Gauss Radau formulae for Jacobi and Laguerre weight functions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Gauss Radau formulae for Jacobi and Laguerre weight functions"

Transcript

1 Mathematics ad Computers i Simulatio 54 () Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN , USA Dedicated to Joh R. Rice, o the occasio of his 65th birthday Abstract Explicit expressios are obtaied for the weights of the Gauss Radau quadrature formula for itegratio over the iterval [, 1] relative to the Jacobi weight fuctio (1 t) α (1+t) β, α>, β>. The odes are ow to be the eigevalues of a symmetric tridiagoal matrix, which is also obtaied explicitly. Similar results hold for Gauss Radau quadrature over the iterval [, ) relative to the Laguerre weight t α e t, α>. IMACS. Published by Elsevier Sciece B.V. All rights reserved. Keywords: Gauss Radau formula; Jacobi weight fuctio; Laguerre weight fuctio 1. Itroductio For ay positive measure dλ supported o the iterval [a, b], with a a fiite real umber, ad dλ havig momets of all orders, there exists a quadrature rule of the form b a f(t)dλ(t) λ f(a)+ λ f(t ) + R (f ) (1.1) 1 which is exact for polyomials of degree, R (f ), f P. (1.) It is called the ((+1)-poit) Gauss Radau rule for the measure dλ. Its iterior odes t are ow to be the zeros of π ( ; dλ a ), the polyomial of degree orthogoal with respect to the modified measure dλ a (t)(t a)dλ(t). The weights are obtaiable by iterpolatio at the odes a, t 1, t,..., t. Golub [5] i 1973 observed that the formula ca be obtaied, more elegatly, via eigevalues ad eigevectors of a modified Jacobi matrix of order +1, //$. IMACS. Published by Elsevier Sciece B.V. All rights reserved. PII: S ()179-8

2 44 W. Gautschi / Mathematics ad Computers i Simulatio 54 () α β1 β1 α 1 β J+1 (dλ). β (1.3)... α β β α Here, α ad β are the coefficiets i the recurrece relatio π +1 (t) (t α )π (t) β π (t),, 1,,..., π (t), π (t) 1 (1.4) satisfied by the (moic) orthogoal polyomials π ( )π ( ; dλ), ad α is give by α a β π (a) π (a). (1.5) The odes of Eq. (1.1) (icludig a) are the precisely the eigevalues of J+1 (dλ), whereas the weights λ j are expressible i terms of the first compoets v j,1 of the associated ormalized eigevectors v j, λ j β vj,1, j, 1,,...,, (1.6) where β b a dλ(t) (cf. also [,3]). We show here that i the case of the Jacobi measure o [, 1], dλ (α,β) (t) (1 t) α (1 + t) β dt, α >, β>, (1.7) the quatity α i Eq. (1.5) as well as all the weights λ j λ (α,β) j i Eq. (1.1) ca be computed explicitly i terms of, α, ad β, thus obviatig the eed of computig eigevectors. Our results geeralize well-ow formulae for the Legedre measure dλ (,) (cf., e.g. [1], p. 13), λ (,) ( + 1), λ(,) 1 (1 t )[P (t )] 1 1 t, 1,,...,, (1.8) ( + 1) [P (t )] where P is the Legedre polyomial of degree. We obtai, i fact, a additioal formula, which i the case of the Legedre measure becomes [ ] λ (,) t ( + 1)( + ) [P (,1) +1 (t )], (1.9) with P (,1) +1 the Jacobi polyomial of degree +1 relative to the Jacobi parameters α ad β1. Similar techiques ca be used to derive explicit Gauss Lobatto formulae for geeral Jacobi weight fuctios (cf. [4]). Aalogous results hold for the Laguerre measure o [, ), dλ (α) (t) t α e t dt, α >. (1.1) Sectios 4 are dealig with the Jacobi measure (1.7). After the explicit formula for the modified elemet α i Eq. (1.3) is obtaied i Sectio, the boudary weight λ(α,β) will be developed i Sectio 3, ad the iterior weights λ (α,β) i Sectio 4. Sectio 5 deals aalogously with the Laguerre measure (1.1).

3 . The modified Jacobi matrix W. Gautschi / Mathematics ad Computers i Simulatio 54 () The moic polyomials orthogoal with respect to the Jacobi measure (1.7) will be deoted by π π (α,β), ad the Jacobi polyomials, as covetioally defied (cf., e.g., [6]), by P P (α,β). They are related by P (t) π (t), 1 ( ) + α + β. (.1) It is well ow, furthermore, that ( + β P () () By Eq. (1.5), we have α β π () π () ). (.) β P () P (), which, i view of Eqs. (.1) ad (.), gives α + 1 β ( + α + β)( + α + β 1), ( + β)( + α + β) 1. (.3) O the other had, β π π h, h where h P (α,β) [P (α,β) (t)] dλ (α,β) α+β+1 Γ(+ α + 1)Γ ( + β + 1) (t) + α + β + 1 Γ(+ 1)Γ ( + α + β + 1). O substitutio i Eq. (.3), this yields α + ( + α), ( + α + β)( + α + β + 1) 1. (.4) The modified Jacobi matrix J+1 (dλ(α,β) ) i Eq. (1.3) is ow readily computable, the recursio coefficiets α ad β for the Jacobi measure dλ (α,β) beig explicitly ow. This yields the Gauss Radau formula i terms of the eigevalues ad (first compoets of) the eigevectors of the matrix (1.3). I the ext two sectios we develop explicit formulae for the weights λ j λ (α,β) j, which allow us to bypass the formula (1.6). 3. The boudary weight Our cocer, i this ad the ext two sectios, is with the Gauss Jacobi Radau formula f(t)dλ (α,β) (t) λ f() + λ f(t ) + R (f ), (3.1) 1 where dλ (α,β) is the Jacobi measure (1.7). We first deal with the boudary weight λ λ (α,β).

4 46 W. Gautschi / Mathematics ad Computers i Simulatio 54 () For the Jacobi measure we have dλ (t)(1+t)dλ (α,β) (t)dλ (α,β+1) (t), so that the iterior odes t t (α,β) of Eq. (3.1) are the zeros of P (α,β+1), P (α,β+1) (t ), 1,,...,. (3.) Puttig f(t) λ () (t) i Eq. (3.1) the yields (t) dλ (α,β) (t). (3.3) After replacig β by β+1 i Eq. (.), the coefficiet o the left is give by ( ) + β + 1 P (α,β+1) () (). (3.4) I order to compute the itegral i Eq. (3.3), we begi writig, usig the secod relatio i [6] (Eq. (4.5.4)), (t) Observig from (.) that + α + β ( + 1) () P (α,β) () ( ), + β ( + 1)P (α,β) +1 (α,β) (t) + ( + β + 1)P (t). (3.5) 1 + t ad similarly + β + 1 ( + 1) ( )() +1 P (α,β) + β (), we ca write Eq. (3.5) as (t) () ( + 1) ( + β ( + α + β + ) ) P (α,β) +1 (α,β) (t)p () P (α,β) 1 + t O the other had, by the Christoffel Darboux formula ([6], Eq. (4.5.)), where P (α,β) +1 (α,β) (t)p () P (α,β) 1 + t +1 () c (α, β) (t)p (α,β) ν 1 h (α,β) ν α+β ( + α + β + )Γ ( + α + 1)Γ ( + β + 1) c (α, β) Γ(+ )Γ ( + α + β + ) (t)p (α,β) +1 (). (3.6) P ν (α,β) (t)p ν (α,β) (), (3.7) (3.8)

5 W. Gautschi / Mathematics ad Computers i Simulatio 54 () ad h (α,β) ν (α,β) [P ν (t)] dλ (α,β) (t). Now itegratig Eq. (3.6) with the measure dλ (α,β) gives, by Eq. (3.7) ad the orthogoality of the Jacobi polyomials, (t) dλ (α,β) (t) () ( + 1)c (α, β) ( ), + β ( + α + β + ) or by a elemetary computatio, usig Eq. (3.8), (t) dλ (α,β) (t) () α+β+1 Γ(+ α + 1) Γ(β+ 1) Γ(+ α + β + ). (3.9) Combiig Eqs. (3.3), (3.4), ad (3.9) fially gives the desired result α+β+1 Γ(β+ 1) Γ(+ α + 1) ( ) + β + 1 Γ(+ α + β + ). (3.1) λ (α,β) I the case αβ, we recover the first equatio of (1.8). I almost all cases computed, the boudary weight (3.1) tured out to be more accurate tha the boudary weight computed by Eq. (1.6) (for j), ofte sigificatly so. 4. The iterior weights We ow put f(t) (1 + t)p (α,β+1) (t)/(t t ) i Eq. (3.1) ad obtai, by virtue of Eq. (3.), (1 + t )λ P (α,β+1) P (α,β+1) (t) (t ) dλ (α,β+1) (t). t t Applyig oce more the Christoffel Darboux formula ([6], Eq. (4.5.) with replaced by, ad β replaced by β+1), we get similarly as i Sectio 3, usig Eq. (3.), where P (α,β+1) (t) dλ (α,β+1) (t) d (α, β) t t (t ), d (α, β) α+β+1 ( + α + β + 1)Γ ( + α)γ ( + β + 1). (4.1) Γ(+ 1)Γ ( + α + β + ) Thus, λ (α,β) d (α, β) (1 + t )P (α,β+1) (t ) (t ). (4.)

6 48 W. Gautschi / Mathematics ad Computers i Simulatio 54 () The iterior weights i terms of +1 (t ) Here, we use the secod relatio i ([6], Eq. (4.5.7) with β replaced by β+1) i combiatio with Eq. (3.) to obtai (1 + t )P (α,β+1) (t ) 1 t ( + 1)( + α + β + ) +1 (t ) (t ). (4.3) 1 t + α + β t The recurrece relatio for the Jacobi polyomials (cf. ([6], Eq. (4.5.1) with replaced by +1)), o the other had, yields, agai usig Eq. (3.), ( + 1)( + α + β + )( + α + β + 1) +1 (t ) ( + α)( + β + 1)( + α + β + 3) (t ), that is ( + 1)( + α + β + )( + α + β + 1) (t ) +1 (t ). (4.4) ( + α)( + β + 1)( + α + β + 3) It suffices ow to isert Eqs. (4.1), (4.3), ad (4.4) ito Eq. (4.) to obtai, after some computatio, λ (α,β) α+β ( + α + β + 3) (+1)(+α+β +) where t t (α,β) Γ(+α+1)Γ (+β +) Γ(+)Γ ( + α + β + 3) are the zeros of P (α,β+1). This is Eq. (1.9) whe αβ. 4.. The iterior weights i terms of P (α,β) (t ) 1 t [ +1 (t )], 1, (4.5) We rewrite Eq. (4.) by first otig from the first relatio i ([6], Eq. (4.5.4) with replaced by, ad β replaced by β+1), ad also recallig Eq. (3.), that P (α+1,β+1) (t ) Furthermore, by ([6], Eq. (4.1.7)), P (α+1,β+1) (t ) Therefore, ( + α) (t ). + α + β t + α + β + 1 P (α,β) (t ). + α + β + 1 (t ) (1 t ) ( + α)( + α + β + 1) P (α,β) (t ). (4.6) O the other had, usig Eq. (4.3) ad the relatio +1 (t ) ( + α)( + β + 1)( + α + β + 3) ( + 1)( + α + β + )( + α + β + 1) (t ),

7 W. Gautschi / Mathematics ad Computers i Simulatio 54 () which follows from the recurrece relatio for (cf. ([6], Eq. (4.5.1) with replaced by +1)) ad from Eq. (3.), we obtai (1 + t ) (t ) ( + α)( + β + 1) (t ). + α + β t This, together with Eq. (4.6), allows us to write Eq. (4.) i the form λ (α,β) ( + α)( + α + β + 1) d (α, β) 1 ( + β + 1)( + α + β + 1) (1 t )[P (α,β) (t )]. Substitutig the expressio (4.1) for d (α, β) the gives α+β + α + β + 1 Γ(+ α + 1)Γ ( + β + 1) + β + 1 Γ(+ 1)Γ ( + α + β + 1) λ (α,β) 1 (1 t )[P (α,β) (t )]. (4.7) I the case of αβ, we recover the secod relatio i Eq. (1.8). For computatioal purposes, oe will probably wat to replace P (α,β) (t ) by (1/)( + α + β + 1)P (α+1,β+1) (t ) ad compute P (α+1,β+1) (t ) from its recurrece relatio The iterior weights i terms of P (α,β) (t ) We ow rewrite Eq. (4.7) by usig the secod relatio i ([6], Eq. (4.5.7)), (1 t (α,β) )P (t ) 1 + α + β + {( + α + β + 1)[( + α + β + )t +α β]p (α,β) (t ) ( + 1)( + α + β + 1)P (α,β) +1 (t )}, ad combiig it with the relatio (t ) + α + β + ( + β + 1)P (α,β) (t ) + ( + 1)P (α,β) +1 (t ), 1 + t which follows from Eq. (3.) ad the secod relatio i ([6], Eq. (4.5.4)), that is, with P (α,β) +1 (t ) + β + 1 P (α,β) (t ). + 1 The result is λ (α,β) α+β + β + 1 Γ(+ α + 1)Γ ( + β + 1) Γ(+ 1)Γ ( + α + β + ) 1 t [P (α,β) (t )]. (4.8) I the Legedre case αβ, this reduces to the last relatio i Eq. (1.8). Numerically, the three formulae (4.5), (4.7), ad (4.8) behave similarly. They produce less accurate results tha the formula (1.6) i about two-thirds of the cases computed, ad more accurate results otherwise.

8 41 W. Gautschi / Mathematics ad Computers i Simulatio 54 () The Gauss Radau formula for the Laguerre measure Techiques similar to those i Sectios 4, but much simpler, apply also to the Laguerre measure (1.1). The fial results (Eqs. (5.5) ad (5.9)) are i fact ow (cf. [1], pp. 3 4)), but for completeess we re-derive them from scratch. The moic ad covetioal Laguerre polyomials, π (α) ad L (α), are related by L (α) () (t)! ad we have ( + α L (α) () π (α) (t), ), β ( + α). (5.1) From Eq. (1.5), the modified elemet α i the matrix (1.3) is ow α β π (α) () π (α) () β L (α) () L (α) (), which, by Eq. (5.1), becomes, surprisigly simply, α. The Gauss Laguerre Radau formula to be cosidered is f(t)dλ (α) (t) λ f() + (5.) λ f(t ) + R (f ), (5.3) 1 where dλ (α) is the Laguerre measure (1.1), ad, as before, R (P ). Sice dλ (t)t dλ (α) (t)dλ (α+1) (t), the iterior odes t t (α) are the zeros of, (t ). (5.4) The boudary weight is obtaied by puttig f(t) (t) i Eq. (5.3), λ () (t) dλ (α) (t). The coefficiet o the left ca be computed by Eq. (5.1), ad the itegral o the right by otig from ([6], Eq. (5.1.13)) that (t) ν L (α) ν (t), ad hece, by orthogoality, (t) dλ (α) (t) ν L (α) ν (t) dλ (α) (t) dλ (α) (t) Γ(α+ 1).

9 W. Gautschi / Mathematics ad Computers i Simulatio 54 () There results λ (α) Γ(α+ 1) ( ). + α + 1 (5.5) For the iterior weights λ λ (α),weputf(t) t (t)/(t t ) i Eq. (5.3) to obtai λ t t (t) (t ) dλ (α) (t) (t) dλ (α+1) (t). (5.6) t t t t The Christoffel Darboux formula ([6], Eq. (5.1.11) with α replaced by α+1), similarly as i the begiig of Sectio 4, yields ( ) λ (α) Γ(α+ ) + α t (t )L (α) +1 (t ). (5.7) By ([6], Eq. (5.1.14) with α replaced by α+1), ad Eq. (5.4), t (t ) ( + α + 1) (t ), where, by ([6], Eq. (5.1.13)) ad Eq. (5.4), (t ) L (α) (t ). The recurrece relatio for the Laguerre polyomials, (cf. [6], Eq. (5.1.1)), i combiatio with Eqs. (5.4) ad (5.8), o the other had, gives +1 (t ) ( + α + 1) so that fially ( ) λ (α) Γ(α+ 1) + α 1 + α + 1 (t ) ( + α + 1)L (α) (t ), (5.8) [L (α) (t )]. (5.9) This is the aalogue of Eq. (4.8). The aalogue of Eq. (4.7) coicides with Eq. (5.9). This is because of the idetities ([6], Eqs. (5.1.13) ad (5.1.14)) L (α) (t) (t) L(α) (t) L(α+1) (t), which, for tt, i view of Eq. (5.4), gives L (α) (t ) L (α) (t ). The umerical experiece with these explicit formulae is much lie i the case of the Jacobi measure, i.e., the boudary weight (5.5) is almost always cosiderably more accurate tha the boudary weight obtaied via eigevectors, whereas for iterior weights, the formula (1.6) ivolvig eigevectors is geerally more accurate tha the explicit formula (5.9).

10 41 W. Gautschi / Mathematics ad Computers i Simulatio 54 () Refereces [1] P.J. Davis, P. Rabiowitz, Methods of Numerical Itegratio, d Editio, Academic Press, Orlado, [] W. Gautschi, Algorithm 76: ORTHPOL a pacage of routies for geeratig orthogoal polyomials ad Gauss-type quadrature rules, ACM Tras. Math. Software (1994) 1 6. [3] W. Gautschi, Orthogoal polyomials: applicatios ad computatio, i: A. Iserles (Ed.), Acta Numerica 1996, Cambridge Uiversity Press, Cambridge, 1996, pp [4] W. Gautschi, High-order Gauss Lobatto Formulae, Electr. Tras. Numer. Aalysis, accepted for publicatio. [5] G.H. Golub, Some modified matrix eigevalue problems, SIAM Rev. 15 (1973) [6] G. Szegö, Orthogoal Polyomials, 4th Editio, Vol. 3, America Mathematical Society Colloquium Publicatios, America Mathematical Society, Providece, RI, 1978.

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Right Rear Door. Let's now finish the door hinge saga with the right rear door Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents

Διαβάστε περισσότερα

Computing the Macdonald function for complex orders

Computing the Macdonald function for complex orders Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Το franchising ( δικαιόχρηση ) ως µέθοδος ανάπτυξης των επιχειρήσεων λιανικού εµπορίου

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα