Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop"

Transcript

1 1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s DPH, vstup je počet kusov a cena bez DPH. suma=pocetxcenax1,19 Vstup P, C V = P*C*1,19 Vystup V 1

2 3) Vytvorte algoritmus (vývojový diagram) kalkulačka. Realizujte operáciu sčítania, odčítania, násobenia, delenia, druhej mocniny a druhej odmocniny O :? * : a 2 Vstup A, B Vstup A, B Vstup A, B Vstup A, B B = 0 Vstup A VstupA V = A B V = A B V = A*B V = A:B V = A*A V = sqrt(a) Vystup V 2

3 4) Vytvorte algoritmus (vývojový diagram) na prevod: minsek a opačne, SK a opačne, radianystupne a opačne. P :? m s Vstup min s m SK SK rad rad Vstup sek Vstup SK Vstup Vstup rad Vstup stupne V = min*60 V = sek : 60 V = SK : 40 V = *40 V = rad/(π/180) V = stupne*(π/180) Vystup V 3

4 5) Vytvorte algoritmus (vývojový diagram) na výpočet spotreby pohonných hmôt na 100 km a ceny za 1 km. Vstup je počet prejdených km, počet natankovaných litrov a cena za tankovanie. Vstup PK, L, C S = L/PK*100 CK = C/PK Vystup S, CK 6) Vytvorte algoritmus (vývojový diagram) v ktorom vyhodnotíte výsledky hlasovania. Vstup je počet hlasujúcich (áno, skôr áno, skôr nie, nie, neviem), výstup je percentuálne vyhodnotenie hlasovania. Vstup a, sa, sn, n, ne S = asasnnne av = (100*a)/S sav = (100*sa)/S snv = (100*sn)/S nv = (100*n)/S nev = (100*ne)/S Vystup av, sav, snv, nv, nev 4

5 7) Vytvorte algoritmus (vývojový diagram) na úplné riešenie kvadratickej rovnice. Vstup a, b, c D = b*b (4*a*c) x 1 = (b D)/2a x 2 = (b D)/2a > D: 0 < x 1 = (b i* D)/2a x 2 = (b i* D)/2a = x = b/2a Vystup x 1, x 2 Vystup x Vystup x 1, x 2 8) Vytvorte algoritmus (vývojový diagram) na nájdenie najmenšieho čísla z troch zadaných (v prípade rovnosti vypíše len jedno číslo) Vstup A, B, C V = C B > C A > B A > C V = C V = B V = A Vystup V 5

6 9) Vytvorte algoritmus (vývojový diagram) na nájdenie najmenšieho čísla z troch zadaných (v prípade rovnosti vypíše všetky najmenšie čísla) V = B, C = Vstup A, B, C V = A, C = V = B < B : C > A : B < < A : C V = A > = > V = C < A : C = V = C V = A, B > V = A, B, C V = C Vystup V 6

7 10) Vytvorte algoritmus na (vývojový diagram) na načítanie jednorozmerného pola, zoradenie čísel od najmenšieho po najväčšie a výpis pola. Vstup n Vstup A I I = I 1 I < n A I A I1 P = A I A I = A I 1 A I1 = P I = I 1 I < n 1 Ak budete chcieť zoradiť čísla od najväčšieho po najmenšie stačí zameniť znamienko v tomto vetvení: Vystup A I I = I 1 I < n 7

8 11) Vytvorte algoritmus (vývojový diagram) na načítanie jednorozmerného pola, výpis pola, čísel vyšších ako 100 a počet nenulových čísel. Vstup n S = 0 Vstup A I I = I 1 I < n A I > 100 Vystup A I A I 0 S = S 1 I = I 1 I < n 1 8

9 1 Vystup A I I = I 1 I < n Vystup S 12) Vytvorte algoritmus (vývojový diagram) na načítanie jednorozmerného pola a nájdenie min a max prvku. Vstup n Vstup A I I = I 1 I < n 1 9

10 1 min = A 1 max = A 1 A I < min min = A I A I > max max = A I I = I 1 I < n Vystup min,max 13) Vytvorte algoritmus (vývojový diagram) na načítanie jednorozmerného pola, výpis pola a indexov prvkov ktoré obsahujú párne čísla. Vstup n Vstup A I I = I 1 I < n 10 1

11 1 (A I MOD2) = 0 Vystup I I = I 1 I < n Vystup A I I = I 1 I < n 11

12 14) Vytvorte algoritmus (vývojový diagram) na výpočet faktoriálu. Vstup n, V = 1 V = V * I I = I 1 I < n Vystup V 12

13 15) Vytvorte algoritmus (vývojový diagram) na ktorom budete realizovať zobrazenie 10 náhodných čísel na náhodné pozície, na čas ktorý sa bude postupne znižovať a zobrazenie úspešnosti uhádnutých čísel. V = 0,, T = 1000 x = NČ, y = NČ, C = NČ Choď na x,y Vystup C Čakaj T Vymaž obr. Vstup C I C = C I V = V 1 I = I 1 T = T 100 I < 10 Vystup V * 10 13

14 16) Vytvorte algoritmus (vývojový diagram) na nájdenie x čísel z celkového počtu n bez opakovania. Vstup x, n NČ(n) náhodné číslo z celkového počtu n čísiel I, J,cislo premenné (slúžia pre načítavanie hodnôt do pamäte ako u matíc, apod.) A 1 = NČ(n), I = 2 F =1,cislo=NČ(n), A J = cislo F = 0 J = J 1 J < I 1 F tzv. flag slúži ako akási značka, ktorá sa zapína/vypína pri splnení určitej podmienky (v našom prípade A J = cislo) a určuje chod algoritmu vo vetvení v jeho neskoršej fáze. F = 1 A I = cislo, I = I 1 I < x

15 1 Vystup A I I = I 1 I < x 17) Vytvorte algoritmus (vývojový diagram) na načítanie matice 3 x n po riadkoch, výpis matice a súčtu prvkov vedľajšej diagonály. Vstup n Vstup A I, J J = J 1 J < n I = I 1 I <

16 1 P = n 3 < n P = 3 J = n S = 0 S = S A I,J I = I 1 J = J 1 I < P Vystup A I, J J = J 1 J < n I = I 1 I < 3 Vystup S 16

17 18) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x 3 po stĺpcoch, výpis matice a súčinu všetkých prvkov. Vstup m Vstup A I, J I = I 1 I < m J = J 1 J < 3 S =

18 1 S = S * A I,J I = I 1 I < m J = J 1 J < 3 Vystup A I, J I = I 1 I < m 2 J = J 1 J < 3 Vystup S 18 2

19 19) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x n po riadkoch a v opačnom poradí, výpis matice a súčinu prvkov vedľajšej diagonály. Vstup m, n J = n Vstup A I, J J = J 1 I = I 1 I < m 1 19

20 1 P = n m < n P = m J = n S = 1 S = S * A I,J I = I 1 J = J 1 I < P J = n Vystup A I, J J = J 1 I = I 1 I < m Vystup S 20

21 20) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x n a výpis a výpočet faktoriálu posledného prvku vedľajšej diagonály. Vstup m, n J = n Vstup A I, J J = J 1 I = I 1 I < m 1 21

22 1 cislo = A n,1 m < n cislo = A m,nm1 V = 1 V = V * I I = I 1 I < cislo Vystup V 22

23 21) Vytvorte algoritmus (vývojový diagram) na načítanie matice po stĺpcoch, vynulovanie hlavnej diagonály, výpis matice a počtu nulových prvkov. Vstup m, n Vstup A I, J I = I 1 I < m J = J 1 J < n 1 23

24 1 S = 0 I = J A I,J = 0 A I,J = 0 S = S 1 I = I 1 I < m J = J 1 J < n 2 24

25 2 Vystup A I, J I = I 1 I < m J = J 1 J < n Vystup S 25

26 22) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x n po riadkoch, výpis matice, súčinu prvkov 2 riadku a súčtu prvkov posledného stĺpca. Vstup m, n Vstup A I, J J = J 1 J < n I = I 1 I < m 1 26

27 1, S = 1, Su = 0 S = S * A 2,J J = J 1 J < n Su = Su A I,n I = I 1 I < m Vystup A I, J 2 J = J 1 J < n Vystup S Vystup Su I = I 1 I < m 27 2

28 23) Vytvorte algoritmus (vývojový diagram) na načítanie matice A po riadkoch a B po stĺpcoch (obe 5 x 4), výpis matice C ktorá je súčtom matíc A, B a výpis matice D ktorá je výsledkom odčítania matice B od matice A. Vstup A I, J J = J 1 J < 4 I = I 1 I < Vstup B I, J C I,J = A I,J B I,J, D I,J = A I,J B I,J I = I 1 I < 5 J = J 1 J <

29 2 Vystup C I, J J = J 1 J < 4 I = I 1 I < Vystup D I, J J = J 1 J < 4 I = I 1 I < 5 29

30 24) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x n, a) nájdenie a výpis min a max prvku hlavnej diagonály b) nájdenie a výpis min a max prvku vedlajšej diagonály a výpis matice. Vstup m, n Vstup A I, J J = J 1 J < n I = I 1 I < m 1 30

31 a) 1 min = A 1,1, max = A 1,1 A I,J < min min = A I,J I = J A I,J > max max = A I,J J = J 1 J < n I = I 1 I < m Vystup min Vystup max 2 31

32 b) 1 P = n m < n P = m min = A 1,n, max = A 1,n, J = n A I,J < min min = A I,J A I,J > max max = A I,J I = I 1 J = J 1 I < P Vystup min Vystup max 2 32

33 2 Vystup A I, J J = J 1 J < n I = I 1 I < m 33

34 25) Vytvorte algoritmus (vývojový diagram) na načítanie matice m x 2 po stĺpcoch v opačnom poradí, výmenu 1. a 2. riadku matice a výpis matice. Vstup m J = 2 I = m Vstup A I, J I = I 1 J = J

35 1 P = A 1,J A 1,J = A 2,J A 2,J = P J = J 1 J < 2 J = 2 I = m Vystup A I, J I = I 1 J = J 1 35

Analýza a návrh algoritmov z matematiky

Analýza a návrh algoritmov z matematiky Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Ing. Michal ompan Analýza a návrh algoritmov z matematiky Osvedčená pedagogická skúsenosť edukačnej praxe Banská

Διαβάστε περισσότερα

PRIEMER DROTU d = 0,4-6,3 mm

PRIEMER DROTU d = 0,4-6,3 mm PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla

Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523

Διαβάστε περισσότερα

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu

6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu 6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis

Διαβάστε περισσότερα

Komplexné čísla, Diskrétna Fourierova transformácia 1

Komplexné čísla, Diskrétna Fourierova transformácia 1 Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené

Διαβάστε περισσότερα

P Y T A G O R I Á D A

P Y T A G O R I Á D A 30 P Y T A G O R I Á D A Súťažné úlohy a riešenia celoštátneho kola Kategórie P6 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy celoslovenského kola. Školský rok 2008/2009. Kategória

Διαβάστε περισσότερα

Návrh vzduchotesnosti pre detaily napojení

Návrh vzduchotesnosti pre detaily napojení Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová

Διαβάστε περισσότερα

AerobTec Altis Micro

AerobTec Altis Micro AerobTec Altis Micro Záznamový / súťažný výškomer s telemetriou Výrobca: AerobTec, s.r.o. Pionierska 15 831 02 Bratislava www.aerobtec.com info@aerobtec.com Obsah 1.Vlastnosti... 3 2.Úvod... 3 3.Princíp

Διαβάστε περισσότερα

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory

Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk

Διαβάστε περισσότερα

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!#$ %&'$!&!(!)%*+, -$!!.!$(-#$&%- !"#$ %"&$!&!"(!)%*+, -$!!.!$"("-#$&"%-.#/."0, .1%"("/+.!2$"/ 3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333 4.)!$"!$-(#&!- 33333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333

Διαβάστε περισσότερα

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich

Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich Tuesday 15 th January, 2013, 19:53 Základy tenzorového počtu M.Gintner Vektorový priestor V : Množina prvkov (vektory), na ktorej je definované ich sčítanie a ich násobenie reálnym číslom tak, že platí:

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť

Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky

Διαβάστε περισσότερα

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A

Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

AD8114/AD8115* AD8114/AD8115 SER/PAR D0 D1 D2 D3 D4 A0 A1 A2 A3 CLK DATA OUT DATA IN UPDATE RESET 16 OUTPUT G = +1, G = +2

AD8114/AD8115* AD8114/AD8115 SER/PAR D0 D1 D2 D3 D4 A0 A1 A2 A3 CLK DATA OUT DATA IN UPDATE RESET 16 OUTPUT G = +1, G = +2 AD4/AD5* DATA IN UPDATE CE RESET SER/PAR AD4/AD5 D D D2 D3 D4 256 OUTPUT G = +, G = +2 A A A2 A3 DATA OUT AD4/AD5 AD4/AD5 t t 3 t 2 t 4 DATA IN OUT7 (D4) OUT7 (D3) OUT (D) t 5 t 6 = UPDATE = t 7 DATA OUT

Διαβάστε περισσότερα

! " #$% & '()()*+.,/0.

!  #$% & '()()*+.,/0. ! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5

Διαβάστε περισσότερα

C. Kontaktný fasádny zatepľovací systém

C. Kontaktný fasádny zatepľovací systém C. Kontaktný fasádny zatepľovací systém C.1. Tepelná izolácia penový polystyrén C.2. Tepelná izolácia minerálne dosky alebo lamely C.3. Tepelná izolácia extrudovaný polystyrén C.4. Tepelná izolácia penový

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Trapézové profily Lindab Coverline

Trapézové profily Lindab Coverline Trapézové profily Lindab Coverline Trapézové profily - produktová rada Rova Trapéz T-8 krycia šírka 1 135 mm Pozink 7,10 8,52 8,20 9,84 Polyester 25 μm 7,80 9,36 10,30 12,36 Trapéz T-12 krycia šírka 1

Διαβάστε περισσότερα

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT

Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH

Διαβάστε περισσότερα

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N

A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i

Διαβάστε περισσότερα

Matematický model robota s diferenciálnym kolesovým podvozkom

Matematický model robota s diferenciálnym kolesovým podvozkom Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom

Διαβάστε περισσότερα

3. prednáška. Komplexné čísla

3. prednáška. Komplexné čísla 3. predáška Komplexé čísla Úvodé pozámky Vieme, že existujú také kvadratické rovice, ktoré emajú riešeie v obore reálych čísel. Študujme kvadratickú rovicu x x + 5 = 0 Použitím štadardej formule pre výpočet

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili

Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru

Διαβάστε περισσότερα

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ (5) ΑΘΗΝΑ ΜΑΡΤΙΟΣ 2013 1 ΕΠΕΞΗΓΗΣΗ ΤΥΠΩΝ ΚΑΙ ΣΥΜΒΟΛΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΤΑΝΟΜΕΣ Τυχαία μεταβλητή είναι μία συνάρτηση η οποία να αντιστοιχεί

Διαβάστε περισσότερα

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c

GENIKA MAJHMATIKA. TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c GENIKA MAJHMATIKA ΓΙΩΡΓΙΟΣ ΚΑΡΑΒΑΣΙΛΗΣ TEI SERRWN SQOLH DIOIKHSHS KAI OIKONOMIAS Tm ma Logistik c 26 Μαΐου 2011 Συνάρτηση f ονομάζεται κάθε σχέση από ένα σύνολο A (πεδίο ορισμού) σε σύνολο B με την οποία

Διαβάστε περισσότερα

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana.

Spojité rozdelenia pravdepodobnosti. Pomôcka k predmetu PaŠ. RNDr. Aleš Kozubík, PhD. 26. marca Domovská stránka. Titulná strana. Spojité rozdelenia pravdepodobnosti Pomôcka k predmetu PaŠ Strana z 7 RNDr. Aleš Kozubík, PhD. 6. marca 3 Zoznam obrázkov Rovnomerné rozdelenie Ro (a, b). Definícia.........................................

Διαβάστε περισσότερα

Prehľad základných produktov a ceny Platný od februára Ušetrite za energiu, priestor a čas...

Prehľad základných produktov a ceny Platný od februára Ušetrite za energiu, priestor a čas... Prehľad základných produktov a ceny Platný od februára 2010 Ušetrite za energiu, priestor a čas... Izolácie zo sklenenej vlny Ušetrite za energiu, priestor a čas... Novinky Izolačná rohož URSA DF 37 Kód

Διαβάστε περισσότερα

Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok:

Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok: Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok: 5. 5 1. 5 1. 5 1. 5 1. 5 5 = ( ( ( ( ( ))))) 3. Zo štyroch kartičiek,

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Výpočet. grafický návrh

Výpočet. grafický návrh Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado

Διαβάστε περισσότερα

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008)

Termodynamika. Doplnkové materiály k prednáškam z Fyziky I pre SjF Dušan PUDIŠ (2008) ermodynamika nútorná energia lynov,. veta termodynamická, Izochorický dej, Izotermický dej, Izobarický dej, diabatický dej, Práca lynu ri termodynamických rocesoch, arnotov cyklus, Entroia Dolnkové materiály

Διαβάστε περισσότερα

Ján Buša Štefan Schrötter

Ján Buša Štefan Schrötter Ján Buša Štefan Schrötter 1 KOMPLEXNÉ ČÍSLA 1 1.1 Pojem komplexného čísla Väčšine z nás je známe, že druhá mocnina ľubovoľného reálneho čísla nemôže byť záporná (ináč povedané: pre každé x R je x 0). Ako

Διαβάστε περισσότερα

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky

Rozdiely vo vnútornej štruktúre údajov = tvarové charakteristiky Veľkosť Varablta Rozdelene 0 00 80 n 60 40 0 0 0 4 6 8 Tredy 0 Rozdely vo vnútornej štruktúre údajov = tvarové charakterstky I CHARAKTERISTIKY PREMELIVOSTI Artmetcký premer Vzťahy pre výpočet artmetckého

Διαβάστε περισσότερα

Testy a úlohy z matematiky

Testy a úlohy z matematiky Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov

Διαβάστε περισσότερα

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.

u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore. Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.

Διαβάστε περισσότερα

MATEMATIKA I ZBIERKA ÚLOH

MATEMATIKA I ZBIERKA ÚLOH TECHNICKÁ UNIVERZITA V KOŠICIACH STAVEBNÁ FAKULTA ÚSTAV TECHNOLÓGIÍ, EKONOMIKY A MANAŽMENTU V STAVEBNÍCTVE KATEDRA APLIKOVANEJ MATEMATIKY RNDr. Pavol PURCZ, PhD. Mgr. Adriana ŠUGÁROVÁ MATEMATIKA I ZBIERKA

Διαβάστε περισσότερα

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA

MPV PO 16/2013 Stanovenie kovov v rastlinnom materiáli ZÁVEREČNÁ SPRÁVA REGIONÁLNY ÚRAD VEREJNÉHO ZDRAVOTNÍCTVA so sídlom v Prešove Národné referenčné centrum pre organizovanie medzilaboratórnych porovnávacích skúšok v oblasti potravín Hollého 5, 080 0 Prešov MEDZILABORATÓRNE

Διαβάστε περισσότερα

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA:

MOSTÍKOVÁ METÓDA 1.ÚLOHA: 2.OPIS MERANÉHO PREDMETU: 3.TEORETICKÝ ROZBOR: 4.SCHÉMA ZAPOJENIA: 1.ÚLOHA: MOSTÍKOVÁ METÓDA a, Odmerajte odpory predložených rezistorou pomocou Wheastonovho mostíka. b, Odmerajte odpory predložených rezistorou pomocou Mostíka ICOMET. c, Odmerajte odpory predložených

Διαβάστε περισσότερα

TALAR ROSA -. / ',)45$%"67789

TALAR ROSA -. / ',)45$%67789 TALAR ROSA!"#"$"%$&'$%(" )*"+%(""%$," *$ -. / 0"$%%"$&'1)2$3!"$ ',)45$%"67789 ," %"(%:,;,"%,$"$)$*2

Διαβάστε περισσότερα

J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Η γλώσσα προγραμματισμού C

Η γλώσσα προγραμματισμού C Η γλώσσα προγραμματισμού C Εντολές ελέγχου ροής προγράμματος (if-else & switch) Η εντολή if-else Η εντολή if-else υπάρχει σχεδόν σε όλες τις γλώσσες προγραμματισμού. Χρησιμοποιείται για τον έλεγχο της

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Lescol 40 mg - Kapseln 40 mg Καψάκιο, σκληρό Από στόµατος. Fluvastatin "Novartis" 20 mg- Kapseln. Fluvastatin "Novartis" 40 mg- Kapseln

Lescol 40 mg - Kapseln 40 mg Καψάκιο, σκληρό Από στόµατος. Fluvastatin Novartis 20 mg- Kapseln. Fluvastatin Novartis 40 mg- Kapseln ΠΑΡΑΡΤΗΜΑ Ι ΚΑΤΑΣΤΑΣΗ ΜΕ ΤΙΣ ΟΝΟΜΑΣΙΕΣ, ΤΗ ΦΑΡΜΑΚΟΤΕΧΝΙΚΗ ΜΟΡΦΗ, ΤΙΣ ΠΕΡΙΕΚΤΙΚΟΤΗΤΕΣ ΤΩΝ ΦΑΡΜΑΚΕΥΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ, ΤΗΝ Ο Ο ΧΟΡΗΓΗΣΗΣ, ΤΟΥΣ ΚΑΤΟΧΟΥΣ ΤΗΣ Α ΕΙΑΣ ΚΥΚΛΟΦΟΡΙΑΣ ΣΤΑ ΚΡΑΤΗ ΜΕΛΗ Κράτος µέλος EU/EEA

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

7 Derivácia funkcie. 7.1 Motivácia k derivácii

7 Derivácia funkcie. 7.1 Motivácia k derivácii Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση

Διαβάστε περισσότερα

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus

Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus KrAv11-T List 1 Logaritmus operácie s logaritmami, dekadický a prirodzený logaritmus RNDr. Jana Krajčiová, PhD. U: Najprv si zopakujme, ako znie definícia logaritmu. Ž: Ja si pamätám, že logaritmus súvisí

Διαβάστε περισσότερα

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1] 1 ( ) 2007 02 16 (2006 5 19 ) 1 1 11 1 12 2 13 Ore 8 14 9 2 (2007 2 16 ) 10 1 11 ( ) ( [T] 131),, s 1 a as 1 [T] 15 (, D ), Lie, (derived category), ( ) [T] Gelfand Manin [GM1] Chapter III, [GM2] Chapter

Διαβάστε περισσότερα

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A

ΚEΦΑΛΑΙΟ 1. Πίνακες. Από τα παραπάνω γίνεται αντιληπτό ότι κάθε γραµµή και στήλη ενός πίνακα A ορίζει µονοσήµαντα τη θέση κάθε στοιχείου A ΚEΦΑΛΑΙΟ Πίνακες Εστω και είναι το σώµα των πραγµατικών και των µιγαδικών αριθµών αντιστοίχως Στο εξής όταν γράφουµε F θα εννοούµε είτε το είτε το Ορισµός Eστω F = ή και m, Κάθε ορθογώνια διάταξη m A F

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Πρώτοι αριθµοί και τα Βασικά Θεωρήµατά τους Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 1 Πρωτοι αριθµοι και τα Βασικα Θεωρηµατα τους Στη µνήµη

Διαβάστε περισσότερα

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY

PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Moderné vzdelávanie pre vedomostnú spoločnosť/ Projekt je spolufinancovaný zo zdrojov EÚ PRÍPRAVNÝ KURZ ZO STREDOŠKOLSKEJ MATEMATIKY Strojnícka fakulta Andrea Feňovčíková Gabriela Ižaríková aaaa aaaa Táto

Διαβάστε περισσότερα

PŘIHLÁŠKY DO KURZŮ VÝUKY ČESKÉHO JAZYKA - AKADEMICKÝ ROK 2013/ 2014 ΕΓΓΡΑΦΗ ΣΤΑ ΜΑΘΗΜΑΤΑ ΤΣΕΧΙΚΗΣ ΓΛΩΣΣΑΣ ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2013 / 2014

PŘIHLÁŠKY DO KURZŮ VÝUKY ČESKÉHO JAZYKA - AKADEMICKÝ ROK 2013/ 2014 ΕΓΓΡΑΦΗ ΣΤΑ ΜΑΘΗΜΑΤΑ ΤΣΕΧΙΚΗΣ ΓΛΩΣΣΑΣ ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2013 / 2014 PŘIHLÁŠKY DO KURZŮ VÝUKY ČESKÉHO JAZYKA - AKADEMICKÝ ROK 2013/ 2014 ΕΓΓΡΑΦΗ ΣΤΑ ΜΑΘΗΜΑΤΑ ΤΣΕΧΙΚΗΣ ΓΛΩΣΣΑΣ Jméno, příjmení studenta / Ονοματεπώνυμο του μαθητή ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2013 / 2014 ODEVZDÁNÍ PŘIHLÁŠEK

Διαβάστε περισσότερα

Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva.

Číslo a číslica. Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslo a číslica Pojem čísla je jedným zo základných pojmov matematiky. Číslo je abstraktná entita (fil. niečo existujúce) používaná na opis množstva. Číslica (cifra) je grafický znak, pomocou ktorého zapisujeme

Διαβάστε περισσότερα

III. časť PRÍKLADY ÚČTOVANIA

III. časť PRÍKLADY ÚČTOVANIA III. časť PRÍKLADY ÚČTOVANIA 1. Účtovanie stravovania poskytovaného zamestnávateľom zamestnancom ( 152 Zák. práce) Obsah účtovného prípadu Suma MD Účt. predpis D A. Poskytovanie stravovania vo vlastnom

Διαβάστε περισσότερα

ISBN , 2009

ISBN , 2009 .... 2009 681.3.06(075.3) 32.973.26 721 367.. 367 : -. :.., 2009. 419.:.,. ISBN 978-5-88874-943-2. :. -,.,. (2006 2009),,,,.. 11-, -. matsievsky@newmail.ru. 681.3.06(075.3) 32.973.26 721 ISBN 978-5-88874-943-2..,

Διαβάστε περισσότερα

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó

jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk

Διαβάστε περισσότερα

w w u u w u = 1 w v = 0 u v = (w 1, w 2,..., w N ) a β k V β i,j = p(w j = 1 z i = 1) θ d Dir(a) Dir(a) z d,n multi(θ d ) V w d,n β zd,n p(θ,, a, β) = p(θ,, a, β) p( a, β) similarity = (A, B) = AB A

Διαβάστε περισσότερα

Δελτίο δεδομένων ασφαλείας

Δελτίο δεδομένων ασφαλείας Σελίδα: 1/11 ΤΜΗΜΑ 1: Αναγνωριστικός κωδικός ουσίας/μείγματος και εταιρείας/επιχείρησης 1.1 Αναγνωριστικός κωδικός προϊόντος REF 918163 Εμπορική ονομασία NANOCOLOR Chlorine dioxide 1 x 1 x 1 x 1 x 1 x

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Δελτίο Δεδομένων Ασφαλείας

Δελτίο Δεδομένων Ασφαλείας Σελίδα 1 από 5 ΤΜΗΜΑ 1: Στοιχεία ουσίας/παρασκευάσματος και εταιρείας/επιχείρησης 1.1. Αναγνωριστικός κωδικός προϊόντος 1.2. Συναφείς προσδιοριζόμενες χρήσεις της ουσίας ή του μείγματος και αντενδεικνυόμενες

Διαβάστε περισσότερα

1.4 Rovnice, nerovnice a ich sústavy

1.4 Rovnice, nerovnice a ich sústavy 1. Rovnice, nerovnice a ich sústavy Osah Pojmy: rovnica, nerovnica, sústava rovníc, sústava nerovníc a ich riešenie, koeficient, koreň, koreňový činiteľ, diskriminant, doplnenie do štvorca, úprava na súčin,

Διαβάστε περισσότερα

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa

η = 1,0-(f ck -50)/200 pre 50 < f ck 90 MPa 1.4.1. Návrh priečneho rezu a pozĺžnej výstuže prierezu ateriálové charakteristiky: - betón: napr. C 0/5 f ck [Pa]; f ctm [Pa]; fck f α [Pa]; γ cc C pričom: α cc 1,00; γ C 1,50; η 1,0 pre f ck 50 Pa η

Διαβάστε περισσότερα

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ

ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Τμήμα Φυσικής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης ΓΕΝΙΚΗ ΦΥΣΙΚΗ IV: ΚΥΜΑΤΙΚΗ - ΟΠΤΙΚΗ Ι. ΑΡΒΑΝΙΤΙ ΗΣ jarvan@physcs.auth.gr 2310 99 8213 ΘΕΜΑΤΙΚΕΣ ΕΝΟΤΗΤΕΣ ΓΕΩΜΕΤΡΙΚΗ ΟΠΤΙΚΗ ΠΟΛΩΣΗ ΣΥΜΒΟΛΗ ΠΕΡΙΘΛΑΣΗ

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Δελτίο δεδομένων ασφαλείας

Δελτίο δεδομένων ασφαλείας Σελίδα: 1/7 ΤΜΗΜΑ 1: Αναγνωριστικός κωδικός ουσίας/μείγματος και εταιρείας/επιχείρησης 1.1 Αναγνωριστικός κωδικός προϊόντος REF 935042 Εμπορική ονομασία VISOCOLOR alpha total Hardness 1 x 1.2 Συναφείς

Διαβάστε περισσότερα

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i.

( ) 10 ( ) εποµ ένως. π π π π ή γενικότερα: π π. π π. π π. Άσκηση 1 (10 µον) Θεωρούµε το µιγαδικό αριθµό z= i. http://elern.mths.gr/, mths@mths.gr, Τηλ: 697905 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 00-0: Άσκηση (0 µον) Θεωρούµε το µιγαδικό αριθµό z= i. α) (5 µον) Βρείτε την τριγωνοµετρική µορφή του z.

Διαβάστε περισσότερα

V r,k j F k m N k+1 N k N k+1 H j n = 7 n = 16 Ṽ r ñ,ñ j Ṽ Ṽ j x / Ṽ W 2r V r D N T T 2r 2r N k F k N 2r Ω R 2 n Ω I n = { N: n} n N R 2 x R 2, I n Ω R 2 u R 2, I n x k+1 = x k + u k, u, x R 2,

Διαβάστε περισσότερα

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk SLUŽBY s. r. o.

Staromlynská 29, Bratislava tel: , fax: http: //www.ecssluzby.sk   SLUŽBY s. r. o. SLUŽBY s. r. o. Staromlynská 9, 81 06 Bratislava tel: 0 456 431 49 7, fax: 0 45 596 06 http: //www.ecssluzby.sk e-mail: ecs@ecssluzby.sk Asynchrónne elektromotory TECHNICKÁ CHARAKTERISTIKA. Nominálne výkony

Διαβάστε περισσότερα

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &

Διαβάστε περισσότερα

Δελτίο δεδομένων ασφαλείας σύμφωνα με τον Κανονισμό (ΕΚ) αριθ. 1907/2006, Παράρτημα ΙΙ

Δελτίο δεδομένων ασφαλείας σύμφωνα με τον Κανονισμό (ΕΚ) αριθ. 1907/2006, Παράρτημα ΙΙ 1 / 8 Δελτίο δεδομένων ασφαλείας σύμφωνα με τον Κανονισμό (ΕΚ) αριθ. 1907/2006, Παράρτημα ΙΙ 1. ΣΤΟΙΧΕΙΑ ΟΥΣΙΑΣ/ΠΑΡΑΣΚΕΥΑΣΜΑΤΟΣ ΚΑΙ ΕΤΑΙΡΕΙΑΣ/ΕΠΙΧΕΙΡΗΣΗΣ Στοιχεία της ουσίας ή του παρασκευάσματος ΠΡΟΣΤΑΤΕΥΤΙΚΟ

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

ΤΟ ΓΙ ΙΝΟ ΓΑΛΑ ΠΡΩΤΗ ΥΛΗ ΓΙΑ ΠΑΡΑΓΩΓΗ ΠΟΙΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ

ΤΟ ΓΙ ΙΝΟ ΓΑΛΑ ΠΡΩΤΗ ΥΛΗ ΓΙΑ ΠΑΡΑΓΩΓΗ ΠΟΙΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ΤΟ ΓΙ ΙΝΟ ΓΑΛΑ ΠΡΩΤΗ ΥΛΗ ΓΙΑ ΠΑΡΑΓΩΓΗ ΠΟΙΟΤΙΚΩΝ ΠΡΟΪΟΝΤΩΝ ρ. Θεόφ. Μασούρας Επίκ. ΚαθηγητήςΓαλακτοκοµίας Τµήµα Επιστήµης & Τεχνολογίας Τροφίµων Γεωπονικό Πανεπιστήµιο Αθηνών Παγκόσµια παραγωγή γίδινου

Διαβάστε περισσότερα

ΚΡΙΤΙΚΗ ΕΠΙΤΡΟΠΗ. Για τον Αρχιτεκτονικό ιαγωνισµό Προσχεδίων για την Ανάπλαση της Πλατείας Ελευθερίας του ήµου Θεσσαλονίκης

ΚΡΙΤΙΚΗ ΕΠΙΤΡΟΠΗ. Για τον Αρχιτεκτονικό ιαγωνισµό Προσχεδίων για την Ανάπλαση της Πλατείας Ελευθερίας του ήµου Θεσσαλονίκης ΚΡΙΤΙΚΗ ΕΠΙΤΡΟΠΗ Για τον Αρχιτεκτονικό ιαγωνισµό Προσχεδίων για την Ανάπλαση της Πλατείας Ελευθερίας του ήµου Θεσσαλονίκης ΣΥΓΚΕΝΤΡΩΤΙΚΟ ΚΑΙ ΣΥΝΟΠΤΙΚΟ ΠΡΑΚΤΙΚΟ Στη Θεσσαλονίκη, στο Κέντρο Αρχιτεκτονικής

Διαβάστε περισσότερα

Řečtina I průvodce prosincem a začátkem ledna prezenční studium

Řečtina I průvodce prosincem a začátkem ledna prezenční studium Řečtina I průvodce prosincem a začátkem ledna prezenční studium Dobson číst si Dobsona 9. až 12. lekci od 13. lekce už nečíst (minulý čas probírán na stažených slovesech velmi matoucí) Bartoň pořídit si

Διαβάστε περισσότερα

Θερμορρύθμιση Κοσμάς Χριστούλας Αναπλ. Καθηγητής Τ.Ε.Φ.Α.Α.-Α.Π.Θ. Α.Π.Θ. Θερμορρύθμιση Ο άνθρωπος και τα ζώα που έχουν την ικανότητα να διατηρούν τη θερμοκρασία του σώματός τους σταθερή, και σε πολύ στενά

Διαβάστε περισσότερα

Skyline Queries in P2P Systems

Skyline Queries in P2P Systems Skyline Queries in P2P Systems Παρουσίαση: Φωτεινή Πεχλιβάνη Αικατερίνη Φωτιάδου οµήτης παρουσίασης Ορισµός του Skyline Skyline in P2P Περιγραφή Μοντέλου ροµολόγηση Caching Πειράµατα Συµπεράσµατα Ορισµός

Διαβάστε περισσότερα

Goniometrické nerovnice

Goniometrické nerovnice Ma-Go--T List Goniometrické nerovnice RNDr. Marián Macko U: Problematiku, ktorej sa budeme venovať, začneme úlohou. Máme určiť definičný obor funkcie f zadanej predpisom = sin. Máš predstavu, s čím táto

Διαβάστε περισσότερα

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436

#&' ()* #+#, 2 )' #$+34 4 )!' 35+,6 5! *,#+#26 37)*! #2#+#42 %8')* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :&' 2#3+23- ##) :* 232+464 #-) ''7 465+436 ! "#$$% #& ()* #+#, -./0*1 2 ) #$+34 4 )! 35+,6 5! *,#+#26 37)*! #2#+#42 %8)* #44+#%$,)88) 9 #,6+-55 $)8) -53+2#5 #6) :& 2#3+23- ##) :* 232+464 #-) 7 465+436 .* &0* 0!*07 ;< =! ))* *0*>!! #6&? @ 8 (? +

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Maturitné úlohy. Matematiky. Pre gymnázium

Maturitné úlohy. Matematiky. Pre gymnázium Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...

Διαβάστε περισσότερα

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì

Διαβάστε περισσότερα

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú

XVIII. ročník BRKOS 2011/2012. Pomocný text. Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú Pomocný text Číselné obory Číselné obory Kde by bola matematika bez čísel? Čísla predstavujú jednu z prvých abstrakcií, ktorú ľudia začali vnímať. Abstrakcia spočívala v tom, že množstvo, ktoré sa snažili

Διαβάστε περισσότερα

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8

Obsah. 1.1 Reálne čísla a ich základné vlastnosti... 7 1.1.1 Komplexné čísla... 8 Obsah 1 Číselné obory 7 1.1 Reálne čísla a ich základné vlastnosti............................ 7 1.1.1 Komplexné čísla................................... 8 1.2 Číselné množiny.......................................

Διαβάστε περισσότερα

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti

4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti 4. Výrokové funkcie (formy), ich definičný obor a obor pravdivosti Výroková funkcia (forma) ϕ ( x) je formálny výraz (formula), ktorý obsahuje znak x, pričom x berieme z nejakej množiny M. Ak za x zvolíme

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

HR SLO RUS GR SK CZ H PL P E I N FI DK S NL F GB D LV LT EST AL BG TR RO UA SRB. 4000/5 eco Art. 1754 5000/5 eco Art. 1755 5000/5 eco inox Art.

HR SLO RUS GR SK CZ H PL P E I N FI DK S NL F GB D LV LT EST AL BG TR RO UA SRB. 4000/5 eco Art. 1754 5000/5 eco Art. 1755 5000/5 eco inox Art. D Betriebsanleitung Hauswasserwerk GB Operating Instructions Pressure Tank Unit F Mode d emploi Groupe de surpression NL Gebruiksaanwijzing Hydrofoorpomp S Bruksanvisning Hydroforpump DK Brugsanvisning

Διαβάστε περισσότερα

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S.

Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. y z = z y y, z S. Solutions to Selected Homework Problems 1.26 Claim: α : S S which is 1-1 but not onto β : S S which is onto but not 1-1. Proof. ( ) Since α is 1-1, β : S S such that β α = id S. Since β α = id S is onto,

Διαβάστε περισσότερα

Άλγεβρα Boole και Υλικό Υπολογιστή

Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole και Υλικό Υπολογιστή Άλγεβρα Boole Η σχέση της άλγεβρας Boole με την δομή των υπολογιστών και με τον προγραμματισμό. Υλικό υπολογιστή Οργάνωση Κεντρικής Μονάδας Επεξεργασίας, μνήμη, είσοδος

Διαβάστε περισσότερα

Goniometrické rovnice riešené substitúciou

Goniometrické rovnice riešené substitúciou Ma-Go-10-T List 1 Goniometrické rovnice riešené substitúciou RNDr. Marián Macko U: Okrem základných goniometrických rovníc, ktorým sme sa už venovali, existujú aj zložitejšie goniometrické rovnice. Metódy

Διαβάστε περισσότερα