzduchotechnických klapiek 8Nm, 16Nm, 24Nm

Servopohon vzduchotechnických klapiek 8Nm, 16Nm, 24Nm Servopohon vzduchotechnických klapiek 8Nm, 16Nm, 24Nm Spoločnosť LUFBERG predstavuje servopohony s krútiacim momentom 8Nm, 16Nm, 24Nm pre použitie v systémoch vykurovania, ventilácie a chladenia. Vysoko

Διαβάστε περισσότερα

1 Jednofázový asynchrónny motor

1 Jednofázový asynchrónny motor 1 Jednofázový asynchrónny motor V domácnostiach je často dostupná iba 1f sieť, pretože výkonovo postačuje na napájanie domácich spotrebičov. Preto aj väčšina motorov používaných v domácnostiach musí byť

Διαβάστε περισσότερα

Návod na montáž. a prevádzku. MOVIMOT pre energeticky úsporné motory. Vydanie 10/ / SK GC110000

Návod na montáž. a prevádzku. MOVIMOT pre energeticky úsporné motory. Vydanie 10/ / SK GC110000 Prevodové motory \ Priemyselné pohony \ Elektronika pohonov \ Automatizácia pohonov \ Servis MOVIMOT pre energeticky úsporné motory GC110000 Vydanie 10/05 11402822 / SK Návod na montáž a prevádzku SEW-EURODRIVE

Διαβάστε περισσότερα

7. FUNKCIE POJEM FUNKCIE

7. FUNKCIE POJEM FUNKCIE 7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje

Διαβάστε περισσότερα

Zváracie a bodovacie zariadenia

Zváracie a bodovacie zariadenia 6. ZVÁRACIE AGREGÁTY A ELEKTROCENTRÁLY Zváracie agregáty MOST Zváracie agregáty sú rozšírením generátorov vyrábajúcich el. prúd. Odporúčajú sa všade tam, kde úlohou generátora vyrábajúceho prúd je napájať

Διαβάστε περισσότερα

Meranie na trojfázovom asynchrónnom motore Návod na cvičenia z predmetu Elektrotechnika

Meranie na trojfázovom asynchrónnom motore Návod na cvičenia z predmetu Elektrotechnika Faulta eletrotechniy a informatiy T v Košiciach Katedra eletrotechniy a mechatroniy Meranie na trojfázovom asynchrónnom motore Návod na cvičenia z predmetu Eletrotechnia Meno a priezviso :..........................

Διαβάστε περισσότερα

MERACIE TRANSFORMÁTORY (str.191)

MERACIE TRANSFORMÁTORY (str.191) MERACIE TRANSFORMÁTORY (str.191) Merací transformátor je elektrický prístroj transformujúci vo vhodnom rozsahu primárny prúd alebo napätie na sekundárny prúd alebo napätie, ktoré sú vhodné na napájanie

Διαβάστε περισσότερα

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium

MERANIE NA TRANSFORMÁTORE Elektrické stroje / Externé štúdium Technicá univerzita v Košiciach FAKLTA ELEKTROTECHKY A FORMATKY Katedra eletrotechniy a mechatroniy MERAE A TRASFORMÁTORE Eletricé stroje / Externé štúdium Meno :........ Supina :...... Šolsý ro :.......

Διαβάστε περισσότερα

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava

Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov

UČEBNÉ TEXTY. Moderné vzdelávanie pre vedomostnú spoločnosť Meranie a diagnostika. Meranie snímačov a akčných členov Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Vzdelávacia oblasť: Predmet:

Διαβάστε περισσότερα

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU

KAGEDA AUTORIZOVANÝ DISTRIBÚTOR PRE SLOVENSKÚ REPUBLIKU DVOJEXCENTRICKÁ KLAPKA je uzatváracia alebo regulačná armatúra pre rozvody vody, horúcej vody, plynov a pary. Všetky klapky vyhovujú smernici PED 97/ 23/EY a sú tiež vyrábané pre výbušné prostredie podľa

Διαβάστε περισσότερα

Modulárne stykače pre inštaláciu do domových spínacích skríň

Modulárne stykače pre inštaláciu do domových spínacích skríň Modulárne stykače pre inštaláciu do domových spínacích skríň Technické údaje Menovité napätie U n 230 V - 440 V Menovité izolačné napätie U i 440 V termo-elektrický prúd I th 20A, 25A, 40A, 63A Životnosť

Διαβάστε περισσότερα

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.

ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies. ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,

Διαβάστε περισσότερα

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita

KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita 132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.7. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.7 Vzdelávacia

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

T11 Elektrické stroje ( Základy elektrotechniky II., strany ) Zostavil: Peter Wiesenganger

T11 Elektrické stroje ( Základy elektrotechniky II., strany ) Zostavil: Peter Wiesenganger T11 Elektrické stroje ( Základy elektrotechniky II., strany 225 352) Zostavil: Peter Wiesenganger 1. DEFINÍCIA Elektrické stroje sú zariadenia, ktoré uskutočňujú premenu mechanickej energie na elektrickú,

Διαβάστε περισσότερα

Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra KVES. Riešenie elektrického napájania pomocných pohonov na rušňoch radu a 724.

Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra KVES. Riešenie elektrického napájania pomocných pohonov na rušňoch radu a 724. Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra KVES Riešenie elektrického napájania pomocných pohonov na rušňoch radu 724.6 a 724.7 Milan Martinkovič 2007 1 Riešenie elektrického napájania

Διαβάστε περισσότερα

Kontrolné otázky z jednotiek fyzikálnych veličín

Kontrolné otázky z jednotiek fyzikálnych veličín Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

Dynamické vlastnosti automobilu, alebo Newtonmetre nie sú kilowatty

Dynamické vlastnosti automobilu, alebo Newtonmetre nie sú kilowatty Dynamické vlastnosti automobilu, alebo Newtonmetre nie sú kilowatty Čo je točivý moment a výkon motora? Moment je v mechanike definovaný ako pôsobenie sily na ramene, ktoré možno vyjadriť vzťahom: M =

Διαβάστε περισσότερα

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003

Rozsah akreditácie 1/5. Príloha zo dňa k osvedčeniu o akreditácii č. K-003 Rozsah akreditácie 1/5 Názov akreditovaného subjektu: U. S. Steel Košice, s.r.o. Oddelenie Metrológia a, Vstupný areál U. S. Steel, 044 54 Košice Rozsah akreditácie Oddelenia Metrológia a : Laboratórium

Διαβάστε περισσότερα

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej

1. Limita, spojitost a diferenciálny počet funkcie jednej premennej . Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny

Διαβάστε περισσότερα

Pevné ložiská. Voľné ložiská

Pevné ložiská. Voľné ložiská SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu

Διαβάστε περισσότερα

Slovenska poľnohospodárska univerzita v Nitre Technická fakulta

Slovenska poľnohospodárska univerzita v Nitre Technická fakulta Slovenska poľnohospodárska univerzita v Nitre Technická fakulta Katedra elektrotechniky informatika a automatizácie Sieťové napájacie zdroje Zadanie č.1 2009 Zadanie: 1. Pomocou programu MC9 navrhnite

Διαβάστε περισσότερα

a = PP x = A.sin α vyjadruje okamžitú hodnotu sínusového priebehu

a = PP x = A.sin α vyjadruje okamžitú hodnotu sínusového priebehu Striedavý prúd Viliam Kopecký Použitá literatúra: - štúdijné texty a učebnice uverejnené na webe, - štúdijné texty, videa a vedomostné databázy spoločnosti MARKAB s.r.o., Žilina Vznik a veličiny striedavého

Διαβάστε περισσότερα

ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta. Katedra výkonových elektrotechnických systémov BAKALÁRSKA PRÁCA Otakar Havránek

ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta. Katedra výkonových elektrotechnických systémov BAKALÁRSKA PRÁCA Otakar Havránek ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta Katedra výkonových elektrotechnických systémov BAKALÁRSKA PRÁCA 2009 Otakar Havránek 1 Úvod Od začiatku šesťdesiatych rokov existujú na Slovensku dve

Διαβάστε περισσότερα

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad

Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov

Διαβάστε περισσότερα

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice

Goniometrické rovnice a nerovnice. Základné goniometrické rovnice Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami

Διαβάστε περισσότερα

Prechod z 2D do 3D. Martin Florek 3. marca 2009

Prechod z 2D do 3D. Martin Florek 3. marca 2009 Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky

Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky 1 Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky Agentúra Ministerstva školstva, vedy, výskumu a športu SR pre štrukturálne fondy EÚ Prioritná os: 1. Reforma systému vzdelávania a odbornej

Διαβάστε περισσότερα

Využitie prostredia Matlab Simulink na simuláciu jazdy mestského autobusu

Využitie prostredia Matlab Simulink na simuláciu jazdy mestského autobusu 1 Portál pre odborné publikovanie ISSN 1338-0087 Využitie prostredia Matlab Simulink na simuláciu jazdy mestského autobusu Hanečková Kristína Elektrotechnika, Strojárstvo 02.02.2011 V súčasnej dobe je

Διαβάστε περισσότερα

Modul pružnosti betónu

Modul pružnosti betónu f cm tan α = E cm 0,4f cm ε cl E = σ ε ε cul Modul pružnosti betónu α Autori: Stanislav Unčík Patrik Ševčík Modul pružnosti betónu Autori: Stanislav Unčík Patrik Ševčík Trnava 2008 Obsah 1 Úvod...7 2 Deformácie

Διαβάστε περισσότερα

A Group brand KOMPENZÁCIA ÚČINNÍKA A ANALÝZA KVALITY SIETE KATALÓG

A Group brand KOMPENZÁCIA ÚČINNÍKA A ANALÝZA KVALITY SIETE KATALÓG A Group brand KOMPENZÁCIA ÚČINNÍKA A ANALÝZA KVALITY SIETE KATALÓG ZÁKLADNÉ INFORMÁCIE OBSAH Trvalé úspory energie... 4 Fázový posun Výkon Spotreba... 6 Účinník... 7 Ako navrhnúť výkon kompenzácie... 10

Διαβάστε περισσότερα

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.

Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010. 14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12

Διαβάστε περισσότερα

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2

DOMÁCE ZADANIE 1 - PRÍKLAD č. 2 Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

RIEŠENIE WHEATSONOVHO MOSTÍKA

RIEŠENIE WHEATSONOVHO MOSTÍKA SNÁ PMYSLNÁ ŠKOL LKONKÁ V PŠŤNO KOMPLXNÁ PÁ Č. / ŠN WSONOVO MOSÍK Piešťany, október 00 utor : Marek eteš. Komplexná práca č. / Strana č. / Obsah:. eoretický rozbor Wheatsonovho mostíka. eoretický rozbor

Διαβάστε περισσότερα

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou

M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny

Διαβάστε περισσότερα

B sk. Motory v prevádzke s meničom pre kategóriu 2D/3D. Projekčná príručka k B 1091

B sk. Motory v prevádzke s meničom pre kategóriu 2D/3D. Projekčná príručka k B 1091 B 1091-1 sk Motory v prevádzke s meničom pre kategóriu 2D/3D Projekčná príručka k B 1091 Pos : 2 /Anl eitung en/motor en/b1091-1 Proj ekti erungsleitfaden zur B1091/0. Prolog/Besti mmungsgemäße Ver wendung

Διαβάστε περισσότερα

Synchrónne generátory

Synchrónne generátory ELEKTRICKÉ STROJE TOČIVÉ Viliam Kopecký Použitá literatúra: - štúdijné texty a učebnice uverejnené na webe, - štúdijné texty, videa a vedomostné databázy spoločnosti MARKAB s.r.o., Žilina SYNCHRONNÉ STROJE

Διαβάστε περισσότερα

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3

ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3 ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v

Διαβάστε περισσότερα

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete ELEKTROTECHNIKA odbor elektrotechnika 2.ročník

Stredná priemyselná škola Poprad. Výkonové štandardy v predmete ELEKTROTECHNIKA odbor elektrotechnika 2.ročník Výkonové štandardy v predmete ELEKTROTECHNIKA odbor elektrotechnika 2.ročník Žiak vie: Teória ELEKTROMAGNETICKÁ INDUKCIA 1. Vznik indukovaného napätia popísať základné veličiny magnetického poľa a ich

Διαβάστε περισσότερα

Riadenie elektrizačných sústav. Riadenie výkonu tepelných elektrární

Riadenie elektrizačných sústav. Riadenie výkonu tepelných elektrární Riadenie elektrizačných sústav Riadenie výkonu tepelných elektrární Ak tepelná elektráreň vyrába elektrický výkon P e, je možné jej celkovú účinnosť vyjadriť vzťahom: el Q k n P e M u k prevodný koeficient

Διαβάστε περισσότερα

ŽILINSKÁ UNIVERZITA V ŽILINE

ŽILINSKÁ UNIVERZITA V ŽILINE ŽILINSKÁ UNIVERZITA V ŽILINE ELEKTROTECHNICKÁ FAKULTA 28260620102004 NÁVRH A REALIZÁCIA RIADENIA POHONU S BLDC MOTOROM V 4Q REŽIME 2010 Bc. Zdeno Biel ŽILINSKÁ UNIVERZITA V ŽILINE ELEKTROTECHNICKÁ FAKULTA

Διαβάστε περισσότερα

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi

MERANIE OSCILOSKOPOM Ing. Alexander Szanyi STREDNÉ ODBORNÁ ŠKOLA Hviezdoslavova 5 Rožňava Cvičenia z elektrického merania Referát MERANIE OSCILOSKOPOM Ing. Alexander Szanyi Vypracoval Trieda Skupina Šk rok Teoria Hodnotenie Prax Referát Meranie

Διαβάστε περισσότερα

Motivácia pojmu derivácia

Motivácia pojmu derivácia Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)

Διαβάστε περισσότερα

Katedra elektrotechniky a mechatroniky FEI-TU v Košiciach NÁVODY NA CVIČENIA Z VÝKONOVEJ ELEKTRONIKY. Jaroslav Dudrik

Katedra elektrotechniky a mechatroniky FEI-TU v Košiciach NÁVODY NA CVIČENIA Z VÝKONOVEJ ELEKTRONIKY. Jaroslav Dudrik Katedra elektrotechniky a mechatroniky FEI-TU v Košiciach NÁVODY NA CVIČENIA Z VÝKONOVEJ ELEKTRONIKY Jaroslav Dudrik Košice, september 2012 SPÍNACIE VLASTNOSTI BIPOLÁRNEHO TRANZISTORA, IGBT a MOSFETu Úlohy:

Διαβάστε περισσότερα

predmet: ELEKTROTECHNIKA 2

predmet: ELEKTROTECHNIKA 2 Inovácie v odbornom vzdelávaní projekt realizovaný s finančnou podporou ESF predmet: ELEKTROTECHNIKA 2 ročník: druhý odbor: MECHATRONIKA autor: Ing. Stanislav LOKAJ ŽILINSKÝ samosprávny kraj zriaďovateľ

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.5. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.5 Vzdelávacia

Διαβάστε περισσότερα

1. MERANIE VÝKONOV V STRIEDAVÝCH OBVODOCH

1. MERANIE VÝKONOV V STRIEDAVÝCH OBVODOCH 1. MERIE ÝKOO TRIEDÝCH OBODOCH Teoretické poznatky a) inný výkon - P P = I cosϕ [] (3.41) b) Zdanlivý výkon - úinník obvodu - cosϕ = I [] (3.43) P cos ϕ = (3.45) Úinník môže by v tolerancii . ím je

Διαβάστε περισσότερα

BAKALÁRSKA PRÁCA. Žilinská univerzita v Žiline. Rekonštrukcia meracieho a ovládacieho panelu v laboratóriu elektrických pohonov ND 215

BAKALÁRSKA PRÁCA. Žilinská univerzita v Žiline. Rekonštrukcia meracieho a ovládacieho panelu v laboratóriu elektrických pohonov ND 215 Elektrotechnická fakulta Katedra výkonových elektrotechnických systémov BAKALÁRSKA PRÁCA Rekonštrukcia meracieho a ovládacieho panelu v laboratóriu elektrických pohonov ND 215 2008 Elektrotechnická fakulta

Διαβάστε περισσότερα

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu.

Laboratórna práca č.1. Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Laboratórna práca č.1 Elektrické meracie prístroje a ich zapájanie do elektrického obvodu.zapojenie potenciometra a reostatu. Zapojenie potenciometra Zapojenie reostatu 1 Zapojenie ampémetra a voltmetra

Διαβάστε περισσότερα

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P

KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P Inštalačný manuál KLP-100 / KLP-104 / KLP-108 / KLP-112 KLP-P100 / KLP-P104 / KLP-P108 / KLP-P112 KHU-102P / KVM-520 / KIP-603 / KVS-104P EXIM Alarm s.r.o. Solivarská 50 080 01 Prešov Tel/Fax: 051 77 21

Διαβάστε περισσότερα

Model redistribúcie krvi

Model redistribúcie krvi .xlsx/pracovný postup Cieľ: Vyhodnoťte redistribúciu krvi na začiatku cirkulačného šoku pomocou modelu založeného na analógii s elektrickým obvodom. Úlohy: 1. Simulujte redistribúciu krvi v ľudskom tele

Διαβάστε περισσότερα

Synchrónne generátory

Synchrónne generátory ELEKTRICKÉ STROJE TOČIVÉ Viliam Kopecký Odporúčaná literatúra: - študijné a odborné texty uverejnené na webe, - zborníky prednášok - VII. XVI. CSE, MARKAB s.r.o., Žilina - študijné texty, videa a vedomostné

Διαβάστε περισσότερα

NÁVODY NA MERACIE CVIČENIA Z VÝKONOVEJ ELEKTRONIKY

NÁVODY NA MERACIE CVIČENIA Z VÝKONOVEJ ELEKTRONIKY Katedra elektrotechniky a mechatroniky FEI-TU v Košiciach NÁVODY NA MERACIE CVIČENIA Z VÝKONOVEJ ELEKTRONIKY Jaroslav Dudrik Košice, február 05 SPÍNACIE VLASTNOSTI TRANZISTORA IGBT a MOSFET Úlohy: A) Spínacie

Διαβάστε περισσότερα

4. SPÍNANÝ RELUKTANČNÝ MOTOR

4. SPÍNANÝ RELUKTANČNÝ MOTOR 4. SPÍNANÝ RELUKTANČNÝ MOTOR Princíp spínaného reluktančného motora (SRM) bol objavený roku 1838, ale nemohol byť realizovaný v plnom výkone až do čias, kedy nastal rýchly rozvoj výkonovej elektroniky.

Διαβάστε περισσότερα

PRÍSTROJE PRE ROZVÁDZAČE

PRÍSTROJE PRE ROZVÁDZAČE PRÍSTROJE PRE ROZVÁDZAČE MERAČE SPOTREBY ENERGIE MONITORY ENERGIE ANALYZÁTORY KVALITY ENERGIE PRÚDOVÉ TRANSFORMÁTORY BOČNÍKY ANALÓGOVÉ PANELOVÉ MERAČE DIGITÁLNE PANELOVÉ MERAČE MICRONIX spol. s r.o. -

Διαβάστε περισσότερα

Cvičenie č. 4,5 Limita funkcie

Cvičenie č. 4,5 Limita funkcie Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(

Διαβάστε περισσότερα

Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu

Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu Kontajnerová mobilná jednotka pre testovanie ložísk zemného plynu Zadanie pre vypracovanie technickej a cenovej ponuky pre modul technológie úpravy zemného plynu 1 Obsah Úvod... 3 1. Modul sušenia plynu...

Διαβάστε περισσότερα

U i. H,i b Obr. 1.1 Magnetizačná charakteristika. Na základe 2. Kirchhoffovho zákona pre dynamá platí:

U i. H,i b Obr. 1.1 Magnetizačná charakteristika. Na základe 2. Kirchhoffovho zákona pre dynamá platí: 1. DYNAMÁ Dynamá sú zdroje elektrickej energie jednosmerného prúdu. 1.1 Všeobecne ndukované napätie jednosmerných strojov je odvodené v [1] buď pomocou otáčok n pohonného stroja alebo uhlovej rýchlosti.

Διαβάστε περισσότερα

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave

Riešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave iešenie lineárnych elektrických obvodov s jednosmernými zdrojmi a rezistormi v ustálenom stave Lineárne elektrické obvody s jednosmernými zdrojmi a rezistormi v ustálenom stave riešime (určujeme prúdy

Διαβάστε περισσότερα

ELEKTROTECHNIKA zoznam kontrolných otázok na učenie toto nie sú skutočné otázky na skúške

ELEKTROTECHNIKA zoznam kontrolných otázok na učenie toto nie sú skutočné otázky na skúške 1. Definujte elektrický náboj. 2. Definujte elektrický prúd. 3. Aký je to stacionárny prúd? 4. Aký je to jednosmerný prúd? 5. Ako možno vypočítať okamžitú hodnotu elektrického prúdu? 6. Definujte elektrické

Διαβάστε περισσότερα

Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice:

Transformátory 1. Obr. 1 Dvojvinuťový transformátor. Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: Transformátory 1 TRANSFORÁTORY Obr. 1 Dvojvinuťový transformátor Na Obr. 1 je naznačený rez dvojvinuťovým transformátorom, pre ktorý platia rovnice: u d dt Φ Φ N i R d = Φ Φ N i R (1) dt 1 = ( 0+ 1) 1+

Διαβάστε περισσότερα

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie

Strana 1/5 Príloha k rozhodnutiu č. 544/2011/039/5 a k osvedčeniu o akreditácii č. K-052 zo dňa Rozsah akreditácie Strana 1/5 Rozsah akreditácie Názov akreditovaného subjektu: CHIRANALAB, s.r.o., Kalibračné laboratórium Nám. Dr. A. Schweitzera 194, 916 01 Stará Turá IČO: 36 331864 Kalibračné laboratórium s fixným rozsahom

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy

Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18

Διαβάστε περισσότερα

Ventilátor pre kruhové potrubie prioair

Ventilátor pre kruhové potrubie prioair Ventilátory VZT jednotky Distribučné elementy Požiarna bezpečnosť Chladenie Vzduchové clona Tunelové ventilátory Ventilátor pre kruhové potrubie prioair Jasná voľba pre energetickú účinnosť 2 prioair Účinný,

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

MERANIE NA ASYCHRÓNNOM MOTORE Elektrické stroje

MERANIE NA ASYCHRÓNNOM MOTORE Elektrické stroje Technicá univerzita v Košiciach FAKLTA ELEKTROTECHNIKY A INFORMATIKY Katedra eletrotechniy a mechatroniy MERANIE NA ASYCHRÓNNOM MOTORE Eletricé stroje Meno :........ Supina :...... Šolsý ro :....... Hodnotenie

Διαβάστε περισσότερα

UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková

UČEBNÉ TEXTY. Pracovný zošit č.8. Moderné vzdelávanie pre vedomostnú spoločnosť Elektrotechnické merania. Ing. Alžbeta Kršňáková Stredná priemyselná škola dopravná, Sokolská 911/94, 960 01 Zvolen Kód ITMS projektu: 26110130667 Názov projektu: Zvyšovanie flexibility absolventov v oblasti dopravy UČEBNÉ TEXTY Pracovný zošit č.8 Vzdelávacia

Διαβάστε περισσότερα

ELEKTRICKÉ STROJE. Fakulta elektrotechniky a informatiky. Pavel Záskalický

ELEKTRICKÉ STROJE. Fakulta elektrotechniky a informatiky. Pavel Záskalický Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EU ELEKTRICKÉ STROJE Fakulta elektrotechniky a informatiky Pavel Záskalický Táto publikácia vznikla za finančnej podpory

Διαβάστε περισσότερα

ARMA modely čast 2: moving average modely (MA)

ARMA modely čast 2: moving average modely (MA) ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely

Διαβάστε περισσότερα

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH

6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet

Διαβάστε περισσότερα

Elektrický prúd v kovoch

Elektrický prúd v kovoch Elektrický prúd v kovoch 1. Aký náboj prejde prierezom vodiča za 2 h, ak ním tečie stály prúd 20 ma? [144 C] 2. Prierezom vodorovného vodiča prejde za 1 s usmerneným pohybom 1 000 elektrónov smerom doľava.

Διαβάστε περισσότερα