B.A. (PROGRAMME) 1 YEAR

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "B.A. (PROGRAMME) 1 YEAR"

Transcript

1 Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4 : Applicatios of De Moivre s Theorem to Summatio of Seric 5 : Theory of Equatios I 6 : Theory of Equatios II Editor: Dr. S.K. Verma SCHOOL OF OPEN LEARNING UNIVERSITY OF DELHI 5, Cavalry Lae, Delhi-0007

2 Sessio 0-0 (000 Copies) School of Ope Learig Published By: Executive Director, School of Ope Learig, 5, Cavalary Lae, Delhi-0007 Laser Composig by : M/s Computek System (0 )

3 LESSON COMPLEX NUMBERS. Complex Number Defiitio : A ordered pair (x, y) of real umbers x, y is called complex umber. Illustratio : (, 6) (π, ), (0, ), (, 0), (,), (/, ) are complex umbers. Two complex umbers : (x, y) ad (p, q) are said to be equal if x p, y q. I symbols, (x, y) (p, q) x p ad y q.. Additio of Complex Numbers If α (a, b) ad β (c, d) be to complex umbers, we defie their sum α + β to be the complex umber (a + c, b + d). Symbolically (a, b) + (c, d) (a + c, b + d) Illustratios : (, 7) + (4, ) (7, 6) (p, q) + (0, q) (p q). Multiplicatio of Complex Numbers If α (a, b) ad β (c, d) be two complex umbers, we defie the product αβ to be the complex umber (ac bd, ad + bd). I symbols (a, b) (c, d) [(ac bd), (ad + bc)] Illustratios : (i) (, 4) (, ) [( ) 4.,. + 4 ( )] ( 4, ) (ii) (, 0) (, ) [(.) 0.( ),.( ) + 0.)] (, ).4 Divisio If α, β, be ay two complex umber (β 0) the by defiitio α β αβ. We shall also use the symbols α/β, to deote α β..5 Usual Notatio for Complex Numbers We shall ow see at to how we ca express a complex umber (a, b) i the usual way as a + ib. The mappig a (a, 0) associates to each real umber a, a complex umber (a, 0) whose first umber is a ad whose secod umber is 0. This mappig is compatible with additio ad multiplicatio. That is, if a ad b be ay two umbers, the a + b (a + b, 0) (a, 0) + (b, 0) ab (ab, 0) (a, 0) (b, 0) The above relatios mea the if we have ay relatio ivolvig real umbers, the it remais true if each real umber a i the relatios is replaced by the complex umber (a, 0). Because of this importat property we ca write ay relatio ivolvig complex umbers. Also (0, ) (0, ) (, 0)

4 which suggest that we may write (0, ) i If we agree to write a for (a, 0) ad i for (0, ) the (a, b) (a, 0) + (0, b) (a, 0) + (0, ) (b, 0) a + ib Thus we fid that if we set up the covetio of writig a for (a, 0) ad i for (0, ), the (a, b) will be writte as a + ib (where i ) We shall give below, some examples to illustrate the Algebraic operatio o complex umbers, with usual Notatio. Example. Simplify (4 + 5i) + ( 7i) Solutio. (4 + 5i) + ( 7i) (4 + ) + (5i 7i) 6 (5 7) i 6 i We ote that to add two complex umbers, we add the real parts ad the pure imagiary parts separately. With the ew otatio, the same example ca be solved as follows : Example. Simplify ( + i) + (5 7i) (4 + 5i) + ( + 7i) (4, 5) + (, 7) (4 +, 5 7) (6, ) 6 i Solutio. ( + i) + (5 7i) (5 7i) + i (5 7i) With the ew otatio, we have 0 4i + 5i i 0 + i ( 4 + 5) ( ) i (5 4) + i ( + i) (5 7i) (, ) (5, 7) [.5 ( 7), ( 7) +.5] (0 +, 4 + 5) (, ) ( + i) Note : By the above two examples, it is evidet that ay oe of the two otatios ca be used..6 Real ad Imagiary Parts of a Complex Number Let z x + iy be ay complex umber. The x is called the real part of z ad y is called the imagiary part of z. We write R(z) x, I(z) y. We say that the complex umber z is purely real if I(z) 0, ad that z is purely imagiary if R(z) 0. Also, the complex umber x iy is called the complex- 4

5 cojugate of x + iy, the symbol z is usually used to deote the complex-cojugate of the complex umber z. That is, if z x + iy, the z x iy. If z is the cojugate of z, the z is the cojugate of z that the relatio of cojugacy betwee complex umber is a symmetric oe. We therefore, geerally say that z ad z are cojugate complex umbers istead of sayig that z the complex-cojugate of z. The followig results follow directly from the defiitio. (i) The sum of two cojugate complex umbers is purely real. (ii) The differece to two cojugate complex umbers is purely imagiary. (iii) The product of two cojugate complex umbers is a o-egative real umber. I order to see the truth of the above three statemets, we have z x + iy so that z x i y i.e. z (x, y) so that z (x, y), the z + z x which is purely real [ z + z ( x, y) + ( x, y) ( x, 0)] z z iy, which is purely imagiary [ z z ( x, y ) ( x, y) (0, y)] zz x + y, which is a o-egative real umber. [ zz ( x, y) ( x, y) ( x + y, 0] We give below some solved examples with the usual otatio which would help us at a later state. Example. Simplify a + bi c + di To divide two complex umbers, multiply both umerator ad deomiator of the fractio by the cojugate of the deomiator. a c + + bi di ( a + bi) ( c di) ( c + di) ( c di) ( ac + bd) + ( bc ad) i 5 c + d ac + bd bc ad + i c + d c + d Example 4. Fid the value of ( + i) ( i) (8 + i) Solutio. Here ( + i) ( i) 6 + i 4i i (6 + ) + (i 4i) [ i ] (8 + i) (8 i) (8 + i) 64 i Example 5. Fid the value of ( + i). Solutio. ( + i) + i + i + i Example 6. Divide ( + i) by ( + i). Solutio. + i + i + i i + i ( + i) ( i) ( + i) ( i)

6 Example 7. Express 5 i i the form x + iy 4i Solutio. Here 5 i 4i ( + ) + ( + 6) i i + i 5 (5 i) ( + 4 i) ( 4 i) ( + 4 i) Example 8. Fid the roots of the quadratic equatio x 6x (5 + 8) (0 6) i Solutio. This ca be writte as (x 6x + 9) + 0 or (x ) i or x ± i x ± i + 4i 4 i Thus + i ad i are the roots of the quadratic equatio x 6x It is see that the roots are cojugate. Verify that these values satisfy the equatio. The same examples ca also be solved as x 6 ± ± 4 6 ± i ± i.7 Graphical Represetatio of a Complex Number The complex umber z x + iy may be represetated graphically by a poit P whose rectagular coordiates are (x, y) i.e., we associate with each complex umber z x + iy the poit of the plae which has, with referece to a fixed rectagular system, the coordiates x ad y ad coversely with each poit havig the co-ordiates (x, y) we associate the complex umber z x + iy. From each theorem ivolvig complex umbers we ca deduce a defiite relatioship betwee the geometrical poits of the Cartesia plae ad coversely, the diagram showig poits which represet complex umbers geometrically is called Argad Diagram. 6

7 It may be oted that all poits o the x-axis are of the form (x, 0) ad are x + oi x ad so correspods to real umbers x. Similarly poits o the y-axis correspod to pure imagiary umbers yi. I additio, the complex umber may be repeseted by the directed lie segmet or vector OP..8 Trigoometric form of Complex Numbers The complex umber z x + iy is represeted by the vector OP. This vector ad hece the complex umber is described i terms of the legth r of the vector ad the agle θ which is vector makes with the positive directio of the x-axis (real axis) measured positively. real. Thus OP r x + y ad ta q y/x Thus a complex quatity ca always be put i the form r (cos θ + i si θ) where r ad θ are both Let x + iy r (cos θ + i si θ) Equatig real ad imagiary parts, we get By squarig ad addig, we get x r cos θ, ad y r si θ. x + y r r x + y 7

8 Here, we take oly positive sig of the square root. Also by dividig y x or θ r si θ ta θ r cos θ y ta ( x 0) x r x + y is called the modulus or absolute value of the complex umber x + iy ad θ is called amplitude (or argumet or phase). There are may values of θ satisfyig the equatio ta θ y/x, the value of θ, such that π < θ π is called the pricipal value of the amplitude. We shall geerally take the pricipal value of θ. I symbols the modulus of a complex umber z x + iy is also deoted by z or x + iy i.e., z x + iy x + y That amplitude is deoted by the symbols amp z or arg z. amp (x + iy) amp z θ here the value of θ is so choose that it is the pricipal value i.e., π < θ π The form r(cos θ + i sig θ) is called the stadard or the polar form of the complex umber x + iy, R, y R. Example. Express + i i the stadard form. Solutio. Let + i r (cos θ + i si θ) Equatig real ad imagiary parts, we get r cos θ; r si θ The r r Also ta θ i.e., θ Here cos θ is positive ad si θ is positive, ad hece θ lies i the first quadrat. θ π π Hece + i cos + i si 4 4 π The modulus of the complex umber is ad the amplitude is. 4 Example. Express i i the polar form. Solutio. Let i r (cos θ + i si θ) so that r cos q, π 4 ρ si θ r, ta θ π 4 ta y x 8

9 Here cos θ is +ve ad si θ is ve. θ lies i the fourth quadrat Also sice π < θ π θ π π π Hece i cos + i si Example. Express si α + i cos α i the stadard form. Solutio. Let si α + i cos α r (cos θ + i si θ) so that si α r cos θ cos α r si θ θ r ta θ cot α r, ta θ cot α π ta α π α π π Hece si α + cos α cos α + i si α.. Simplify the followig : (i) ( 5i) + ( + 4i) + (8 i) (ii) 5 + i i. Evaluate the followig : (i) ( 7 i) ( 5i) (ii) ( + 4 i) ( i). Solve the followig equatios : (i) [(x + y), (x y 6) (, ) (ii) (x y) + i (x + y) + i + i EXERCISE 4. Express the followig complex umber i the polar form (i) + i (ii) i 5. Fid the trigoometric represetatio of (i) si α i cos α (ii) + cos α + i si α 9

10 6. Show that cos θ + i si θ 7. Express the complex umber 5 + i + i ad amplitude. i the form (x + iy) where x ad y are real. Fid its modulus 0

11 LESSON DE MOIVRE S THEOREM I this lesso, we shall discuss a importat theorem which is used i fidig the roots of a complex umber, solutio of equatios, expasio of trigoometric fuctio etc. This theorem is kow as De Moivre s Theorem.. De Moivre s Theorem Statemet : (i) If is a iteger, positive, or egative, the (cos θ + i si θ) cos θ + i si θ. (ii) If is a ratioal umber, the oe of the values of (cos θ + i sig θ) is Proof : Part (i) case (a) : Let be a positive iteger By simple multiplicatio (cos α + i si α) (cos β + i si β) (cos α cos β si α si β) + i (si α cos β + cos α si β) cos (α + β) + i si (α + β) Agai multiplyig the above results by (cos γ + i si θ), we have (cos α + i si α) (cos β + i si β) (cos γ + i si θ) [cos (α + β) + i si (α + β)] (cos γ + i si γ) cos (α + β + γ) + i si (α + β + γ) This process ca be cotiued to ay umber of factors so that (coa α + i si α) (cos β + i si β) (cos γ + i si γ)... to factors I this expressio, put α β γ... θ. cos (α + β + γ +... to terms) + i si (α + β + γ +... to terms) So that we have (cos θ + i si θ) cos θ + i si θ. Case (b) : Let be a egative iteger. Suppose m where is a positive iteger. The (cos θ i si θ) (cos θ + i si θ) m (cos θ + i si θ) m (cos m θ + i si m θ) (cos m θ i si m θ) (cos m θ + i si m θ)(cos m θ si m θ) (cos m θ i si m θ ) cos m θ i si m θ (cos m θ + si m θ) cos( m) θ + i si ( m) θ co θ + i si θ (by the law of idices) (by case (a))

12 Thus (cos θ + i si θ) cos θ + i si θ for itegral values of, whether positive or egative p Proof of (ii) : If is (a rotatioal umber, positive or egative), let ( q 0) q We shall take q as a positive iteger ad p as a positive or a egative iteger. θ θ We haver cos + i si q q q θ θ cos q + i si q q q cos θ + i si θ θ θ i.e., qth power of cos + i si is cos θ + i si θ q q θ θ i.e., cos + i si is oe of the qth roots of (cos θ + i si θ) q q θ θ i.e., cos + i si is oe of the values of q q (cos θ + i si θ ) q Raisig each of these quatities of pth power, we have the results that oe of the values of p/ q θ θ (cos θ + i si θ ) is cos + i si q q p p i.e., cos θ i si θ q q p Hece cos θ + i si θ is oe of the values of (cos θ + i si θ) if is a ratioal umber positive or egative. Corollary. cos θ i si θ is oe of the values of (cos θ i si θ) for all ratioal values of. Illustratives : With the help of the De Moivre s Theorems, we see that. (cos θ + i si θ) 4 cos 4 θ + i si 4 θ. θ θ cos + i si 7 7θ 7θ cos + i si. (cos θ + i si θ) 7 cos ( 7θ) + i si ( 7θ) cos 7θ i si 7θ 4. Sice (cos θ + i si θ) (cos θ i si θ) cos θ i si θ cos θ + i si θ π π 5. si θ + i cos θ cos θ + i si θ (cos θ + si θ) + i (si θ cos θ si θ cos θ) + i0 6. (si θ + i cos θ) π π cos θ + i si θ

13 e.g., (si θ + i cos θ) π π cos θ + i si θ π π cos θ + i si 0 π π cos θ + i si θ si θ i cos θ Remarks : (i) As ay complex umber x + iy ca be put i the form r (cos θ + i si θ), therefore, De Moivre s Theorem may be writte as ( x + iy) r (cos θ + i si θ ) r (cos θ + i si θ ) where r is modulus of the complex umber ad θ is the amplitude. (ii) The product ad quotiet of ay two complex umbers ca be obtaied by usig this method. Let ay two complex umber be give by the their product is r (cos θ + i si θ ) ad r (cos θ + i si θ ), r r [cos (θ + θ ) + i si (θ + θ )] i.e., the product of two complex umbers is a complex umber whose modulus is the product of the modulli ad whose amplitude is the sum of the amplitudes two complex umbers. The quotiet of these two complex umbers, r (cos θ + i si θ ) ad r (cos θ + i si θ ) is Solved Examples Example. Simplify r (cos θ + i si θ ) r (cos θ + i si θ ) r (cos θ + i si θ) (cos θ i si θ ) r r [cos( θ θ ) + i si ( θ θ )] r 4 5 (cos θ + i si θ) (cos θ + i si θ) 7 (cos 6θ + i si 6 θ) (cos 4θ i si 4 θ) Solutio. By De Moivre s Theorem, we have Now, cos θ + i si θ (cos θ + i si θ) cos θ i si θ (cos θ + i si θ) cos 6θ + i si 6θ (cos θ + i si θ) cos 4θ i si 4θ (cos θ + i si θ) (cos θ + i si θ) (cos θ i si θ) 7 (cos 6θ + i si 6 θ) (cos 4θ i si 4 θ). 8 5 (cos θ + i si θ) (cos θ + si θ) 8 8 (cos θ + i si θ) (cos θ + i si θ) (cos θ + i si θ)

14 Example. Simplify (cos θ + i si θ) 6 cos θ + i si θ) cos θ + i si θ. 5 (cos θ + i si θ) (cos θ i si θ) 8 (cos θ i si θ) (cos 5θ + i si 5 θ) Solutio. By De Moiver s Theorem, we have θ + i θ θ i θ 8 θ i θ θ + i θ (cos θ + i si θ) (cos θ + si θ) (cos θ + i si θ) 4 (cos θ + i si θ) 0 (cos si ) (cos si ) (cos si ) (cos 5 si 5 ) (cos θ + i si θ) (cos θ + i si θ) 5 cos 5θ + i si 5θ + i Example. Obtai the quotiet of by usig De Moivre s Theorem. + i Solutio. Example 4. Obtai ( + i) 4. + i + i Solutio. Here ( + i) 4 Example 5. Prove that Solutio. Let + si φ + i cos φ + si φ i cos φ. i π π + cos si + i π π + i cos + i si 4 4 π π π π cos + i si 4 4 5π 5π cos + i si. 4 π π + cos + i si 6 6 4π 4π 6 cos + i si 6 6 π π 6 cos + i si i i π π cos φ + i si φ + si φ + i cos φ r (cos φ + i si θ). 4 4

15 The equatig real ad imagiary part, we have + si φ r cos θ, cos φ r si θ π si cos φ φ Hece, ta θ + si φ π + cos φ si α π, where α φ + cos α θ α α si cos cos α π φ 4 5 α ta α Also + si φ i cos φ r(cos θ si θ) The give expressio Example 6. Prove that : (a + bi) m/ + (a bi) m/ r (cos θ + si θ) (cos θ + i si θ) r (cos θ i si θ) (cos θ + i si θ) (cos θ + i si θ) (cos θ + i si θ) (cos θ + i si θ) (cos θ + i si θ) cos π φ i si π φ π π cos φ i si φ m/ m b ( a + b ) cos ta a Solutio. Here put a + bi r (cos θ + i si θ) The a r cos θ ad b r si θ a + b r (cos θ + si θ) r a + b ad ta θ Hece r b a a + b ad θ ta Also a bi r cos θ i si θ). Thus the give expressio ca be writte as (a + bi) m/ + (a bi) m/ b a m / m/ [ r(cos θ + i si θ )] + [ r(cos θ i si θ )] m / m m m/ m m r cos θ i si θ r cos θ i si θ + +

16 Example 7. If x cos θ + i si θ, the show that ad Solutio. Here ad Hece Also, x x x x m m m m m / mθ r cos m/ m b ( a + b ) cos ta a + m x cos mθ m x i si mθ. x m (cos θ + i si θ) cos mθ + i si mθ, m x (cos θ + i si θ) m cos mθ i si mθ. + m x cos mθ m x i si mθ Example 8. If x + cos, show that x cos. x θ + x θ Solutio. Here, it is give that x + cos θ x or x x cos θ + 0 or x x cos θ + (cos θ + si θ) 0 or (x x cos θ + cos θ) si θ or (x cos θ) ( i si θ) x cos θ ± i si θ. i.e., x cos θ ± i si θ Let x cos θ + i si θ (takig the + ve sig). The, x x cos θ i si θ cos θ + i si θ + x (cos θ + i si θ) + (cos θ si θ) (cos θ + i si θ) + (cos θ i si θ) cos θ If x cos θ i si θ, the cos θ + i si θ. The also the result ca be proved. x Example 9. If si α + si β + si γ 0 ad cos α + cos β + cos γ 0. Prove that cos α + cos β + cos γ cos (α + β + γ) 6

17 Solutio. Let si α + si β + si γ si (α + β + γ) x cos α + i si α y cos β + i si β z cos γ + i si γ The x + y + z (cos α + cos β + cos γ) + i (si α + si β + si γ) 0 + i0 0 x + y + z xyz (cos α + i si α) + (cos β + i si β) + (cos γ + i si γ) (cos α + i si α) + (cos β + i si β) + (cos γ + i si γ) (cos α + cos β + cos γ) + i (si α + si β + si γ) (cos α + i si α) (cos β + i si β) (cos γ + i si γ) [cos(α + β + ψ) + i si (α + β + ψ)] cos(α + β + γ) + i si (α + β + γ) Equatig real ad imagiary parts, we get cos α + cos β + cos γ cos(α + β + γ) ad si α + si β + si γ si (α + β + γ) Hece the results. Example 0. Show that for a iteger ( ) ( cos si ) ( cos si ) + cos π i i cos θ + θ + θ + θ θ Solutio. We have ( + cos θ + i si θ) + ( + cos θ i si θ) cos θ i si θ cos θ cos θ i si θ cos θ + + cos θ cos θ i si θ cos θ cos θ i si θ + + θ cos θ θ cos isi θ cos θ θ cos i si cos θ cos θ si θ cos θ i i si θ cos θ cos θ i si θ cos θ i si θ + + θ θ cos cos + θ θ cos cos Example. If si α + si β + si γ 0 cos α + cos β + cos γ. Prove that 7

18 Solutio. Let (i) cos(β + γ) + cos(γ + α) + cos(α + β) 0 (ii) si(β + γ) + si(γ + α) + si(α + β) 0 x cos α + i si α, y cos β + i si β, z cos γ + i si γ so that x + y + z (cos α + cos β + cos γ) + i(si α + si β + si γ) Also 0 + i0 0 x cos α si, cos si, i α i cos i y β β z γ si γ + + (cos α + cos β + cos γ) i (si α + si β + si γ ) x y z yz + zx + xy 0 xy + yz + zx 0 0 i0 0 (cos α + i si α) (cos β + i si β) + (cos β + i si β) (cos γ + i si γ) [cos (α + β) + i si (α + β)] + [cos (β + γ) + i si (β + γ)] [cos (α + β) + cos (β + γ)] + cos (γ + α)] + i [si (α + β) + si (β + γ)] Equatig real ad imagiary parts o both sides, we get cos (α + β) + cos (β + γ) + cos (γ + α) 0 si (α + β) + si (β + γ) + si (γ + α) 0 Hece the result. Example. If Solutio. Z Z Z Z Z cos θ + i si θ, show that i ta θ, beig a iteger. + + Z Z Z + Z 8 + (cos γ + i si γ) (cos α + i si α) 0 + [cos (γ + α) + i si (γ + α)] 0 (Dividig umerator ad deomiator by Z ) (cos θ + i si θ) (cos θ + i si θ) (cos θ + i si θ ) + (cos θ + i si θ) (cos θ + i si θ) (cos θ i si θ) (cos θ + i si θ ) + (cos θ i si θ) i si θ i ta θ proved cos θ Example. If (cos θ + i si θ) (cos θ + i si θ)... (cos θ + i si θ) prove that θ Solutio. We have cos 0 + i si 0 4kπ, where k is a iteger. ( + ) + si (γ + α)] 0

19 cos kπ + i si kπ..., where k is a iteger....() Also (cos θ + i si θ) (cos θ + i si θ)... (cos θ + i si θ) Thus L.H.S. cos (θ + θ θ) + i si (θ + θ θ) ( + ) ( + ) cos θ + i si θ Q ( + ) ( + ) cos θ + i si θ cos kπ + i si kπ by () This gives us Example 4. If ( + x) (i) (ii) ( + ) 4kπ θ kπ θ ( + ) x, ( + ) Hece the result. C C x C x KK C x is a positive iteger. Prove that C0 + C4 + C8 + KK + cos π 4 π C0 C + C4 C 6 + KK cos 4 / (iii) π C C + C5 C 7 KK si 4 / Solutio. We are give that ( + x) 4 C0 Cx Cx C x C4x KK Puttig x,, i, i i successio, we get Addig (), (), (4) ad (5) we get C0 + C + C + C + C4 +KK C...() 0 C0 C + C C + C4 KK...() ( + i) C0 i C C C i + C4 +KK...() C0 C C4 i C C C5 ( + ) + ( + KK )...(4) ( i) C0 i C C + i C + C4KK...(5) + ( + i) + ( i) 4( C0 + C4 + C8 +...)...(6) Now ( + i) π π cos + i si 4 4 Similarly, ( i) Addig (7) ad (8) ad substitutig i (6), we get C0 C4 C8 4( + + +KK ) / π π cos + i si (7) / π π cos i si (8) / +. cos π 4 9

20 + π + cos 4 C0 C4 C8 (ii) From (4) ad (7) + + +KK π cos 4 C0 + C4 + C8 + KK + i C C + C5 + Proved ( ) (...) / π π cos + i si 4 4 Equatig real ad imagiary parts, we get C0 C C4 + KK / cos π/4 C C C5 + KK / si π / 4. Simplify. Evaluate: 8 EXERCISE. (cos θ + i si θ) (cos θ i si θ) 9 8 (cos θ i si θ) (cos θ i si θ) 0 0 π π π π cos + i si + cos i si π π cos + i si. Use De Moivre s Theorem to simplify 6 9 (cos θ + i si θ) (si θ + i cos θ) 4. Prove that (si x i cos x) π π cos x i si x 5. Obtai the value of ( + 4i) with the help of De Moivre s Theorem. 6. If is a positive iteger, show that : ( + i) + ( i) π cos Prove that : [cos θ + cos φ) + i (si θ + si φ)] + [cos θ + cos φ) i si θ + si φ)] + θ φ ( θ + φ) cos cos Hit : (cos θ + cos φ + i(si θ + si φ) θ + φ θ φ θ + φ θ φ cos cos + i si cos θ φ θ + φ θ + φ cos cos + i si 0 4

21 8. Show that [(cos θ cos φ) + i (si θ si φ)] + [(cos θ cos φ) i(si θ si φ)] + θ φ π + θ + φ si cos Hit : (cos θ cos φ + i (si θ si φ) θ + φ θ φ θ φ θ + φ si si + i si cos θ φ θ + φ θ + φ si si + i cos θ φ π θ + φ π θ + φ si cos + + i si +. If cos θ Show that x +, cos φ y + x y m x y EXERCISE. + m x y cos (mθ + θ) x y m y + cos (mθ θ) m x where m ad are itegers. What happes if m ad are ratioal umbers?. If x cos α + i si α, y cos β + i si β ad z cos γ + i si γ such athat x + y + z 0 the prove that : ad x y z xyz + cos (α + β + γ) xyz. Let the complex umbers x, y, z be give respectively by cos a + i si a, cos b + i si b ad cos c + i si c, the prove that for ay itegers p, q, r. p q r x y z + p q r x y z cos (pa + qb + rc) 4. Let x + iy, x + iy..., x + iy be ay complex umber ad A + ib be some other complex umber, such that (x + iy ) (x + iy )... ( x + iy ) A + ib The show thats y y y B (i) ta ta ta ta x x x A (ii) + + KK + + ( x y ) ( x y ) ( x y ) A B

22 5. Expad ( + i) i two differet ways ad fid the sum of the two series, C C4 C6 KK C C C5 ( + + ) ad + KK ) [Hit : First expad ( + i) by Boiomial theorem ad the expad it by help of De Moivre s Theorem. 6. If si α + si β + si γ cos α + cos β + cos γ 0. Prove that (i) si α + si β + si γ 0 (ii) cos α + cos β + cos γ 0 (iii) cos α + cos β + cos γ /

23 LESSON APPLICATIONS OF DE MOIVRE S THEOREM I this lesso, we shall discuss certai applicatios ad uses of De Moivre s Theorem. As metioed earlier, it helps i fidig the roots of a umber, solutio of some equatios ad expressios of trigoometric fuctios, etc. We have see that De Moivre s Theorem ca be stated as θ θ θ θ cos q + i si q cos + i si q q q q θ θ i.e., cos θ + i si θ cos + i si q q θ θ cos + i si is a q th root of cos θ + i si θ q q θ θ i.e., cos + i si is oe of the values of (cos θ + i si θ) /q q q Now the questios arises : q q, where q is a positive iteger. What about the other values of (cos θ + i si θ) for ratioal values of? We shall ow determie all the values of (cos θ + i si θ) /q, where θ is a positive iteger. We kow that (cos θ + i si θ) cos (πr + θ) + i si (πr + θ) (cos θ + i si θ) /q [cos (πr + θ) + i si (πr + θ)] /q where q is ay iteger. Now by De Moiver s Theorem oe of the values of (cos θ + i si θ) /q is π r + θ π r + θ cos + i si q q By givig r various values, we get differet values of (cos θ + i si θ) /q. Let us give r i successio the values 0,,,... q ad we see that each of the followig quatities θ θ cos + i si q q π + θ π + θ cos + i si q q 4π + θ 4π + θ cos + i si q q ( q ) π + θ ( q ) π + θ cos + i si q q

24 is equal to oe of the values of (cos θ + i si θ) /q. We ote here that if we give to r itegral values greater tha (q ) viz., the values q, (q + ), (q + ),... etc. the we do ot obtai ay ew values of (cos θ + i si θ) /q. For example, for r q we obtai the value π q + θ π q + θ cos + i si q q i.e., θ θ cos π + + i si π + q q i.e., θ θ cos + i si. q q which is the same values as obtaied by puttig r 0. Thus the greatest values we eed to assig to r is q for the values q, q +, q +... will be foud to give the same result as the values, 0,,,... q, for r. Also o two of the quatities obtai by givig r, the values 0,,,... q will be the same for all the agles ivolved there i differ from oe aother by less tha π ad o two agles differig by less tha π have their cosies the same ad also sies the same. Thus the expressio cos ( π r + θ) ( π r +θ) + i si, where r 0,,,... (q ) gives q ad oly q q q differet values of (cos θ + i si θ) /q. We may exted the above result to (cos θ + i si θ) /q where p ad q are itegers, q beig take as positive. Thus (cos θ + i si θ) /q has q ad oly q differet values ad the these are give by ( π r + θ) p ( π r + θ) p cos + i ai, where r 0,,,... ( q ). q q The, the θ values are pθ pθ cos + i si, whe r 0 q q ( π + θ) p ( π + θ) p cos + i si, where r q q (4 π + θ) p (4 π + θ) p cos + i si, where r q q... [ π( q ) + θ] p [ π( q ) + θ] p cos + i si, whe r q. q q Note. We may ote here that the q distict values of (cos θ + i si θ) p/q ca be arraged i a geometrical progressio, for if µ cos π p p p p + i si π ad a cos θ + i si θ. q q q q the the q values of (cos θ + i si θ) p/q ca be arraged as a, aµ, aµ,... aµ q which is a G.P. The studet should ote that 4

25 p( π r + θ) p( π r + θ) πp πp pθ pθ cos + i si cos + i si cos + isi q q q q q q. Extractio of Roots of Complex Quatity We kow that where r x + iy r (cos θ + i si θ), x y + y ad θ ta. x Hece (x + iy) /q r /q [cos θ + i si θ] /q / q / q r [cos( π + θ ) + i si ( π + θ )] / q ( π + θ) ( π + θ) r cos + i si q q whe is give i successio the values, 0,,,..., q. This gives the required q th roots of x + iy. It may be oted that eve if we write x + iy r [cos ( kπ + θ ) + i si ( kπ + θ )], k beig a iteger, the same values are obtaied. Example. Fid the values of ( + i) /6. π π Solutio. We kow that cos si. 4 4 We ca write ( + i) ( + i) /6 whe is give the six values 0,,,, 4, ad 5. The six values of ( + i) /6, are therefore + i π π cos + i si r π π cos π + + i si π π + π/4 π + π/4 cos + i si cos π i si π, cos π i si π +, cos π i si π, cos π i si π +, cos π i si π, cos π i si π It may be observed that the 4 th value, viz.,

26 5π 5π cos + i si 4 4 π π cos π + + i si π π π cos + i si, 4 4 sice cos (π + θ) cos θ ad si (π + θ) si θ. Similarly the 5th ad 6th values ca simplified. The six value of ( + i) /6 ca the be writte as or simply as where r, 9 ad 7. π π ± cos + i si, 4 4 9π 9π ± cos + i si, 4 4 7π 7π ± cos + i si, 4 4 rπ rπ ± cos + i si, 4 4 Example. Fid all the values of values is. Solutio. Let the ad so that r + i /4 + i r (cos θ + i si θ ), r cos θ r si θ ad ta θ ta π ad show that the cotiued product of all the or Now i + /4 r ad π θ 4 π π cos + i si (cos π + i si π) /4 6

27 [cos (kπ + π) + i si (kπ + π)] /4 π π cos (k + ) + i si (k + ), k 0,,, 4 4 Hece the required four values are π π whe k 0 cos + i si, 4 4 k k π π cos + i si, 4 4 5π 5π cos + i si, 4 4 7π 7π k cos + i si, 4 4 Ad the cotiued product of four values cos π i si π cos π i si π cos π i si 5π cos π i si π cos π π π π i si π π π π cos 4π + i si 4π + i.0 [ cos 4π, si 4π 0]. Example. Fid the seve 7th roots of uity ad prove that the sum of their th powers always vaishes uless be a multiple of 7, beig iteger ad that the sum is 7 whe is multiple of 7. Solutio. We have to fid the 7 values of () /7, We kow that cos 0 ad si 0 0 We ca write cos 0 + i si 0 cos π + i si π () /7 π π cos + i si 7 7 where 0,,,, 4, 5, 6. The 7 roots are, therefore (cos 0 + i si 0) i.e.,, π π cos + i si ω (say) 7 7 4π 4π π π cos + i si i. e., cos + i si ω ad similarly for the other roots. Thus the seve 7th roots of uity are, ω, ω, ω, ω 4, ω 5, ω 6 7

28 where ω The sum of the th power of the roots Sice ω 7 Also ω, sice is ot a multiple of 7. π π cos + i si. 7 7 () +s (ω) + (ω ) + (ω ) + (ω 4 ) + (ω 5 ) + (ω 6 ) + ω + ω + ω + ω 4 + ω 5 +ω ( ω ) ( ω ) ( ) 0 ω ω ω ω If is a multiple of 7, i.e., if 7 m say where m is a iteger, the ω cos π i si π cos π i si π cos πm + i si πm. 8 (which is geometric progressio) Hece whe is a multiple of 7, the sum of the th power of the 7th roots of uity is Example 4. Prove that x + iy + x iy has real values. Solutio. Let x r cos θ ad y r si θ. The where k is a iteger. (x + iy) / + (x + iy) / x + iy r[cos (kπ + θ) + i si (kπ + θ)], / / / r {[cos( kπ + θ ) + i si( kπ + θ )] + [cos( kπ + θ) i si( kπ + θ )] } / kπ + θ r cos, where k 0,,,... ( ) Here r y x + y, ad ta θ. x Hece (x + iy) / + (x iy) / kπ + ta / ( x + y ) cos where k 0,,,... ( ). This is real ad has distict values.. Solutio of Equatios De Moivre s Theorem ca be used to obtai solutios of certai types of equatios. This will be illustrated by a few solved examples. Coversely De Moivre s Theorem ca be used to fid the equatio whose roots are give as trigoometical fuctios. Example 5. Solve the equatio z, where is a positive iteger. Solutio. Here we write y x 7m

29 z z cos (kπ + 0) + i si (kθ + 0) / kπ kπ () cos + i si where k 0,,,... ( ) Hece the th roots of uity are π π (cos 0 + i si 0), i.e.,, cos + i si 4π 4π cos + i si It may be oted that if we write ω π π cos + i si ( ) π ( ) π π π cos + i si cos + i si π π cos + i si, the the th root of ca be writte as, ω, ω,... ω. Thus we get a iterestig result that the th roots of uity form a G.P. Also it is see that each of these roots ca be expressed as a power of aother. Exmple 6. Solve the equatio z 9 z 5 + z 4 0. Solutio. Here (z 9 z 5 + z 4 ) 0 z 5 (z 4 ) + (z 4 ) 0 i.e., (z 5 ) (z 4 ) 0 Either (i) z 4 or (ii) z 5 sice ad From (i), we have ad form (ii), we have (cos π + i si π) /4 cos π + i si π cos π + i si π cos (π + π) + i si (π + π) cos ( + ) π + i si ( + ) π. π π cos + i si π π z cos + i si, where 0,,,, z ( ) /5 [cos ( + ) p + i si ( + ) π] /5 ( + ) π ( + ) π cos + i si, whe 0,,,, These (4 + 5) 9 values give the complete solutio of the give equatios. Example 7. Solve the expressio z Solutio. z 5 [cos (r + ) π + i si (r + )π]

30 where r is a iteger. z π π Whe r 0, z cos + i si. 5 5 Whe r, (r + ) π (r + ) π cos + i si, where r 0,,,, π π z cos + i si 5 5 Ad for r, z cos π + i si π. For r, the value of z is For 7π 7π cos + i si 5 5 π π cos π + i si π 5 5 π π cos + i si 5 5 π π cos i si 5 5 r 4, the value of z is 9π 9π cos + i si 5 5 π π cos π + i si π 5 5 π π cos + i si 5 5 π π cos i si 5 5 Thus the 5 roots of the equatio z are, cos π ± i si π, cos π ± i si π Example 8. Fid the roots of the equatio z 6 + z + 0 Solutio. O solvig the equatio a quadratic i z, we fid z ± ± i π π cos ± i si π π cos rπ + ± i si rπ + π π cos (r + ) ± i si (r + ) 0

31 0. z ( ) ( ) cos π r + r i si π + ± π (r + ) π (r + ) cos ± i si, r 0,,. 9 9 O givig r the values, 0,,, the six roots of the give equatio ca be writte as Now π π 8π 8π 4π 4π cos ± i si, cos + i si, cos ± i si cos π i si π cos π i si π ± π ± π cos π i si π + cos π ± i si π 9 9 p 9 π π 4π 4π 8π 8π The roots are cos ± isi, cos ± isi, cos ± isi Example 9. Solve the equatio z 5 + z 4 + z + z + z + 0 multiply through by z we get z 6 Solutio. z 5 + z 4 + z + z + z + 0 Now z 6 0 z z 6 cos kπ + i si kπ, where k is a iteger cos kπ kπ + i si 6 6 kπ kπ cos + i si, where k 0,,,, 4, 5. π π π π π z cos 0 + i si 0, cos + i si ; cos + i si + i si ; cos π + i si π ±, ± + i The root correspods to the factor (z ) The remaiig roots cos π + i si π ; cos π + i si π ;, + i, + i,, i, i, ± ± i are the roots of the give equatio Exercise. Fid all the values of (i) ( + i) / (ii) ( + i ) (iii) ( ) /6 4

32 (iv) ( + i) /. Solve the equatio: (i) z 7 (ii) z 7 + z 0. Fid the th roots of uity ad show that from a series i G.P. whose sum is zero. Also prove that the sum of their pth power always vaishes uless p be a multiple of, p beig a iteger ad that the the sum is. 4. Solve the equatio : z 7 + z 4 + z + 0. [Hit : z 7 + z 4 + z + (z 4 + ) (z + ) 0] 5. Use De Moivre s Theorem to solve : z 0 + z [Hit : Put z 5 y] 6. Solve the equatio : z 4 z + z z + 0. [Hit : Multiply the equatio by (z + )]. Expasio of si θ ad cos θ De Moivre s Theorem may be applied to express trigoometric fuctios of multiple agles i terms of the trigoometric fuctio of the agles. The theorem ca be employed to express powers of sies ad cosies of agle i terms of trigoometric fuctios of multiple agles. First we shall lear to express cos θ, si θ, ta θ i terms of cos θ, si θ, ta θ, etc. For example, by De Moivre s Theorem cos θ + i si θ (cos θ + i si θ) cos θ + i si θ cos θ + i si θ (cos θ si θ) + i cos θ si θ) Equatig the real ad imagiary parts, we get Geerally cos θ cos θ si θ, si θ cos θ si θ (cos θ + i si θ) (cos θ + i si θ), beig a positive iteger. By the Biomial Theorem for a positive itegral idex, we have (cos θ + i si θ) But Hece we ca write cos θ + i si θ ( ) cos θ + cos θ ( isi θ ) + cos θ ( isi θ ) ( + ) ( ) cos ( si )... ( si ) + θ i θ + i θ i, i 4, i etc. ( ) cos θ cos θ si θ ( ) ( ) ( ) cos 4 si 4 + θ θ ( )( ) + i cos θ si θ cos θ si θ + KK

33 By equatig the real ad imagiary parts, we get cos θ si θ ( ) cos θ cos θ si θ ( ) ( ) ( ) cos 4 si 4 + θ θ +KK 4 ( )( ) cos θ si θ cos θ si θ +KK By usig the biomial coefficiets, we ca also express these results as follows cos θ si θ Dividig (ii) by (i), we have ta θ 4 4 C C4 cos θ cos θ si θ + cos θ si θ C C4 cos θ[ ta θ + ta θ +...]...(i) C C cos θ si θ + cos θ si θ +... cos θ[ C ta θ C ta θ +...]...(ii) 5 C ta C ta C5 ta 4 C ta θ + C4 ta q θ θ + θ KK KK We have thus obtaied the values of cos θ, si θ, ta θ i terms of cos θ, si θ, ta θ. Example 0. Obtai the values of cos 5θ, si 5θ, ad ta 5θ. Solutio. We ca either apply the formulae or proceed as below: cos 5θ + i si 5θ (cos θ + i si θ) 5 cos 5 θ + 5 cos 4 θ (i si θ) + 0 cos θ(i si θ) + 0 cos θ (i si θ) + 5 cos θ (i 4 si 4 θ) + i 5 si 5 θ Thus equatig real ad imagiary parts, cos 5θ cos 5 θ 0 cos θ si θ + 5 cos θ si 4 θ cos 5 θ 0 cos θ ( cos θ) + 5 cos θ ( cos θ) 6 cos 5 θ 0 cos θ + 5 cos θ (Note that cos 5θ has bee expressed i powers of cos θ oly). Also ta 5θ 4 5 si 5θ 5 cos θ si θ 0 cos θ si θ + si θ cos 5 cos 5 0 cos si 5 cos si 4 θ θ θ θ + θ + θ 5 5 ta θ 0 ta θ + ta θ 5 0 ta θ + 5 ta θ (Note that ta 5θ has bee expressed i powers of cos θ oly. Note. We ca apply a similar method to obtai si (α + β + γ +...), cos (α + β + γ) +...), ta (α + β + γ +...) ad thus obtai expressio for the sie, cosie ad taget of the sum of ay umbers of agles i terms of trigoometric ratio of idividual agles. We have

34 Sice We have cos (α + β + γ +...) + i si (α + β + γ +...) (cos θ + i si α) (cos β + i si β) (cos γ + i si γ)... cos α + i si α cos α( + ta α) cos β + i si β cos β( + i ta β) cos ψ + i si γ cos γ( + i ta γσ) etc. cos (α + β + γ +...) + i si (α + β + γ +...) cos α cos β cos cos γ... [( + i ta α) ( + i ta β) ( + i ta γ)... cos α cos β cos γ... [ + i(ta α + ta β +...) + i (ta α ta β + ta β ta γ +...] + i (ta α ta β ta γ +... ) +...] cos α cos β cos γ... [ + is S is +...] where S ta α + ta β cos γ... Σ ta α, S ta α ta β + ta β ta γ +... Σ ta α ta β S ta α ta β ta γ +... Σ ta α ta β ta γ, i.e., S idicates the sum of the tagets of the agles, S idicates the sum of the products of the tagets of the agles take two at a time ad S idicates the sum of the products take three at a time ad so o. Equatig real ad imagiary parts, we have cos (α + β + γ...) cos α cos β cos γ... [ S + S 4 S ] si (α + β + γ...) cos α cos β cos γ... [S S + S 5...] Also, by divisio, we get S S + S5... ta (α + β + γ) S + S S Expasio of si θ ad cos θ i Powers of θ We kow that for a positive iteger ad a agle α, ( ) cos α cos α cos α si α + α α α 4 ( ) ( ) ( ) cos 4 si 4 si 4... Now put α θ, the θ α ad 4

35 cos θ cos θ( θ α) si α α cos α α θ ( θ α ) ( θ α ) ( θ α ) si cos α + α 4 α KK Now if α is mode idefiitely small, θ remaiig costat ad cosequetly becomig idefiitely large, cos α ad si α α both ted to uity, ad hece i the limit whe a 0 we have cos θ 4 7 θ θ θ Similarly by writig the value of si α ad proceedig as before, we ca obtai. si θ 4 7 θ θ θ θ The method we have applied here is oly a idicatio to get the values of cos θ ad si θ ad does ot give a rigorous proof. We shall ow obtai a series for ta θ i terms of θ by usig the series for cos θ ad si θ. si θ Thus ta θ cos θ 5 θ θ θ + KK 5 4 θ θ + KK θ θ θ θ θ + KK 6 0 KK 4 Expadig the secod bracket by the Biomial theorem, we have ta θ Thus ta θ 5 4 θ θ θ θ θ θ θ + KK + K + K + K θ θ θ θ q θ + K K θ θ θ 5 4 θ + K q K θ θ θ θ θ + + θ + K θ 5 θ + + θ +K 5 θ 5 θ + + θ +K 5 5 4

36 If powers of θ more tha five are eglected, i.e., for small values of θ, we have si θ cos θ ta θ θ θ, 6 4 θ θ +, 4 θ θ +, ad if power more tha are to be eglected the θ si θ θ, cos θ, ta θ θ It is uderstood that the agle θ is expressed i radias. Example. Fid the value of θ whe cos θ Solutio. Here cos θ is early ad θ is small, Hece we ca take i.e., θ cos θ θ or θ θ 99 cos θ radias degrees π 0.8 degrees approx. Example. Fid the value of si º correct to theree places of decimals. Solutio. We have º Now π radias 80 π π π si si º π π early π approx Expressio of the Products of the Form cos m θ si θ Terms of sies or cosies of Multiples of θ. De Moivre s Theorem ca be employed to express a product of the form cos m θ si m θ where m ad are positive itegers i terms of sies or cosies of multiples or θ. 6

37 Let z cos θ + i si θ the z cos θ i si θ cos θ + i si θ Hece z + cos θ z z i si θ z Also from De Moivre s Theorem, if r is a iteger. (i) z r cos r θ i si r θ (ii) z r cos rθ i si rθ ad, therefore, by addig ad subtractio (i) ad (ii), we get cos rθ ad i si rθ We kow that ( cos θ) m (i si θ) z z r r + r z r z m z + z z z m The right had side of this equatio is expaded of z ad terms with idices equal but opposite i r sig are grouped together. The resultig sum is made up, if is eve, of term of the form z + r z ad if r is odd, of term of the form z r. z r r Also we ca express these terms z + ad z r r as cos rθ ad i si rθ respectively. z z The followig examples will illustrate the method. Example. Express si 6 θ i terms of cosies of multiples of θ. Solutio. Let z cos θ + i si θ, so that z + cos θ, z i si θ, z z z r + r z r cos rθ, z i si rθ r z r beig ay positive iteger. 6 Now (i si θ) 6 z z Cz + Cz + Cz + C4z C5z + C6z z 64 i 6 si 6 θ z 6z + 5z 0 + 5z 6z + z 7

38 si 6 θ 6 4 z 6 z 5 z z z z [ cos 6 θ 6. cos 4 θ + 5. cos θ θ ] 64 [cos 6 θ 6 cos 4 θ + 5 cos θ 0] Example 4. Express si 4 θ cos θ i cosies of multiples of θ. Solutio. Let z so that Also z r cos θ + i si θ the cos θ i si θ. z z + cos θ ad z + r z (i si θ) 4 ( cos θ) z i si θ z r cos rθ ad z i si rθ r z 4 z z + z z z z z + z z z z z z z 4 z z z z z + z + + z z z z i.e., 64 si 4 θ cos θ cos 6θ 4 cos 4θ + cos θ + 4. Hece si 4 θ cos θ (cos 6θ cos 4θ + cos θ + ). Express si 5θ i terms of si θ oly.. Express cos 6θ i terms of cos θ oly.. Express ta 7θ i terms of ta θ oly. 4. Fid the value of si º approximately. 5. Fid the value of θ, where si θ 0. θ 04 EXERCISE 6. Show that 6 si 5 θ si 5θ 5 si θ + 0 si θ. 7. Express si 7 θ cos θ i terms of sies of multiples of θ. 8. Express cos 6 θ i terms of cosies of multiples of θ. 8

39 LESSON 4 APPLICATIONS OF DE MOIVRE S THEOREM I this lesso, we shall study the applicatio of De Moivre s theorem to fid the sum of certai types of trigoometric series. The series may be fiite or ifiite. The geeral method is kow as the C + is method. If we are give as series of cosies such as C cos θ + cos θ +... cos θ, we cosider a similar series of sies i.e. S si θ + si θ +... si θ. The ew series C + is so formed ca be summed up by differet methods. Equatig real ad imagiary parts we obtai the values of C ad S. The followig formulae are maily used i the summatio of series. x (i) + x + x + K x, x x (ii) ( + x) + C x + C x +K C x (iii) Euler s Formula: If z is complex variable, the the complex expoetial fuctio e z is defied by e z + z + z + z + K!! Replacig z by i θ we have Similarly ad Also e iθ 4 5 ( iθ) ( iθ) ( iθ) ( iθ) + iθ K θ θ θ θ + iθ i + + i θ θ θ + K + i θ cos θ + i si θ e iθ cos θ i si θ e iθ + e iθ cos θ e iθ e iθ i si θ (e iθ ) e iθ cos θ + i si θ where is a iteger. We shall illustrate the method C + is i the followig solved examples. Example. Fid the sum to terms of the series. + x cos θ + x cos θ x cos ( )θ Let C + x cos θ + x cos θ x si ( ) θ S x si θ + x si θ x si ( )θ C + is + x(cos θ + i si θ) + x (cos θ + i si θ) x [cos( )θ + i si ( )θ] + i si ( ) θ)] + xe iθ + x e iθ x e ( )iθ 9

40 iθ x e, iθ xe summig the GP to terms iθ iθ ( x e ) ( xe ) iθ iθ ( xe ) ( i xe ) [Multiply the umerator ad deomiator by xe iθ ] iθ iθ + ( ) iθ x e xe + x e iθ iθ x( e + e ) + x + x [cos θ + i si θ] x (cos θ i si θ ) + x [cos ( ) θ + i si ( ) θ] x cos θ + x (Usig Euler s Formulae) Equatig the real part we get C + x cos θ x cos θ + x cos( ) θ x cos θ + x Example. Fid the sum to term of the series Let si θ + si 4θ + si 6θ +... C cos θ + cos 4θ + cos 6θ cos θ S si θ + si 4θ + si 6θ si θ C + is e iθ + e 4iθ +... e iθ iθ iθ ( ) iθ C + is e [ + e +K e ] x [ + x + x +K x ] where x e iθ x ( x ) x e iθ iθ [ e ] e iθ iθ iθ iθ e ( e ) ( e ) iθ iθ ( e ) ( e ) (Multiplyig umerator ad deomiator by the cojugate of the deomiator) iθ iθ iθ ( ) iθ e [ e e + e iθ iθ ( e + e ) + iθ ( + ) iθ iθ e e + e cos θ + (cos θ + i si θ) [cos ( + ) θ + i si ( + ) θ] + [cos θ θ + i si θ] ( cos θ) Equatig the imagiary parts o both sides, we get 40

41 S si θ si ( + ) θ + si θ ( cos θ) si θ cos θ [si ( + ) θ si θ)] 4 si si θ cos θ cos ( + ) θ si θ 4 si si θ[cos θ cos ( + ) θ si θ] ( ) 4 si si + θ si θ si θ si ( + ) θ si π si θ Example. Fid the sum of the series θ θ θ cos θ C cos ( θ + φ ) + C cos ( θ + φ ) C cos ( θ + φ ) 4 where si θ 0 i.e., θ π Let C cos θ C cos ( θ + φ ) + C cos ( θ + φ ) C cos ( θ + θ ) ad S si θ + C si ( θ + φ ) C si ( θ + θ ) Here C + is iθ i( θ + φ) i( θ + φ) i( θ + φ) e C e C e C e iθ iφ iφ iφ [ e C e C e C e i θ i φ e [ + e ] iθ e [ + cos φ + i si φ ] iθ φ φ φ e cos + i si cos i e θ cos φ cos φ i φ + Equatig the real part o both sides, we get cos φ [cos i si ] cos φ i si φ θ + θ + φ φ φ cos cos θ + + i si q + φ φ C cos cos θ + Sometimes the sum to terms of a trigoometric series ca be obtaied by usig simple trigoometric formulae viz. si A si B cos (A B) cos (A + B) cos A si B si (A B) si (A + B)

42 These formulae ca be useful whe the th term of a series ca be expressed at the differece of two cosies of sies. The followig example will illustrate this method. Example 4. Fid the sum to terms of the series. si θ + si θ + si 5θ +... Let S si θ + si θ + si 5θ si ( )θ Multiplyig both sides by si θ ( 0) we get, si θ S si θ + si θ si θ + si θ si 5θ si θ si ( )θ S [ cos θ] + [cos θ cos 4θ] + [cos 4θ cos 6θ]... cos θ si θ si si θ θ si θ cosec θ provided siθ 0 i.e., θ π Example 5. Fid the sum of the ifiite series. Let S ad we have C C + is si θ si 5θ si θ + +K 5 si θ si 5θ si θ + +K 5 cos θ cos 5θ cos θ + +K 5 iθ 5iθ i e e e θ + K [cos ( ) θ cos θ) x x x + K where x e i θ 5 si x si [cos θ + i si θ] si (cos θ) cos (i si θ) + cos(cos θ) si (i si θ) si (cos θ) cos h (si θ) + i cos(cos θ) si h (si θ) Equatig imagiary parts o both sides, we get Example 6. Sum of the series Let C S cos (cos θ) si h (si θ)...5 cos θ + cos θ cos θ + K cos θ + cos θ +K.4 [Q cos iθ cos hθ, si iq i si hθ] from the defiitio of Hyperbolic fuctios) 4

43 S Here C + is. si θ + si θ +K.4 iθ. iθ..5 iθ e + e e iθ ( + e ) [ + cos θ + i si θ ] θ θ θ cos + i si cos θ θ θ cos cos + i si Equatig real parts o both sides we get, C θ θ θ cos cos i si 4 θ cos 4 θ cos Example 7. Fid the sum to ifiitely of the series Let C S C + is si α + si α + si α +... cos α + cos α + cos α +... si α + si α + si α +... iα iα iα e + e + e +... iα iα iα e + e + e +... e iα e iα [Summig the G.P. to ] iα iα e e iα iα e e 4

44 iα e iα iα ( e + e ) + 4 cos α + isi α 5 cos α 4 4(cos α + i si α) 5 4 cos α Equatig the imagiary parts o both sides, we get S 4 si α 5 4 cos α Example 8. Fid the sum to of the sides Let C S Here C + is (Summig the G.P. to ) It follows that C 0 provided si α 0 i.e., α kπ where k is a iteger cos α cos α + cos α cos α + cos α cos α +K cos α cos α + cos α cos α + cos α cos α +K cos α si α + cos α si α + cos α si α +K iα iα iα cos α e + cos α e + cos α e +... iα iα iα cos α e [ + cos α e + (cos α e ) +K ] iα cos α e iα cos α e iα iα cos α e [ cos α e ] iα iα ( cos α e ) ( cos α e ) iα cos α e cos α iα iα ( e e ) cos α + + cos α cos α [cosα + i si α] cos α cos α + cos α cos α + i si α cos α cos α i si α cos α si α cos i.e., The sum of the give ifiite series is zero, provided α is ot a multiple for π. α 44

45 EXERCISES Fid the sum to terms of the followig series :. cos θ + cos θ + cos θ si θ cos θ + si θ cos θ + si θ cos 4θ si α + si(α + β) + si (α + β) cos θ + cos 4θ + cos 6θ +... Fid the sum to ifiity of the followig series : cos θ cos 4θ + cos 6 θ si θ si θ + si θ si α si α + si α si α + si α si α si α si α + si α cos β cos β + cos β +... cos α cos α cos α cos β + cos β cos β +... si( α + β) si ( α + 4 β) si α

46 LESSON 5 THEORY OF EQUATIONS I 5. I this lesso we shall deal with the theory of equatios. We presume that you are all familiar with the theory of quadratic equatios. I the preset course of study of theory of equatios, we shall cofie ourselves to cubic ad biquadratic equatios. 5. Polyomial ad Equatios We kow that a fuctio p(x) of the form p(x) 0 0 a x + a x + a x... + a, a 0, where the coefficiets a 0, a, a,... a are all complex umbers (a 0 0) is called a polyomial of degree, beig a positive iteger. For example, is a polyomial of degree. The expasio p(x) 0 is called a th degree equatio, that is, p(x) 0 0 a x + a x + a x... + a 0, a 0...() The fudametal theorem of Algebra states that every equatio of the form (), has at least oe complex umber as a root. The proof of this result is beyod the scope of the preset course of study ad hece is omitted. I the discussio thereafter, it will be presumed that the coefficiets like a 0 a... a are all complex umbers. Now discuss the followig theorem which is kow as Factor theorem. We already kow that if α is a root of a equatio, say, a 0 x + a x + a 0, a 0 0 the x α is a factor of the correspodig polyomial a 0 x + a x + a. For example, is a root of the equatio x x 6 0, the it is easy to verify that x is a factor of the polyomial x x 6. We geeralize this idea ito the followig theorem : 5. Factor Theorem A umber α is a root of the equatio a0x a x + K + a 0...() if ad oly if (x α) is a factor of the polyomial p(x) 0 a x + a x + K + a...() where a 0 0, a, a..., a are complex umbers ad is a positive iteger. Proof. I the first part, it is give that α is a root of the equatio () ad we have to prove that (x α) is a factor of (). We divide the polyomial p(x) of degree by a polyomial (x α) of degree oe. The, the quotiet will be a polyomial of degree ( ). If the remaider is zero, the obviously (x α) is a factor of p(x). If the remaider is ot zero, the the remaider is a costat ad let it be R. Also let the quotiet be deoted by The we have K + + a x b x b x b x b 0 K 0 K a x + a x + + a x + a ( x α ) [ a x b x + + b x + b ] + R 46

47 Puttig x α o both sides, we get I other words, 0 a α + α α + K + a α + a 0 + R R R 0 a α + α α + K + a α + a...() Now agai, sice α is a root of the equatio (), therefore by puttig x α i (), we get 0 a a α + α + K + α α + α 0...(4) From () ad (4), it follows that R 0 so that (x α) is a factor of p(x). I the secod part, it is give that (x α) is a factor of the polyomial p(x) give by (), we have to show that α is a root of the equatio (). Sice (x α) is a factor of the polyomial p(x), therefore whe we divide p(x) by (x α), we must get R 0, ad cosequetly from (), we get a α + a α + K + a α + a 0 0 which implies that a satisfies the equatio α x + a x + K + a x + a 0 0 i.e., α is a root of the equatio (). This completes the proof of the theorem. Now we discuss the theory of cubic equatios. 5.4 Cubic Equatio The geeral cubic equatio is of the form a 0 x + a x + a x + a 0, a (5) where a 0, a, a, a are give complex umbers. By the fudametal theorem of algebra, this equatio (5) has atleast oe root. Let this root be deoted by α. The by Factor Theorem (x α) is a factor of the polyomial a 0 x + a x + a x + a. Divide the polyomial by x α ad let the quotiet be deoted by a 0 x + b x + b. The we have a 0 x + a x + a x + a (x α) (α 0 x + b x + b )...(6) Now cosider the quadratic equatio a 0 x + b x + b 0...(7) Agai by the fudametal theorem of algebra equatio (6) must have at least oe root, say, β ad accordigly (x β) must be a factor of the polyomial a x + b x + b Dividig a 0 x + b x + b by (x β), we get the quotiet, say, (a 0 x + c ) so that we have a x + b x + b ( x β ) ( a0 x + c )...(8) Also a 0 x + c c a0 x + a0( x γ) a0...(9) 47

48 Combiig (6), (8) ad (9), we get 0 c γ, a0 0 a 0 a x + a x + a x + a a 0 (x α) (x β) (x γ)...(0) Substitutig x α, β, γ successively o both sides of (9), we observe that each of the values, α, β, γ satisfies the equatio (5). Thus α, β, γ are the root of the equatio (5). Also it may be oted that o umber differet from α, β, γ ca be roots of the equatio (5). For, if possible let δ, a umber differet from each of α, β, γ be a root of this equatio (5). The by substitutig x δ o both sides of (0), we fid that while the left had side is zero by virtue of the suppositio that δ is a root but the right had side is o-zero ad thereby we arrive at a cotradictio. Hece, α, β, γ are the oly roots of the equatio (5). Thus we have proved that a cubic equatio has three ad oly three roots. These roots may be all distict (uequal), may be repeated (equal) or may be that oly two are repeated. From the above discussio, it is clear that if α, β, γ are the three roots of the a cubic equatio, the the correspodig factors are (x α), (x β), (x γ) ad hece the equatio is give by or (x α) (x β) (x γ) 0 x ( α + β + γ ) x + ( αβ + βγ + γα) x aβγ 0. We discuss the followig examples : Example. Fid the equatio whose roots are,,. Solutio. The required equatio is give by (x ) (x ) (x ) 0. or x 6x + x 6 0 [By puttig α, β, γ i equatio () above] Example. Fid the equatio whose roots are,,. Solutio. (x ) (x ) (x + ) 0. or x 4x x Reactios betwee the Roots ad Co-efficiet of a Cubic Equatio Let α, β, γ be the roots of a cubic equatio The we have the idetify which implies a x a x a x a a0 x + a x + ax + a a0 ( x α) ( x β) ( x γ ) 0 a x + a x + a x + a a0 [ x ( α + β + γ ) x + ( αβ + βγ + γα) x αβγ ] Equatig the co-efficiets powers of x, i.e., x, x, x ad the costat terms, we get a 0 a 0 a a 0 (α + β + γ) a a 0 (αβ + βγ + γα)ss 48

49 These give α a0( αβγ ) a0αβγ a α + β + γ a a αβ + βγ + γα a 0 0 a αβγ a I other words, we ca write these relatios as Sum of the roots Sum of the products of roots take i pairs 0 coefficiet of x coefficiet of x costat term coefficiet of x 49 coefficiet of x coefficiet of x Thus we ote that though we are ot able to fid the values of α, β, γ separately, yet we have bee able to express the three coditios combiatios amely α + β + γ, αβ + βγ + γα, αβγ i terms of coefficiets α 0 0, α, α, α. 5.6 Symmetric Fuctios Cosider the followig expressios : (i) (ii) a + b +γ ( α + β ) + ( β + γ ) + ( γ + α ) (iii) α β + α γ + β α + β γ + γ α + γ β Each of the above is a fuctio of α, β, γ with the property that if ay two of α, β, γ are iterchaged the fuctio remai ualtered. Such fuctios are called symmetric fuctios. More precisely a fuctio f (α, α,... α ) of variables is said to be symmetric fuctio of α, α,... α if it remais ualtered by iterchagig ay two of Thus, for example α, α... α. α + β + γ, αβ + βγ + γα, αβγ are symmetric fuctios of α, β, γ. I the case of a cubic equatio whose roots are α, β, γ the fuctios α + β + γ, αβ + βγ + γα, αβγ are called basic symmetric fuctios. Sigma Notatio for Symmetric Fuctios It is ofte coveiet to describe a symmetric fuctio by idicatig oly oe or more terms i such a maer that the other terms are obtaiable from the give term o replacig the roots therei by other roots i all possible ways. Also the we put dow the sig Σ(sigma) before the give term. Thus for a cubic equatio

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION Revision D

DERIVATION OF MILES EQUATION Revision D By Tom Irvie Email: tomirvie@aol.com July, DERIVATION OF MILES EQUATION Revisio D Itroductio The obective is to derive Miles equatio. This equatio gives the overall respose of a sigle-degree-of-freedom

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Lecture 22: Coherent States

Lecture 22: Coherent States Leture : Coheret States Phy851 Fall 9 Summary memorize Properties of the QM SHO: A 1 A + 1 + 1 ψ (x) ψ (x) H P + m 1 X λ A + i P λ h H hω( +1/ ) [ π!λ] 1/ H x /λ 1 mω λ h ( A A ) P i ( A A ) X + H x λ

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Chapter 1 Complex numbers

Chapter 1 Complex numbers Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i)

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

EQUATIONS OF DEGREE 3 AND 4.

EQUATIONS OF DEGREE 3 AND 4. EQUATIONS OF DEGREE AND 4. IAN KIMING Consider the equation. Equations of degree. x + ax 2 + bx + c = 0, with a, b, c R. Substituting y := x + a, we find for y an equation of the form: ( ) y + py + 2q

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα