Acoustic Limit for the Boltzmann equation in Optimal Scaling

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Acoustic Limit for the Boltzmann equation in Optimal Scaling"

Transcript

1 Acoustic Limit for the Boltzmann equation in Optimal Scaling Joint work with Yan Guo and Ning Jiang Courant Institute March 4, 2009 Kinetic FRG Young Researchers Workshop

2 The Boltzmann equation t F + v x F = Q(F, F )

3 The Boltzmann equation t F + v x F = Q(F, F ) Q(F 1, F 2 )(v) = b(v u, ω){f 1 (v )F 2 (u ) F 1 (v)f 2 (u)}dω du R 3 S 2 where v = v [(v u) ω]ω and u = u + [(v u) ω]ω

4 The Boltzmann equation t F + v x F = Q(F, F ) Q(F 1, F 2 )(v) = b(v u, ω){f 1 (v )F 2 (u ) F 1 (v)f 2 (u)}dω du R 3 S 2 where v = v [(v u) ω]ω and u = u + [(v u) ω]ω Here, we take b(v u, ω) v u γ for 3 < γ 1 0 γ 1 : hard potentials (γ = 0 for Maxwell molecules, γ = 1 for hard spheres) 3 < γ < 0 : soft potentials

5 The Boltzmann equation t F + v x F = Q(F, F ) Q(F 1, F 2 )(v) = b(v u, ω){f 1 (v )F 2 (u ) F 1 (v)f 2 (u)}dω du R 3 S 2 where v = v [(v u) ω]ω and u = u + [(v u) ω]ω Here, we take b(v u, ω) v u γ for 3 < γ 1 0 γ 1 : hard potentials (γ = 0 for Maxwell molecules, γ = 1 for hard spheres) 3 < γ < 0 : soft potentials Collision invariants {1, v k, v 2 } Q(F, F )dv = Q(F, F )v k dv = Q(F, F ) v 2 dv = 0 R 3 R 3 R 3

6 Dimensionless Form and Scalings

7 Dimensionless Form and Scalings St t F ε + v x F ε = 1 Kn Q(F ε, F ε ) ; St = ε s, Kn = ε q

8 Dimensionless Form and Scalings St t F ε + v x F ε = 1 Kn Q(F ε, F ε ) ; St = ε s, Kn = ε q F ε = µ + δ ε G ε ; Ma = δ ε (ε m ), Re Ma Kn

9 Dimensionless Form and Scalings St t F ε + v x F ε = 1 Kn Q(F ε, F ε ) ; St = ε s, Kn = ε q F ε = µ + δ ε G ε ; Ma = δ ε (ε m ), Re Ma Kn q = 1, m = 0, s = 0 : Compressible Euler (F ε F ) q = 1, m > 0, s = 0 : Acoustic Waves (G ε G)

10 Dimensionless Form and Scalings St t F ε + v x F ε = 1 Kn Q(F ε, F ε ) ; St = ε s, Kn = ε q F ε = µ + δ ε G ε ; Ma = δ ε (ε m ), Re Ma Kn q = 1, m = 0, s = 0 : Compressible Euler (F ε F ) q = 1, m > 0, s = 0 : Acoustic Waves (G ε G) Longer time scale (G ε G) q = 1, m = 1, s = 1 : Incompressible Navier-Stokes-Fourier q = 1, m > 1, s = 1 : Stokes-Fourier q > 1, m = 1, s = 1 : Incompressible Euler-Fourier

11 Two Modern Frameworks

12 Two Modern Frameworks Start from DiPerna-Lions global renormalized solutions to Boltzmann equations Justify the convergence to global weak solutions of incompressible Navier-Stokes, Stokes, and Euler flows and compressible acoustic system

13 Two Modern Frameworks Start from DiPerna-Lions global renormalized solutions to Boltzmann equations Justify the convergence to global weak solutions of incompressible Navier-Stokes, Stokes, and Euler flows and compressible acoustic system (Bardos, Golse, Levermore, Lions, Masmoudi, Saint-Raymond)

14 Two Modern Frameworks Start from DiPerna-Lions global renormalized solutions to Boltzmann equations Justify the convergence to global weak solutions of incompressible Navier-Stokes, Stokes, and Euler flows and compressible acoustic system (Bardos, Golse, Levermore, Lions, Masmoudi, Saint-Raymond) Start from smooth solutions to fluid equations Construct solutions to Boltzmann equations via Hilbert or Chapman-Enskog expansions

15 Two Modern Frameworks Start from DiPerna-Lions global renormalized solutions to Boltzmann equations Justify the convergence to global weak solutions of incompressible Navier-Stokes, Stokes, and Euler flows and compressible acoustic system (Bardos, Golse, Levermore, Lions, Masmoudi, Saint-Raymond) Start from smooth solutions to fluid equations Construct solutions to Boltzmann equations via Hilbert or Chapman-Enskog expansions (Caflisch, De Masi, Esposito, Lebowitz, Guo)

16 Acoustic Limit Acoustic scaling t F ε + v x F ε = 1 ε Q(F ε, F ε ), F ε = µ 0 + δg ε µ 0 1 (2π) 3/2 exp( v 2 2 ), δ 0 as ε 0 (δ = εm )

17 Acoustic Limit Acoustic scaling t F ε + v x F ε = 1 ε Q(F ε, F ε ), F ε = µ 0 + δg ε µ 0 1 (2π) 3/2 exp( v 2 2 ), δ 0 as ε 0 (δ = εm ) Formal Acoustic limit ε(g ε + v x G ε ) + LG ε = δq(g ε, G ε ) { σ + v u + By letting ε 0, LG = 0 G = ( v ) } θ µ 0

18 Acoustic Limit Acoustic scaling t F ε + v x F ε = 1 ε Q(F ε, F ε ), F ε = µ 0 + δg ε µ 0 1 (2π) 3/2 exp( v 2 2 ), δ 0 as ε 0 (δ = εm ) Formal Acoustic limit ε(g ε + v x G ε ) + LG ε = δq(g ε, G ε ) { σ + v u + By letting ε 0, LG = 0 G = ( v ) } θ µ 0 G ε formally satisfy the local conservation laws and thus σ, u, θ satisfy the acoustic system t σ + x u = 0, t u + x (σ + θ) = 0, σ(x, 0) = σ 0 (x) u(x, 0) = u 0 (x) 3 2 tθ + x u = 0, θ(x, 0) = θ 0 (x)

19 Rigorous Justification In the framework of renormalized solutions

20 Rigorous Justification In the framework of renormalized solutions Golse-Levermore (CPAM, 02) : the convergence for m > 1 2 Jiang-Levermore-Masmoudi (08) : the case m = 1 2 Due to the lack of local conservation laws and regularity of renormalized solutions, the case m < 1 2 remains an open question

21 Rigorous Justification In the framework of renormalized solutions Golse-Levermore (CPAM, 02) : the convergence for m > 1 2 Jiang-Levermore-Masmoudi (08) : the case m = 1 2 Due to the lack of local conservation laws and regularity of renormalized solutions, the case m < 1 2 remains an open question In the framework of classical solutions J-Jiang (08) : global-in-time uniform convergence for the case m = 1

22 Rigorous Justification In the framework of renormalized solutions Golse-Levermore (CPAM, 02) : the convergence for m > 1 2 Jiang-Levermore-Masmoudi (08) : the case m = 1 2 Due to the lack of local conservation laws and regularity of renormalized solutions, the case m < 1 2 remains an open question In the framework of classical solutions J-Jiang (08) : global-in-time uniform convergence for the case m = 1 The purpose of this work is to establish the acoustic limit in optimal scaling (0 < m < 1) via a recent L 2 L setting.

23 Main Theorem Theorem (Guo-J-Jiang) Let τ > 0 be any given time and let σ(0, x) = σ 0 (x), u(0, x) = u 0 (x), θ(0, x) = θ 0 (x) H s, s 4 be any given initial data to the acoustic system. Then,

24 Main Theorem Theorem (Guo-J-Jiang) Let τ > 0 be any given time and let σ(0, x) = σ 0 (x), u(0, x) = u 0 (x), θ(0, x) = θ 0 (x) H s, s 4 be any given initial data to the acoustic system. Then, there exist an ε 0 > 0 and a δ 0 > 0 such that for each 0 < ε ε 0 and 0 < δ δ 0, there exists a constant C > 0 so that sup G ε (t) G(t) + sup G ε (t) G(t) 2 C{ ε 0 t τ 0 t τ δ + δ} where ε δ 0 as ε 0, and C depends only on τ and the initial data σ 0, u 0, θ 0.

25 Idea of Proof

26 Idea of Proof The acoustic system is the linearization about the homogeneous state [1, 0, 1] of the compressible Euler system t ρ + (u )ρ + ρ u = 0 ρ t u + ρ(u )u + ρ T + T ρ = 0 t T + (u )T T u = 0 (1)

27 Idea of Proof The acoustic system is the linearization about the homogeneous state [1, 0, 1] of the compressible Euler system t ρ + (u )ρ + ρ u = 0 ρ t u + ρ(u )u + ρ T + T ρ = 0 t T + (u )T T u = 0 (1) Instead of estimating G ε G directly, make a detour in two steps

28 Idea of Proof The acoustic system is the linearization about the homogeneous state [1, 0, 1] of the compressible Euler system t ρ + (u )ρ + ρ u = 0 ρ t u + ρ(u )u + ρ T + T ρ = 0 t T + (u )T T u = 0 (1) Instead of estimating G ε G directly, make a detour in two steps The first step is to show for µ δ = ρ δ (t,x) exp [2πT δ (t,x)] 3/2 F ε µ δ = O(ε) } { [v uδ (t,x)] 2 local Maxwellians 2T δ (t,x) defined from the solutions of (1) constructed from the acoustic initial data ρ 0 = 1 + δσ 0, u 0 = δu 0, T 0 = 1 + δθ 0

29 Idea of Proof The acoustic system is the linearization about the homogeneous state [1, 0, 1] of the compressible Euler system t ρ + (u )ρ + ρ u = 0 ρ t u + ρ(u )u + ρ T + T ρ = 0 t T + (u )T T u = 0 (1) Instead of estimating G ε G directly, make a detour in two steps The first step is to show for µ δ = ρ δ (t,x) exp [2πT δ (t,x)] 3/2 F ε µ δ = O(ε) } { [v uδ (t,x)] 2 local Maxwellians 2T δ (t,x) defined from the solutions of (1) constructed from the acoustic initial data ρ 0 = 1 + δσ 0, u 0 = δu 0, T 0 = 1 + δθ 0 before the time of possible shock formation, which is of the order of 1 δ in the acoustic scaling longer than any fixed time τ

30 Idea of Proof The second step is to show µ δ µ 0 = δg + O(δ 2 ) within the time scale of 1 δ

31 Idea of Proof The second step is to show µ δ µ 0 = δg + O(δ 2 ) within the time scale of 1 δ Such an estimate confirms that the solution G of the acoustic equation is the first order (linear) approximation of the Euler equations

32 Idea of Proof The second step is to show µ δ µ 0 = δg + O(δ 2 ) within the time scale of 1 δ Such an estimate confirms that the solution G of the acoustic equation is the first order (linear) approximation of the Euler equations The proof of Theorem : G ε (t) G(t) = F ε (t) µ 0 G(t) δ

33 Idea of Proof The second step is to show µ δ µ 0 = δg + O(δ 2 ) within the time scale of 1 δ Such an estimate confirms that the solution G of the acoustic equation is the first order (linear) approximation of the Euler equations The proof of Theorem : Rewrite F ε (t) µ 0 δ G ε (t) G(t) = F ε (t) µ 0 G(t) δ G(t) = F ε (t) µ δ (t) δ + µδ (t) µ 0 δg(t) δ Therefore, sup G ε (t) G(t) + sup G ε (t) G(t) 2 C{ ε 0 t τ 0 t τ δ + δ}

34 Refined Estimates of Acoustic and Euler solutions

35 Refined Estimates of Acoustic and Euler solutions Introduce difference variables (σd δ, uδ d, θδ d ) given by the second order perturbation in δ of Euler solutions ρ δ = 1 + δσ + δ 2 σ δ d, uδ = δu + δ 2 u δ d, T δ = 1 + δθ + δ 2 θ δ d

36 Refined Estimates of Acoustic and Euler solutions Introduce difference variables (σd δ, uδ d, θδ d ) given by the second order perturbation in δ of Euler solutions ρ δ = 1 + δσ + δ 2 σ δ d, uδ = δu + δ 2 u δ d, T δ = 1 + δθ + δ 2 θ δ d Indeed, (σd δ, uδ d, θδ d ) satisfy the linear system of equations t σ δ d + (u δ )σ δ d + ρ δ u δ d + δ[ σ u δ d + ( u)σ δ d] = (σu) ρ δ t u δ d + ρ δ (u δ )u δ d + ρ δ θ δ d + T δ σ δ d + δ[( t u)σ δ d + ρ δ (u δ d )u + θ δ d σ + σ δ d θ] = σ t u ρ δ (u )u (σθ) t θ δ d + (u δ )θ δ d T δ u δ d + δ[ θ u δ d ( u)θδ d] = u θ 2 3 θ u

37 Refined Estimates of Acoustic and Euler solutions Introduce difference variables (σd δ, uδ d, θδ d ) given by the second order perturbation in δ of Euler solutions ρ δ = 1 + δσ + δ 2 σ δ d, uδ = δu + δ 2 u δ d, T δ = 1 + δθ + δ 2 θ δ d Indeed, (σd δ, uδ d, θδ d ) satisfy the linear system of equations t σ δ d + (u δ )σ δ d + ρ δ u δ d + δ[ σ u δ d + ( u)σ δ d] = (σu) ρ δ t u δ d + ρ δ (u δ )u δ d + ρ δ θ δ d + T δ σ δ d + δ[( t u)σ δ d + ρ δ (u δ d )u + θ δ d σ + σ δ d θ] = σ t u ρ δ (u )u (σθ) t θ δ d + (u δ )θ δ d T δ u δ d + δ[ θ u δ d ( u)θδ d] = u θ 2 3 θ u The coefficients are smooth and have the uniform bounds up to time τ. The above system can be symmetrized.

38 Refined Estimates of Acoustic and Euler solutions Standard energy method of linear symmetric hyperbolic system (σd δ, uδ d, θδ d ) H s C (2) and thus (ρ δ 1 δσ, u δ δu, T δ 1 δθ) H s Cδ 2

39 Refined Estimates of Acoustic and Euler solutions Standard energy method of linear symmetric hyperbolic system and thus (σ δ d, uδ d, θδ d ) H s C (2) (ρ δ 1 δσ, u δ δu, T δ 1 δθ) H s Cδ 2 Consider µ δ as a function of δ and expand it around δ = 0 to derive µ δ (t) = µ 0 + Gδ + µ (δ ) δ 2 2 The uniform boundedness of µ (δ ) 2 + µ (δ ) follows from the uniform estimate (2)

40 Hilbert Expansion

41 Hilbert Expansion Following Caflisch, take the form F ε = 5 n=0 εn F n + ε 3 F ε R where F 0,..., F 5 solve the equations (F 0 = µ δ µ) 0 = Q(F 0, F 0 ) { t + v x }F 0 = Q(F 0, F 1 ) + Q(F 1, F 0 )... { t + v x }F 5 = Q(F 0, F 6 ) + Q(F 6, F 0 ) + i+j=6 1 i 5,1 j 5 Q(F i, F j )

42 Hilbert Expansion Following Caflisch, take the form F ε = 5 n=0 εn F n + ε 3 F ε R where F 0,..., F 5 solve the equations (F 0 = µ δ µ) 0 = Q(F 0, F 0 ) { t + v x }F 0 = Q(F 0, F 1 ) + Q(F 1, F 0 )... { t + v x }F 5 = Q(F 0, F 6 ) + Q(F 6, F 0 ) + Remainder equation for F ε R i+j=6 1 i 5,1 j 5 t F ε R + v xf ε R 1 ε {Q(µ, F ε R ) + Q(F ε R, µ)} Q(F i, F j ) 5 = ε 2 Q(FR ε, F R ε ) + ε i 1 {Q(F i, FR ε ) + Q(F R ε, F i)} + ε 2 A i=1

43 Compressible Euler Limit Theorem Assume that the solution to the Euler equations [ρ, u, T ] is smooth and ρ(t, x) has a positive lower bound for 0 t τ. Furthermore, assume that the temperature T (t, x) satisfies the condition T M < max T (t, x) < 2T M. Let t [0,τ],x Ω F ε (0, x, v) = µ(0, x, v) + 5 n=1 εn F n (0, x, v) + ε 3 FR ε (0, x, v) 0. Then

44 Compressible Euler Limit Theorem Assume that the solution to the Euler equations [ρ, u, T ] is smooth and ρ(t, x) has a positive lower bound for 0 t τ. Furthermore, assume that the temperature T (t, x) satisfies the condition T M < max T (t, x) < 2T M. Let t [0,τ],x Ω F ε (0, x, v) = µ(0, x, v) + 5 n=1 εn F n (0, x, v) + ε 3 FR ε (0, x, v) 0. Then there is an ε 0 > 0 such that for 0 < ε ε 0, and for any β 9 2γ 2, there exists a constant C τ (µ, F 1,..F 5 ) such that sup ε 3 2 (1 + v 2 ) β F R ε(t) + sup FR ε(t) 2 0 t τ µ 0 t τ µ C τ {ε 3 2 (1 + v 2 ) β F R ε (0) + FR ε(0) } 2 µ(0) + 1. µ(0)

45 Compressible Euler Limit Theorem Assume that the solution to the Euler equations [ρ, u, T ] is smooth and ρ(t, x) has a positive lower bound for 0 t τ. Furthermore, assume that the temperature T (t, x) satisfies the condition T M < max T (t, x) < 2T M. Let t [0,τ],x Ω F ε (0, x, v) = µ(0, x, v) + 5 n=1 εn F n (0, x, v) + ε 3 FR ε (0, x, v) 0. Then there is an ε 0 > 0 such that for 0 < ε ε 0, and for any β 9 2γ 2, there exists a constant C τ (µ, F 1,..F 5 ) such that sup ε 3 2 (1 + v 2 ) β F R ε(t) + sup FR ε(t) 2 0 t τ µ 0 t τ µ C τ {ε 3 2 (1 + v 2 ) β F R ε (0) + FR ε(0) } 2 µ(0) + 1. µ(0) Remark F ε = 5 n=0 εn F n + ε 3 F ε R = F ε µ δ = O(ε)

46 Proof of Euler Limit Introduce f ε F R ε and h ε {1 + v 2 } β µ F R ε µm } where β 9 2γ 1 2 and µ M = exp { v 2 (2πT M ) 3/2 2T M so that c 1 µ M µ c 2 µ α M for some 1/2 < α < 1

47 Proof of Euler Limit Introduce f ε F R ε and h ε {1 + v 2 } β µ F R ε µm } where β 9 2γ 1 2 and µ M = exp { v 2 (2πT M ) 3/2 2T M so that c 1 µ M µ c 2 µ α M for some 1/2 < α < 1 L 2 estimates for f ε t f ε + v x f ε + 1 ε Lf ε = { t + v x } µ µ f ε + ε 2 Γ(f ε, f ε ) + 5 i=1 Difficulty is coming from the boxed term v 3 f ε ε i 1 {Γ( F i, f ε ) + Γ(f ε F i, )} + ε 2 Ā µ µ

48 For any κ > 0 and a = 1/(3 γ) { t + v x } µ f ε, f ε = + µ v κ ε a v κ ε a { x ρ 2 + x u 2 + x T 2 } {1 + v 2 } 3/2 f ε 1 v κ ε a f ε 2 + { x ρ + x u + x T } {1 + v 2 } 3/4 f ε 1 v κ ε a 2 2 C κ ε 2 h ε f ε 2 + C {1 + v 2 } 3/4 Pf ε 1 v κ ε a C {1 + v 2 } 3/4 {I P}f ε 1 v κ ε a 2 2 C κ ε 2 h ε f ε 2 + C f ε Cκ3 γ {I P}f ε 2 ν ε Due to the fact {1 + v 2 } 3/2 f ε {1 + v 2 } γ 3 h ε for β 3/2 + (3 γ) and the fact µ M < Cµ

49 For any κ > 0 and a = 1/(3 γ) { t + v x } µ f ε, f ε = + µ v κ ε a v κ ε a { x ρ 2 + x u 2 + x T 2 } {1 + v 2 } 3/2 f ε 1 v κ ε a f ε 2 + { x ρ + x u + x T } {1 + v 2 } 3/4 f ε 1 v κ ε a 2 2 C κ ε 2 h ε f ε 2 + C {1 + v 2 } 3/4 Pf ε 1 v κ ε a C {1 + v 2 } 3/4 {I P}f ε 1 v κ ε a 2 2 C κ ε 2 h ε f ε 2 + C f ε Cκ3 γ {I P}f ε 2 ν ε Due to the fact {1 + v 2 } 3/2 f ε {1 + v 2 } γ 3 h ε for β 3/2 + (3 γ) and the fact µ M < Cµ d dt f ε δ 0 2ε {I P}f ε 2 ν C{ ε ε 3/2 h ε +1}( f ε f ε 2 )

50 L estimates for h ε sup {ε 3/2 h ε (s) } C{ ε 3/2 h 0 + sup f ε (s) 2 + ε 7/2 } 0 s τ 0 s τ

51 L estimates for h ε sup {ε 3/2 h ε (s) } C{ ε 3/2 h 0 + sup f ε (s) 2 + ε 7/2 } 0 s τ 0 s τ Following Caflisch, define L M g = 1 µm {Q(µ, µ M g) + Q( µ M g, µ)} = {ν(µ) + K}g where ν(µ) = R 3 S 2 b(v v, ω)µ(v )dv dω (1 + v ) γ

52 L estimates for h ε sup {ε 3/2 h ε (s) } C{ ε 3/2 h 0 + sup f ε (s) 2 + ε 7/2 } 0 s τ 0 s τ Following Caflisch, define L M g = 1 µm {Q(µ, µ M g) + Q( µ M g, µ)} = {ν(µ) + K}g where ν(µ) = R 3 S 2 b(v v, ω)µ(v )dv dω (1 + v ) γ To treat soft potentials, employ a cutoff trick of Guo and Strain

53 L estimates for h ε sup {ε 3/2 h ε (s) } C{ ε 3/2 h 0 + sup f ε (s) 2 + ε 7/2 } 0 s τ 0 s τ Following Caflisch, define L M g = 1 µm {Q(µ, µ M g) + Q( µ M g, µ)} = {ν(µ) + K}g where ν(µ) = R 3 S 2 b(v v, ω)µ(v )dv dω (1 + v ) γ To treat soft potentials, employ a cutoff trick of Guo and Strain Smooth cutoff function 0 χ m 1 such that for any m > 0, χ m (s) 1 for s m and χ m (s) 0 for s 2m. Split K = K m + K c. K m g(v) Cm 3+γ ν(µ) g and K c g(v) = R 3 l(v, v )g(v )dv where the kernel l satisfies l(v, v ) C m exp{ c v v 2 } v v (1 + v + v ) 1 γ.

54 Letting K w g wk( g w ) where w(v) = {1 + v 2 } β t h ε + v x h ε + ν(µ) ε hε + 1 ε K w h ε = ε2 w + 5 i=1 ε i 1 w {Q(F i, hε µ M µm w Q( hε µ M µm w, hε µ M ) w ) + Q( hε µ M, F i )} + ε 2 Ã, w

55 Letting K w g wk( g w ) where w(v) = {1 + v 2 } β t h ε + v x h ε + ν(µ) ε hε + 1 ε K w h ε = ε2 w + 5 i=1 ε i 1 By Duhamel s principle 0 w {Q(F i, hε µ M µm w Q( hε µ M µm w, hε µ M ) w ) + Q( hε µ M, F i )} + ε 2 Ã, w h ε (t, x, v) = exp{ νt ε }hε (0, x vt, v) t ( ) ν(t s) 1 exp{ } 0 ε ε K w m h ε (s, x v(t s), v)ds t ( ) ν(t s) 1 exp{ } 0 ε ε K w c h ε (s, x v(t s), v)ds t ( ν(t s) ε 2 w + exp{ } Q( hε µ M, hε ) µ M ) (s, x v(t s), v)ds ε µm w w +...

56 t ( ) ν(t s) 1 exp{ } 0 ε ε K w m h ε (s, x v(t s), v)ds t Cm 3+γ exp{ 0 ν(t s) } ν ds sup h ε (t) Cm 3+γ ε ε 0 t τ sup h ε (t) 0 t τ

57 t ( ) ν(t s) 1 exp{ } 0 ε ε K w m h ε (s, x v(t s), v)ds t Cm 3+γ exp{ 0 And since w µm Q( hε µm t 0 exp{ 0 ν(t s) } ν ds sup h ε (t) Cm 3+γ ε ε 0 t τ w, hε µm w ( ν(t s) ε 2 w } ε µm Q( hε µ M w ) Cν(µ) h ε 2 sup h ε (t) 0 t τ, hε ) µ M ) (s, x v(t s), v)ds w t Cε 2 ν(µ)(t s) exp{ }ν(µ) h ε (s) 2 ε ds Cε 3 sup h ε (s) 2 0 s t

58 t ( ) ν(t s) 1 exp{ } 0 ε ε K w m h ε (s, x v(t s), v)ds t Cm 3+γ exp{ 0 And since w µm Q( hε µm t 0 exp{ 0 ν(t s) } ν ds sup h ε (t) Cm 3+γ ε ε 0 t τ w, hε µm w ( ν(t s) ε 2 w } ε µm Q( hε µ M w ) Cν(µ) h ε 2 sup h ε (t) 0 t τ, hε ) µ M ) (s, x v(t s), v)ds w t Cε 2 ν(µ)(t s) exp{ }ν(µ) h ε (s) 2 ε ds Cε 3 sup h ε (s) 2 0 s t Let l w (v, v ) be the corresponding kernel associated with Kw c. t ( ) ν(t s) 1 exp{ } 0 ε ε K w c h ε (s, x v(t s), v)ds 1 t ν(t s) exp{ } l w (v, v )h ε (s, x v(t s), v ) dv ds ε 0 ε R 3

59 Use the Duhamel expression again 1 t ε exp{ 0 t ν(t s) } l w (v, v )h ε (s, x v(t s), v ) dv ds ε R 3 1 ν(t s) exp{ } sup l w (v, v ) dv ε 0 ε v R 3 exp{ νs ε }hε (0, x v(t s) v s, v )ds + 1 t ν(t s) ε 2 exp{ } l w (v, v ) ε R 3 s ε 2 t s exp{ ν(v )(s s 1 ) } {K m h ε }(s 1, x v(t s) v (s s 1 ), v ) dv ds 1 ds ε ν(t s) exp{ } ε 0 R 3 R 3 l w (v, v )l w (v, v ) exp{ ν(v )(s s 1 ) }h ε (s 1, x v(t s) v (s s 1 ), v ) dv dv ds 1 ds ε

60 The estimate for double l term : Divide into Case 1 : v N Case 2 : v N, v 2N or v 2N, v 3N Case 3a : v N, v 2N, v 3N, and s s 1 κε Case 3b : v N, v 2N, v 3N, and s s 1 κε

61 The estimate for double l term : Divide into Case 1 : v N Case 2 : v N, v 2N or v 2N, v 3N Case 3a : v N, v 2N, v 3N, and s s 1 κε Case 3b : v N, v 2N, v 3N, and s s 1 κε To see how to get f ε 2, in Case 3b, integrate over v to get C N h ε (s 1, x (s s 1 )v, v ) dv v 2N { } 1/2 C N 1 Ω (x (s s 1 )v ) h ε (s 1, x (s s 1 )v, v ) 2 dv v 2N C N κ 3/2 ε 3/2 { y x 1 (s s 1)3N C N{(s s 1 ) 3/2 + 1} κ 3/2 ε 3/2 h ε (s 1, y, v ) 2 dy { h ε (s 1, y, v ) 2 dy Ω } 1/2 } 1/2 Here we have made a change of variable y = x (s s 1 )v, and for s s 1 κε, dy dv 1 κ 3 ε 3

62 Thus approximate version of Case 3b C t 0 B C N,κ ε 7/2 C N,κ ε 7/2 C N,κ ε 3/2 s εκ 0 e ν(v)(t s) ε e ν(v )(s s 1 ) ε l N (v, v )l N (v, v ) h ε (s 1, x 1 (s s 1 )v, v ) ds 1 dv dv ds t s κε 0 0 v 3N t s κε 0 0 { v 3N e ν(v)(t s) ε e ν(v )(s s 1 ) ε {(s s 1 ) 3/2 + 1} { sup f ε (s) 2 0 s t 1/2 h ε (s 1, y, v ) dy} 2 dv ds 1 ds Ω e ν(v)(t s) ε e ν(v )(s s 1 ) ε {(s s 1 ) 3/2 + 1} Ω f ε (s 1, y, v ) 2 dydv } 1/2 ds 1 ds

63 Thus approximate version of Case 3b C t 0 B C N,κ ε 7/2 C N,κ ε 7/2 C N,κ ε 3/2 s εκ 0 e ν(v)(t s) ε e ν(v )(s s 1 ) ε l N (v, v )l N (v, v ) h ε (s 1, x 1 (s s 1 )v, v ) ds 1 dv dv ds t s κε 0 0 v 3N t s κε 0 0 { v 3N e ν(v)(t s) ε e ν(v )(s s 1 ) ε {(s s 1 ) 3/2 + 1} { sup f ε (s) 2 0 s t 1/2 h ε (s 1, y, v ) dy} 2 dv ds 1 ds Ω e ν(v)(t s) ε e ν(v )(s s 1 ) ε {(s s 1 ) 3/2 + 1} Ω f ε (s 1, y, v ) 2 dydv } 1/2 ds 1 ds In summary, one can obtain for any κ > 0 and large N > 0,

64 sup {ε 3/2 h ε (s) } {Cm γ+3 + C N,m κ + C m 0 s t N } sup {ε 3/2 h ε (s) } 0 s t +Cε 7/2 + C ε,n ε 3/2 h 0 + εc sup {ε 3/2 h ε (s) } 2 0 s t +C m,n,κ sup f ε (s) 2 0 s t

65 sup {ε 3/2 h ε (s) } {Cm γ+3 + C N,m κ + C m 0 s t N } sup {ε 3/2 h ε (s) } 0 s t +Cε 7/2 + C ε,n ε 3/2 h 0 + εc sup {ε 3/2 h ε (s) } 2 0 s t +C m,n,κ sup f ε (s) 2 0 s t For sufficiently small ε > 0, first choosing m small, then N sufficiently large, and finally letting κ small so that {Cm γ+3 + C N,m κ + Cm N } < 1 2, one gets sup {ε 3/2 h ε (s) } C{ ε 3/2 h 0 + sup f ε (s) 2 + ε 7/2 } 0 s τ 0 s τ and this completes the proof.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION

STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Iterated trilinear fourier integrals with arbitrary symbols

Iterated trilinear fourier integrals with arbitrary symbols Cornell University ICM 04, Satellite Conference in Harmonic Analysis, Chosun University, Gwangju, Korea August 6, 04 Motivation the Coifman-Meyer theorem with classical paraproduct(979) B(f, f )(x) :=

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Appendix to Technology Transfer and Spillovers in International Joint Ventures

Appendix to Technology Transfer and Spillovers in International Joint Ventures Appendix to Technology Transfer and Spillovers in International Joint Ventures Thomas Müller Monika Schnitzer Published in Journal of International Economics, 2006, Volume 68, 456-468 Bundestanstalt für

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

de Rham Theorem May 10, 2016

de Rham Theorem May 10, 2016 de Rham Theorem May 10, 2016 Stokes formula and the integration morphism: Let M = σ Σ σ be a smooth triangulated manifold. Fact: Stokes formula σ ω = σ dω holds, e.g. for simplices. It can be used to define

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα