Sharp Interface Limit for the Navier Stokes Korteweg Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sharp Interface Limit for the Navier Stokes Korteweg Equations"

Transcript

1 Sharp Interface Limit for the Navier Stokes Korteweg Equations Albert-Ludwigs-Universität Freiburg Johannes Daube (Joint work with H. Abels, C. Kraus and D. Kröner) 11th DFG-CNRS Workshop Micro-Macro Modeling and Simulations of Liquid-Vapour Flows Paris, March 3, 2016

2 Organisation Introduction The Diffuse Interface Model The Sharp Interface Model The Sharp Interface Limit March 3, 2016 Johannes Daube SIL for the NSK Equations 2 / 21

3 Diffuse and Sharp Interface Models Diffuse Interface Models interface of non-zero thickness (diffuse interface) system of PDEs on whole domain describes motion of fluid smooth order parameter (here: density) indicates different phases Sharp Interface Models infinitely thin (sharp) interface separates different fluid phases system of PDEs in each bulk phase describes motion of fluid coupling by boundary conditions at interface jump discontinuities at interface β 1 ε 0 Sharp Interface Limits relates diffuse to sharp interface models letting in diffuse models the interface thickness tend to zero leads to corresponding sharp interface models β 1 β 2 March 3, 2016 Johannes Daube SIL for the NSK Equations 3 / 21

4 Navier Stokes Korteweg Equation (Diffuse Interface Model) extension of the compressible Navier Stokes equations (Korteweg 1901) diffuse interface model for liquid vapour flows which allows for phase transitions a small parameter ε > 0 represents the thickness of an interfacial area, where phase transitions occur phase field like scaling (Hermsdörfer, Kraus and Kröner 2011) (DIM) ε t ρ ε + div(ρ ε v ε ) = 0 in [0,T], t (ρ ε v ε ) + div(ρ ε v ε v ε ) + 1 ε p(ρ ε) = 2div(µ(ρ ε )Dv ε ) + εγρ ε ρ ε in [0,T], where ρ ε density, v ε velocity, p(ρ ε ) (non-monotone) pressure, µ(ρ ε ) viscosity. Boundary conditions: ρ ε ν = 0 and v ε = 0 on [0,T]. Initial conditions: ρ ε (,0) = ρ ε (i) and v ε (,0) = v ε (i) in. March 3, 2016 Johannes Daube SIL for the NSK Equations 4 / 21

5 Pressure and Double Well Potential non-monotone pressure function p(ρ) = ρ W (ρ) W(ρ) (normalized) double-well potential W(ρ) = W(ρ) l(ρ), where l Maxwell line and 0 < β 1 < β 2 Maxwell points Note: p (ρ) = ρ W (ρ) = ρw (ρ) = p(ρ) = p (ρ) ρ = ρw (ρ) ρ p Ρ W Ρ W Ρ vapour Α1 Α2 liquid Ρ Β1 Α1 Α2 Β2 Ρ Β1 Α1 Α2 Β2 Ρ Growth of the Double-Well Potential. For a = β 1 +β 2 2 and b = β 2 β 1 2, there exist constants C 1 > 0, C 2 (0,b) and p > 2 such that W (z) C 1 z a p 2 for all z R with z a b C 2. Prototypical example (p = 4): W(z) = (z β 1 ) 2 (z β 2 ) 2. March 3, 2016 Johannes Daube SIL for the NSK Equations 5 / 21

6 Static Case Motivation for phase field like scaling of the Navier Stokes Korteweg equations. Static case: velocity v ε 0, time independent; γ = 1 for simplicity. In the static case (DIM) ε reduces to 1 ε p(ρ ε) = ερ ε ρ ε (p (ρ) = ρw (ρ)) = ερ ε ρ ε = 1 ε p (ρ ε ) ρ ε = 1 ε ρ ε W (ρ ε ) ( ) 1 (assume ρ ε > 0) = ε W (ρ ε ) ε ρ ε = 0. Hence, there is a constant l ε R such that 1 ε W (ρ ε ) ε ρ ε = l ε. Euler Lagrange equation with Lagrange multiplier l ε of { } min E ε (ρ) : ρ H 1 1 (), ρ(x)dx = m, E ε (ρ) = ε W(ρ) + ε 2 ρ 2 dx, where m (β 1,β 2 ) (prescribed total mass). March 3, 2016 Johannes Daube SIL for the NSK Equations 6 / 21

7 Static Case: Heuristics Heuristic picture from minimization problem { 1 min ε W(ρ) + ε } 2 ρ 2 dx : ρ H 1 (), ρ(x)dx = m. 1 ε W(ρ)dx favours configurations close to pure phases β 1 and β 2 due to the double-well shape of W. minimizing 1 ε W(ρ)dx leads to phase separation. 1 2 ε ρ 2 dx penalizes occurrence of large interfaces, i.e., rapid transitions between {ρ β 1 } and {ρ β 2 }. March 3, 2016 Johannes Daube SIL for the NSK Equations 7 / 21

8 Aim (DIM) ε t ρ ε + div(ρ ε v ε ) = 0 in [0,T], t (ρ ε v ε ) + div(ρ ε v ε v ε ) + 1 ε p(ρ ε) = 2div(µ(ρ ε )Dv ε ) + εγρ ε ρ ε in [0,T], Sharp interface limit for (DIM) ε : (DIM) ε ε 0 Sharp interface model Main steps 1 Convergence/compactness results for solutions (ρ ε,v ε ) of (DIM) ε 2 Introduction/Justification of the sharp interface model 3 Limit functions of (ρ ε,v ε ) are solutions of the sharp interface model March 3, 2016 Johannes Daube SIL for the NSK Equations 8 / 21

9 (DIM) ε : Notion of Weak Solutions A couple (ρ ε,v ε ) ( L (0,T;H 1 ()) L (0,T;L p ()) ) L 2 (0,T;H0 1()n ) is a weak solution to (DIM) ε w.r.t. prescribed initial values (ρ ε (i),v ε (i) ), if Conservation of mass: For all ϕ C(0) ( [0,T)), it holds ρ ε t ϕ + ρ ε v ε ϕ dx dt + ρ ε (i) ϕ(0)dx = 0. Conservation of momentum: For all ψ C (0) ( [0,T))n, it holds ρ ε v ε t ψ + ρ ε v ε v ε : ψ + 1 ε p(ρ ε)div(ψ) 2µ(ρ ε )Dv ε : Dψ dx dt + ρ ε (i) v ε (i) ψ(0)dx = γε ρ ε ρ ε : ψ ρ ε 2 div(ψ) + ρ ε ρ ε div(ψ)dx dt. Energy inequality: Let Eε tot 1 (t) = ε W(ρ ε (t)) + ε 2 γ ρ ε(t) ρ ε(t) v ε (t) 2 dx. For almost every t (0,T), it holds t Eε tot (t) + 2 µ(ρ ε ) Dv ε 2 dx ds Eε tot (0) assumption C. March 3, 2016 Johannes Daube SIL for the NSK Equations 9 / 21

10 (DIM) ε : Compactness of Weak Solutions Family of weak solutions (ρ ε,ε ε ) ε (0,1) to (DIM) ε with uniformly bounded initial energy. Theorem (Compactness of weak solutions to (DIM) ε ) There are functions ρ 0 C 0, 1 29 ([0,T];L 2 ()) L (0,T;BV(,{β 1,β 2 })) and v 0 L 2 (0,T;H 1 0 ()n ) such that (up to subsequences) ρ ε ρ 0 in C 0, 1 29 ([0,T];L 2 ()) and v ε v 0 weakly in L 2 (0,T;H 1 () n ). Limiting sharp interface: ρ 0 (t) BV(,{β 1,β 2 }) indicates phases (t) = {ρ 0 (t) = β 1 } and + (t) = {ρ 0 (t) = β 2 } of finite perimeter, interface Γ(t) = ( (t)). Convergence to a reasonable sharp interface model? March 3, 2016 Johannes Daube SIL for the NSK Equations 10 / 21

11 (SIM) 0 : Two-phase Incompressible Navier Stokes Equation with Surface Tension Sharp interface model is free boundary problem with unknown interface Γ : [0,T] R n such that = (t) Γ(t) + (t), velocity function v(t) : \ Γ(t) R n, pressure function p(t) : \ Γ(t) R satisfying β 1 t v + β 1 (v )v + p = 2div(µ(β 1 )Dv) in (t), β 2 t v + β 2 (v )v + p = 2div(µ(β 2 )Dv) in + (t), (Navier Stokes) div(v) = 0 in \ Γ(t), (incompressible phases) (SIM) 0 [v] + = 0 on Γ(t), (continuous velocity) (Navier Stokes) V = v ν on Γ(t), (pure transport of interface) [T] + ν = 2σκν on Γ(t). (Young Laplace law) T (v,p) = 2µ(β 1 )Dv pi and T + (v,p) = 2µ(β 2 )Dv pi stress tensors, [ ] + jump across Γ(t), V normal velocity of interface, σ surface tension constant, κ mean curvature. + suitable boundary conditions on and initial conditions March 3, 2016 Johannes Daube SIL for the NSK Equations 11 / 21

12 (SIM) 0 : Weak Solutions to Sharp Interface Model For (ρ,v) L (0,T;BV(,{β 1,β 2 })) ( L (0,T;L 2 σ ()) L 2 (0,T;H 1 0 ()n ) ) let (t) = {ρ(t) = β 1 } and Γ(t) = ( (t)) (density determines interface). Then (ρ,v) is a weak solution of (SIM) 0, if Transport equation: characteristic function χ(t) = ρ(t) β 2 β 1 β 2 of t χ + v χ = 0 in (0,T). of (t) is a distributional solution Energy inequality: For almost every t (0,T), it holds 1 t ρ(t) v(t) 2 dx + 2σH n 1 (Γ(t)) + 2 µ(ρ) Dv 2 dx ds 2 1 ρ (i) v (i) 2 dx + 2σH n 1 (Γ(0)). 2 Variational formulation: For all divergence free test functions ψ C0 ([0,T);C 0,σ ()), it holds ρv t ψ + ρv v : ψ 2µ(ρ)Dv : Dψ dx dt + ρ (i) v (i) ψ(0)dx = 2σ ν ν : ψ dh n 1 (x)dt. 0 Γ(t) March 3, 2016 Johannes Daube SIL for the NSK Equations 12 / 21

13 (SIM) 0 : Divergence Free Test Functions Variational formulation ρv t ψ + ρv v : ψ 2µ(ρ)Dv : Dψ dx dt + ρ (i) v (i) ψ(0)dx = 2σ ν ν : ψ dh n 1 (x)dt 0 Γ(t) uses divergence free test functions ψ C 0 ([0,T);C 0,σ ()) = { ψ [0,T) : ψ C 0 ( ( 1,T))n, div(ψ) = 0 }. +: Removes pressure function from weak formulation. Consequence : No passage to the limit of pressure term. -: Reconstruction of pressure function from weak formulation. March 3, 2016 Johannes Daube SIL for the NSK Equations 13 / 21

14 (SIM) 0 : Reconstruction of Pressure (for Smooth Solutions) Additional smoothness assumptions: interface: Γ = Γ(t) is space-time interface of class C 3,1. velocity: all derivatives of v exist in L 2 ( ) and L 2 ( + ), where ( (t) {t} ) and ( + (t) {t}). t (0,T) t (0,T) Note: No additional regularity across interface is assumed! Theorem (Reconstruction of pressure) For a sufficiently regular weak solution (ρ,v) to (SIM) 0, there exists a unique p L 2 ( (0,T)) with the following properties. 1 p ± L 2 (0,T;W 1,2 ( ± (t))). 2 For almost all t [0,T) it holds p(t)dx = 0. 3 p = β 1 t v + 2µ(β 1 )div(dv) β 1 (v )v a.e. in. 4 p = β 2 t v + 2µ(β 2 )div(dv) β 2 (v )v a.e. in +. 5 [p] + = 2[ µ(ρ)dvν ] + ν + 2σκ in L 2 (0,T;H 1 2 (Γ(t))). Jusitfies notion of weak solutions to (SIM) 0 March 3, 2016 Johannes Daube SIL for the NSK Equations 14 / 21

15 (DIM) ε (SIM) 0 : The Sharp Interface Limit Aim Weak solutions (ρ ε,v ε ) ε (0,1) of (DIM) ε ε 0 weak solution (ρ 0,v 0 ) of (SIM) 0. Recall: Compactness properties of weak solutions: ρ ε ρ 0 in C 0, 1 29 ([0,T],L 2 ()) with ρ 0 C 0, 1 29 ([0,T];L p ()) L (0,T;BV(,{β 1,β 2 })) v ε v 0 weakly in L 2 (0,T;H 1 () n ) with v 0 L 2 (0,T;H 1 0 ()n ) Question: (ρ 0,v 0 ) weak solution of (SIM) 0? March 3, 2016 Johannes Daube SIL for the NSK Equations 15 / 21

16 (DIM) ε (SIM) 0 : Mathematical Main Difficulties Task: Passing to the limit in the weak formulation. Momentum balance: Recall variational formulation ρ ε v ε t ψ + ρ ε v ε v ε : ψ + 1 ε p(ρ ε)div(ψ) 2µ(ρ ε )Dv ε : Dψ dx dt + ρ ε (i) v ε (i) ψ(,0)dx = γε ρ ε ρ ε : ψ ρ ε 2 div(ψ) + ρ ε ρ ε div(ψ)dx dt. for any ψ C (0) ( [0,T))n. Challenging terms in the passage to the limit ε 0: 1 T p(ρ ε )div(ψ)dx dt and ε ρ ε ρ ε : ψ dx dt. ε March 3, 2016 Johannes Daube SIL for the NSK Equations 16 / 21

17 (DIM) ε (SIM) 0 : Treatment of Pressure Term Weak formulation for (SIM) 0 takes into account divergence-free test functions ψ C0 ([0,T);C 0,σ ()) = 1 p(ρ ε )div(ψ)dx dt = 0. ε Resolves problem of passing pressure term to the limit! Variational formulation simplifies to for any ψ C 0 ([0,T);C 0,σ ()). ρ ε v ε t ψ + ρ ε v ε v ε : ψ dx dt + ρ ε (i) v ε (i) ψ(,0)dx = 2µ(ρ ε )Dv ε : Dψ γε ρ ε ρ ε : ψ dx dt March 3, 2016 Johannes Daube SIL for the NSK Equations 17 / 21

18 (DIM) ε (SIM) 0 : Treatment of Capillary Term Due to energy inequality, 1 ε W(ρ ε) + ε 2 γ ρ ε 2 weak- pre-compact in L 1 (0,T;C 0 ()). Problem: Identification of limit function. Solution: If 1 ε W(ρ ε) + ε 2 γ ρ ε 2 converges to appropriate surface measure. Then control of εγ ρ ε ρ ε : ψ dx dt. March 3, 2016 Johannes Daube SIL for the NSK Equations 18 / 21

19 (DIM) ε (SIM) 0 : The Sharp Interface Limit (Solving the Sharp Interface Model) Assumption: For every ϕ L 1 (0,T;C 0 ()) it holds ( lim 1ε W(ρ ε ) + ε ε 0 2 γ ρ ε 2) ϕ dx dt = 2σ ϕ dh n 1 (x)dt 0 Γ(t) with σ = β 2 γw(r) β 1 2 dr and Γ(t). Theorem (Convergence of capillary term) For every ψ C0 ([0,T);C 0,σ ()) it holds lim εγ ρ ε ρ ε : ψ dx dt = 2σ ν ν : ψ dh n 1 (x)dt. ε 0 0 Γ(t) Theorem (Solving the sharp interface model) The couple (ρ 0,v 0 ) is a weak solution of (SIM) 0. March 3, 2016 Johannes Daube SIL for the NSK Equations 19 / 21

20 Conclusion Navier Stokes Korteweg equations (diffuse interface model) notion of weak solution compactness properties Two-phase incompressible Navier Stokes equations with surface tension (sharp interface model) notion of weak solution consistency result Sharp interface limit sufficient condition: convergence of energy to associated surface measure open question: possible to weaken/remove additional assumption? March 3, 2016 Johannes Daube SIL for the NSK Equations 20 / 21

21 References Abels, H.: On generalized solutions of two-phase flows for viscous incompressible fluids. Interfaces Free Bound. 9, No. 1, (2007). Chen, X.: Global asymptotic limit of solutions of the Cahn Hilliard equation. J. Differ. Geom. 44, No. 2, (1996). Hermsdörfer, K., Kraus, C., Kröner, D.: Interface conditions for limits of the Navier Stokes Korteweg model. Interfaces Free Bound. 13, No. 2, (2011). Korteweg, D. J.: Sur la forme que prennent les équations du mouvement des fluids si l on tient compte des forces capillaires causées par les variations de densite mais continues et sur la théorie de la capillarité dans l hypothèse d une variation continue de la densité. Arch. Néerl. (2) 6, 1 24 (1901). Thank you for your attention! March 3, 2016 Johannes Daube SIL for the NSK Equations 21 / 21

Phase-Field Force Convergence

Phase-Field Force Convergence Phase-Field Force Convergence Bo Li Department of Mathematics and Quantitative Biology Graduate Program UC San Diego Collaborators: Shibin Dai and Jianfeng Lu Funding: NSF School of Mathematical Sciences

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Approximation of dynamic boundary condition: The Allen Cahn equation

Approximation of dynamic boundary condition: The Allen Cahn equation 1 Approximation of dynamic boundary condition: The Allen Cahn equation Matthias Liero I.M.A.T.I. Pavia and Humboldt-Universität zu Berlin 6 th Singular Days 2010 Berlin Introduction Interfacial dynamics

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

L p approach to free boundary problems of the Navier-Stokes equation

L p approach to free boundary problems of the Navier-Stokes equation L p approach to free boundary problems of the Navier-Stokes equation e-mail address: yshibata@waseda.jp 28 4 1 e-mail address: ssshimi@ipc.shizuoka.ac.jp Ω R n (n 2) v Ω. Ω,,,, perturbed infinite layer,

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

A bound from below for the temperature in compressible Navier-Stokes equations

A bound from below for the temperature in compressible Navier-Stokes equations A bound from below for the temperature in compressible Navier-Stokes equations Antoine Mellet, Alexis Vasseur September 5, 7 Abstract: We consider the full system of compressible Navier-Stokes equations

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

Heisenberg Uniqueness pairs

Heisenberg Uniqueness pairs Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico Modelli Matematici e Problemi Analitici per Materiali Speciali Cortona, 25 29 giugno 2001 Transizione di fase solido solido in un sistema meccanico Gianni Gilardi Dipartimento di Matematica F. Casorati

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING GLOBAL WEAK SOLUTIOS TO COMPRESSIBLE QUATUM AVIER-STOKES EQUATIOS WITH DAMPIG ALEXIS F. VASSEUR AD CHEG YU Abstract. The global-in-time existence of weak solutions to the barotropic compressible quantum

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model 1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009 1 IV. Hedging of credit derivatives 1. Two default free assets, one defaultable asset 1.1 Two

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Acoustic Limit for the Boltzmann equation in Optimal Scaling

Acoustic Limit for the Boltzmann equation in Optimal Scaling Acoustic Limit for the Boltzmann equation in Optimal Scaling Joint work with Yan Guo and Ning Jiang Courant Institute March 4, 2009 Kinetic FRG Young Researchers Workshop The Boltzmann equation t F + v

Διαβάστε περισσότερα

Divergence for log concave functions

Divergence for log concave functions Divergence or log concave unctions Umut Caglar The Euler International Mathematical Institute June 22nd, 2013 Joint work with C. Schütt and E. Werner Outline 1 Introduction 2 Main Theorem 3 -divergence

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression Lu Tian and Richard Olshen Stanford University 1 One sample problem T 1,, T n 1 S( ), C 1,, C n G( ) and T i C i Observations: (U i,

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Global weak solution to the viscous two-phase model with finite energy

Global weak solution to the viscous two-phase model with finite energy Global weak solution to the viscous two-phase model with finite energy Alexis Vasseur Huanyao Wen Cheng Yu April 23, 217 Abstract In this paper, we prove the existence of global weak solutions to the compressible

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution Jim Dai Joint work with Masakiyo Miyazawa July 8, 211 211 INFORMS APS conference at Stockholm Jim Dai (Georgia

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Thermodynamics of the motility-induced phase separation

Thermodynamics of the motility-induced phase separation 1/9 Thermodynamics of the motility-induced phase separation Alex Solon (MIT), Joakim Stenhammar (Lund U), Mike Cates (Cambridge U), Julien Tailleur (Paris Diderot U) July 21st 2016 STATPHYS Lyon Active

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Markov chains model reduction

Markov chains model reduction Markov chains model reduction C. Landim Seminar on Stochastic Processes 216 Department of Mathematics University of Maryland, College Park, MD C. Landim Markov chains model reduction March 17, 216 1 /

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Mathematical theory of compressible viscous. Eduard Feireisl and Milan Pokorný

Mathematical theory of compressible viscous. Eduard Feireisl and Milan Pokorný Mathematical theory of compressible viscous fluids Eduard Feireisl and Milan Pokorný 2 Another advantage of a mathematical statement is that it is so definite that it might be definitely wrong... Some

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα