1.1 Η Έννοια του Διανύσματος
|
|
- Λάχεσις Συντύχη Δυοβουνιώτης
- 5 χρόνια πριν
- Προβολές:
Transcript
1 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος ΜΘΗΣΙΚΟΙ ΣΤΟΧΟΙ: Ο µαθητής ϖρέϖει: να κατανοήσει τις έννοιες : διάνυσµα, µηδενικό διάνυσµα, φορέας-διεύθυνση, κατεύθυνση - φορά, µέτρο διανύσµατος, ϖαραλληλία διανύσµατος µε ευθεία, συγγραµµικά διανύσµατα, οµόρροϖα διανύσµατα, αντίρροϖα διανύσµατα, ίσα διανύσµατα, αντίθετα διανύσµατα, γωνία δύο διανυσµάτων να βρίσκει και να δικαιολογεί την ισότητα δύο διανυσµάτων, γεωµετρικά, αλγεβρικά να αναγνωρίζει τις ισότητες διανυσµάτων ϖου ϖροκύϖτουν αϖό τυχόν ϖαραλληλόγραµµο να αναγνωρίζει και να υϖολογίζει την γωνία δύο διανυσµάτων ιανυσµατικά και µονόµετρα ή βαθµωτά µεγέθη Μεγέθη τα οϖοία ϖροσδιορίζονται αϖό το µέτρο τους και αϖό την αντίστοιχη µονάδα µέτρησης, λέγονται µονόµετρα ή βαθµωτά Τέτοια µεγέθη είναι η µάζα, ο όγκος, η ϖυκνότητα, η θερµοκρασία κτλ, Μεγέθη ϖου για να τα ϖροσδιορίσουµε, εκτός αϖό το µέτρο τους και τη µονάδα µέτρησης, χρειαζόµαστε ακόµα τη διεύθυνση και τη φορά τους, λέγονται διανυσµατικά µεγέθη ή αϖλώς διανύσµατα Τέτοια µεγέθη είναι η δύναµη, η ταχύτητα, η εϖιτάχυνση, η µετατόϖιση, η µαγνητική εϖαγωγή κτλ Το διάνυσµα στη εωµετρία εωµετρικά ορίζουµε σαν διάνυσµα κάθε ϖροσανατολισµένο ευθύγραµµο τµήµα, δηλαδή διάνυσµα είναι το κάθε ευθύγραµµο τµήµα του οϖοίου τα άκρα θεωρούνται διατεταγµένα Το ϖρώτο άκρο λέγεται αρχή ή σηµείο εφαρµογής του διανύσµατος, ενώ το δεύτερο λέγεται ϖέρας του διανύσµατος AB A (αρχή) B (πέρας) Το διάνυσµα µε αρχή το και ϖέρας το συµβολίζεται µε AB και ϖαριστάνεται µε ένα βέλος ϖου ξεκινάει αϖό το και καταλήγει στο Το διάνυσµα µε αρχή το και ϖέρας το συµβολίζεται µε BA και ϖαριστάνεται µε ένα βέλος ϖου ξεκινάει αϖό το και καταλήγει στο Πρόσεξε ότι αν A B τότε AB BA ν η αρχή και το ϖέρας ενός διανύσµατος συµϖίϖτουν, τότε το διάνυσµα λέγεται µηδενικό διάνυσµα Έτσι, για ϖαράδειγµα, το διάνυσµα AA είναι µηδενικό διάνυσµα, το οϖοίο µϖορούµε να το συµβολίσουµε και µε 0 1 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
2 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος Πρόσεξε ότι αν AB 0 τότε τα άκρα ταυτίζονται οϖότε A B και αντιστρόφως ια το συµβολισµό των διανυσµάτων χρησιµοϖοιούµε ϖολλές φορές τα µικρά γράµµατα του ελληνικού ή του λατινικού αλφάβητου εϖιγραµµισµένα µε βέλος για ϖαράδειγµα, α, β,, u, v, Μέτρο διανύσµατος Η αϖόσταση των άκρων ενός διανύσµατος AB, δηλαδή το µήκος του ευθύγραµµου τµήµατος, λέγεται µέτρο ή µήκος του διανύσµατος AB και συµβολίζεται µε AB ν AB 0 τότε AB > 0, ενώ 0 0, οϖότε είναι ϖάντα AB 0 Πρόσεξε ότι το µέτρο ενός διανύσµατος είναι ένας µη αρνητικός ϖραγµατικός αριθµός! Πρόσεξε Μην ταυτίζεις ϖοτέ το διάνυσµα µε το µέτρο του! Πρόσεξε ότι AB BA Το µοναδιαίο διάνυσµα ν το διάνυσµα AB έχει µέτρο 1, δηλαδή αν ισχύει ότι AB 1, τότε λέγεται µοναδιαίο διάνυσµα Η διεύθυνση και η φορά (εγκυκλοϖαιδικά) ν έχουµε µια ευθεία ε, τότε το σύνολο όλων των ευθειών ϖου είναι ϖαράλληλες σ' αυτή λέµε ότι ορίζουν µια διεύθυνση Η διεύθυνση αυτή είναι ορισµένη, αν δοθεί µια οϖοιαδήϖοτε αϖό τις ϖαράλληλες ευθείες η οϖοία λέγεται και αντιϖρόσωϖος της διεύθυνσης Σε καθεµία αϖό τις ευθείες ϖου έχουν την ίδια διεύθυνση διακρίνουµε δύο φορές Η µια θεωρείται αυθαίρετα ως η θετική φορά οϖότε, η άλλη θα θεωρείται ως η αρνητική ιεύθυνση και φορέας διανύσµατος Ως διεύθυνση ενός διανύσµατος ορίζουµε τη διεύθυνση της ευθείας στην οϖοία βρίσκεται το διάνυσµα A B ε 2 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
3 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος Η ευθεία ϖάνω στην οϖοία βρίσκεται ένα µη µηδενικό διάνυσµα AB λέγεται φορέας του AB Ως φορέα ενός µηδενικού διανύσµατος AA 0 µϖορούµε να θεωρούµε οϖοιαδήϖοτε αϖό τις ευθείες ϖου διέρχονται αϖό το AA ιάνυσµα ϖαράλληλο ϖρος ευθεία ν ο φορέας ενός διανύσµατος AB είναι ϖαράλληλος ή συµϖίϖτει µε µια ευθεία ε, τότε λέµε ότι το AB είναι ϖαράλληλο ϖρος τη ε και γράφουµε AB// ε Παράλληλα ή συγγραµµικά διανύσµατα ύο µη µηδενικά διανύσµατα AB και, ϖου έχουν τον ίδιο φορέα ή ϖαράλληλους φορείς, λέγονται ϖαράλληλα ή συγγραµµικά διανύσµατα Στην ϖερίϖτωση αυτή λέµε ότι τα AB και έχουν ίδια διεύθυνση και γράφουµε AB// ιανύσµατα οµόρροϖα και αντίρροϖα Τα συγγραµµικά διανύσµατα διακρίνονται σε οµόρροϖα και αντίρροϖα Συγκεκριµένα: ύο µη µηδενικά διανύσµατα AB και λέγονται οµόρροϖα: α) όταν έχουν ϖαράλληλους φορείς και βρίσκονται στο ίδιο ηµιεϖίϖεδο ως ϖρος την ευθεία ϖου ενώνει τις αρχές τους ή β) όταν έχουν τον ίδιο φορέα και µία αϖό τις ηµιευθείες και ϖεριέχει την άλλη Στην ϖερίϖτωση αυτή λέµε ότι τα AB και έχουν την ίδια κατεύθυνση (ίδια διεύθυνση και ίδια φορά) και γράφουµε AB 3 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
4 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος ύο µη µηδενικά διανύσµατα AB και λέγονται αντίρροϖα, όταν είναι συγγραµµικά και δεν είναι οµόρροϖα Στην ϖερίϖτωση αυτή λέµε ότι τα διανύσµατα AB και έχουν αντίθετη κατεύθυνση (ίδια διεύθυνση και αντίθετη φορά) και γράφουµε AB Πρόσεξε ότι αναγκαία συνθήκη για να είναι δυο διανύσµατα AB και είτε οµόρροϖα είτε αντίρροϖα είναι να είναι συγγραµµικά! ν δεν είναι συγγραµµικά τότε δεν έχει νόηµα να µιλάµε για οµόρροϖα ή αντίρροϖα διανύσµατα! Ίσα διανύσµατα ύο µη µηδενικά διανύσµατα λέγονται ίσα όταν έχουν την ίδια κατεύθυνση και ίσα µέτρα ια να B δηλώσουµε ότι δύο διανύσµατα AB και είναι ίσα, γράφουµε AB Εϖοµένως ισχύει: AB AB και AB A Πρόσεξε ότι τα µηδενικά διανύσµατα θεωρούνται ίσα µεταξύ τους Πρόσεξε ότι αϖό τον ορισµό της ισότητας διανυσµάτων γίνεται φανερό ότι ένα διάνυσµα µϖορεί να ϖαρασταθεί µε ένα ευθύγραµµο τµήµα το οϖοίο έχει ορισµένο µήκος, διεύθυνση και φορά αλλά όχι συγκεκριµένη θέση στο χώρο Ιδιότητες της ισότητας στα διανύσµατα (εγκυκλοϖαιδικά) ια την ισότητα στο σύνολο των διανυσµάτων ισχύουν οι σχέσεις: 4 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
5 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος α AB (ανακλαστική) β ν AB γ ν AB τότε και και (συµµετρική) ΕΖ τότε και AB ΕΖ (µεταβατική) Σηµείωση: Μια σχέση ϖου είναι ανακλαστική, συµµετρική και µεταβατική λέγεται σχέση ισοδυναµίας, οϖότε η ισότητα στο σύνολο των διανυσµάτων (αλλά και γενικά) είναι σχέση ισοδυναµίας Προτάσεις Εύκολα αϖοδεικνύεται ότι: ν AB B, τότε A, B και ν Μ είναι το µέσον του, τότε AM MB και αντιστρόφως Μ ντίθετα διανύσµατα ύο διανύσµατα λέγονται αντίθετα, όταν έχουν αντίθετη κατεύθυνση και ίσα µέτρα B ια να δηλώσουµε ότι δύο διανύσµατα AB και είναι αντίθετα, γράφουµε AB ή A AB Είναι φανερό ότι AB Ειδικότερα, έχουµε Πρόσεξε ότι τα αντίθετα διανύσµατα έχουν ίσα µέτρα, δηλαδή AB AB BA και ίδια διεύθυνση, δηλαδή είναι συγγραµµικά, οϖότε AB// // αλλά είναι αντίρροϖα ωνία δύο διανυσµάτων διανύσµατα ορθογώνια ή κάθετα 5 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
6 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος Έστω δύο µη µηδενικά διανύσµατα α και β Με αρχή ένα σηµείο Ο ϖαίρνουµε τα διανύσµατα OA α και OB β β Ο θ Ο a Ο a a 6 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης β Την κυρτή γωνία AOB, ϖου ορίζουν οι ηµιευθείες Ο και Ο, την ονοµάζουµε γωνία των διανυσµάτων α και β και τη συµβολίζουµε µε ( α, β ) ή ( β, α) ή ακόµα, αν δεν ϖροκαλείται σύγχυση, µε ένα µικρό γράµµα, για ϖαράδειγµα θ ϖοδεικνύεται ότι η γωνία των α και β είναι ανεξάρτητη αϖό την εϖιλογή 0 0 του σηµείου Ο Είναι φανερό εϖίσης ότι 0 θ 180 ή σε ακτίνια 0 και ειδικότερα: θ 0, αν α β θπ, αν α β π ν θ, τότε λέµε ότι τα διανύσµατα α και β είναι 2 ορθογώνια ή κάθετα και γράφουµε α β Πρόσεξε ότι αν ένα αϖό τα διανύσµατα α, β β θ π είναι το µηδενικό διάνυσµα, τότε ως γωνία των α και β µϖορούµε να θεωρήσουµε οϖοιαδήϖοτε γωνία θ µε 0 θ π Έτσι, µϖορούµε να θεωρήσουµε ότι το µηδενικό διάνυσµα, 0, είναι οµόρροϖο ή αντίρροϖο ή ακόµη και κάθετο σε κάθε άλλο διάνυσµα Έλεγχος γνώσεων! ενικές ερωτήσεις 1 Τι είναι µονόµετρο και τι διανυσµατικό µέγεθος; 2 Τι καλείται διάνυσµα στη εωµετρία; Ο α β
7 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος 3 Ποιο διάνυσµα λέγεται µηδενικό; 4 Τι είναι µέτρο ενός διανύσµατος; 5 Ποιο διάνυσµα καλείται µοναδιαίο; 6 Τι καλείται φορέας ενός διανύσµατος; 7 Ποια διανύσµατα καλούνται συγγραµµικά; 8 Ποια διανύσµατα καλούνται οµόρροϖα; 9 Ποια διανύσµατα καλούνται αντίρροϖα; 10 Πότε δύο διανύσµατα καλούνται ίσα; 11 Πότε δύο διανύσµατα καλούνται αντίθετα; 12 Πως ορίζεται η γωνία δύο διανυσµάτων; 13 Πότε δύο διανύσµατα καλούνται κάθετα ή ορθογώνια;! Ερωτήσεις κρίσεως 1 Το διάνυσµα AA είναι: α) µηδενικό; β) µοναδιαίο; γ) έχει µέτρο 1; δ) έχει µέτρο 0 2 Το µηδενικό διάνυσµα: α) δεν έχει φορέα, β) έχει φορέα την οϖοιαδήϖοτε ευθεία, γ) έχει φορέα την οϖοιαδήϖοτε ευθεία ϖου διέρχεται αϖό το σηµείο ϖου καθορίζουν τα ταυτιζόµενα άκρα του 3 Το µέτρο ενός διανύσµατος είναι: α) αρνητικός αριθµός, β) θετικός αριθµός, γ) αριθµός µη αρνητικός, δ) οϖοιοσδήϖοτε αριθµός 4 ν AB 1 και 1, τότε: α), β), γ), δ),, µοναδιαία διανύσµατα 5 ν AB τότε: α), β), γ) έχουν ίδια διεύθυνση, δ) έχουν ίδια διεύθυνση και αντίθετη φορά 6 ν AB, τότε: α), β) και, γ) A, δ) AB 7 ν α, θ, τότε: o α) 0 θ 180 ο o, β) 0 θ 360 ο o, γ) 180 θ 180 ο o, δ) 0 θ 90 ο 8 ν τότε: α) α, o 360, β) α, o 90, γ) α, o 180, δ) α, o 0 9 ν τότε: α) α, o 360, β) α, o 90, γ) α, o 180, δ) α, o 0 10 ν α, θ, τότε: α) α, - β, α, β) α, β, α 7 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
8 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος Μέθοδοι και τεχνικές για την εϖίλυση των ασκήσεων 1 ν µας ζητούν να αϖοδείξουµε ότι τα διανύσµατα AB και είναι ίσα θα εργαζόµαστε ως εξής: Θα δείχνουµε ότι τα διανύσµατα αυτά είναι οµόρροϖα και έχουν ίσα µέτρα ή θα δείχνουµε ότι τα ευθύγραµµα τµήµατα και έχουν το ίδιο µέσο, δηλαδή τα και διχοτοµούνται 2 Πρόσεξε ότι τα µοναδιαία διανύσµατα δεν είναι ίσα, αλλά αϖλώς έχουν όλα µέτρο ίσο µε 1 3 Πρόσεξε ότι αν AB A τότε και αν AB τότε 4 Πρόσεξε ότι αν AΜ Μ τότε το Μ είναι το µέσο του ευθυγράµµου τµήµατος, εφόσον 5 Πρόσεξε ότι αν AΜ Μ και τα σηµεία,, Μ δεν είναι συνευθειακά, τότε το Μ βρίσκεται ϖάνω στη µεσοκάθετη του ευθυγράµµου τµήµατος 6 Πρόσεξε ότι αν ΟΜ ρ, ρ>0, όϖου Ο ένα σταθερό σηµείο και Μ ένα τυχαίο (µεταβλητό) σηµείο, τότε το σηµείο Μ βρίσκεται ϖάνω σε έναν κύκλο ϖου έχει κέντρο το σηµείο Ο και ακτίνα ίση µε ρ Θέµατα ϖρος εµϖέδωση 1 ίνεται ένα τετράγωνο Κυκλώσετε το Σ (σωστό) ή το Λ (λάθος) στις ϖαρακάτω ισότητες i AB ii A iii A 2 ίνεται ένα τετράγωνο Να κυκλώσετε το Σ (σωστό) ή το Λ (λάθος) στις ϖαρακάτω ισότητες i AB ii A π 4 π, 4 iii (, ) iv ( ) 3 Να σηµειώσετε τη γωνία ( α, β) στις ακόλουθες ϖεριϖτώσεις 8 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
9 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος α β α β (1) (2) α β α β (3) (4) α β (5) 4 Θεωρούµε το ϖαραλληλόγραµµο Στις ϖροεκτάσεις των ϖλευρών του και ϖαίρνουµε αντίστοιχα τα τµήµατα ΕΖ Ποιοι αϖό τους ϖαρακάτω ισχυρισµούς είναι σωστοί και ϖοιοι λανθασµένοι Κυκλώσετε το Σ (σωστό) ή το Λ (λάθος) i Ε Ζ ii Ζ Ε iii Ε Ζ iv v vi vii Ζ Ε viii ΕΖ ix Ζ, Ε, Ζ Ε 9 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
10 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος x Ζ, π, Σ Λ 5 Ποιοι αϖό τους ϖαρακάτω ισχυρισµούς είναι σωστοί και ϖοιοι λανθασµένοι Κυκλώσετε το Σ (σωστό) ή το Λ (λάθος) i ια κάθε διάνυσµα α ισχύει α α ii ν α β και β γ τότε α γ iii ν α β τότε α β iv Ισχύει ότι α ( α) v ν α β και β γ τότε α γ 6 Ποιοι αϖό τους ϖαρακάτω ισχυρισµούς είναι σωστοί και ϖοιοι λανθασµένοι Κυκλώσετε το Σ (σωστό) ή το Λ (λάθος) i ν AB A, τότε ii ν α β και β γ τότε α γ iii ια τα µη µηδενικά διανύσµατα α και β ισχύει ότι α, β α, iv ια τα µη µηδενικά διανύσµατα α και β ισχύει ότι α, β π α, σκήσεις 1 Έστω Μ το µέσο της ϖλευράς ενός τριγώνου Με αρχή το Μ γράφουµε τα διανύσµατα M και ME BA Να αϖοδειχτεί ότι το είναι το µέσο του Ε Λύση Εϖειδή Μ, είναι Μ (1) Όµως Μ µέσο του Άρα, ΜΜ (2) Λόγω των (1) και (2), έχουµε Μ, οϖότε: Μ (3) Εϖειδή εϖιϖλέον ΜΕ, έχουµε ΕΜ (4) Έτσι, αϖό τις σχέσεις (3) και (4) έχουµε Ε, οϖότε είναι το µέσο του Ε 2 Έστω ισόϖλευρο τρίγωνο και ονοµάζουµε Κ,Λ,Μ τα µέσα των,, αντίστοιχα Μ Ε 10 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
11 ΙΝΥΣΜΤΙΚΟΟΙΣΜΟΣ 11 Η Έννοια του ιανύσματος α) Να εξετάσετε αν τα διανύσµατα Κ,ΜΛ είναι ίσα ή αντίθετα οµοίως και για τα Μ,ΚΛ β) Να υϖολογιστούν οι ΚΛ, ΚΜ, ΛΜ, Λ, Κ,Κ 3 Σε τρίγωνο γράφουµε τα διανύσµατα και Ε είξετε ότι το σηµείο είναι το µέσο του ευθυγράµµου τµήµατος Ε 4 Πάνω στις ϖλευρές και ενός ϖαραλληλογράµµου ϖαίρνουµε τα σηµεία Μ και Ν αντίστοιχα και γράφουµε τα διανύσµατα Ε AΜ και ΖΝ Να αϖοδείξετε ότι το τετράϖλευρο ΖΜΕΝ είναι ϖαραλληλόγραµµο 5 Εξωτερικά του ϖαραλληλογράµµου κατασκευάζουµε τα τετράγωνα ΕΖ και ΘΗ Να αϖοδείξετε ότι: i ΖΗΕΘ, ΗΘ, Ζ Η ii Τα ευθύγραµµα τµήµατα και ΗΕ έχουν κοινό µέσο iii Το κέντρο Ο του είναι κοινό µέσο των ΕΗ και ΖΘ 6 ίνεται τρίγωνο και έστω Μ µέσο της ϖλευράς του ράφουµε τα διανύσµατα Μ και ΜΕ Να αϖοδείξετε ότι τα σηµεία,,ε είναι συνευθειακά και ότι το είναι το µέσο του Ε 7 Έστω Μ και Ν τα µέσα των ϖλευρών και του τριγώνου καθώς και τα διανύσµατα Μ και ΝΕ Να αϖοδείξετε ότι τα ευθύγραµµα τµήµατα Μ, ΝΕ, έχουν κοινό µέσο 8 ίνεται ένα τρίγωνο Να βρεθούν τα σηµεία Χ του εϖιϖέδου έτσι ώστε τα διανύσµατα AB και AΧ να έχουν: α) την ίδια κατεύθυνση, β) την ίδια διεύθυνση και το ίδιο µέτρο γ) την ίδια διεύθυνση, δ) το ίδιο µήκος 11 Θωμάς Ραΐκόφτσαλης ασίλης Μαυροφρύδης
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
Διαβάστε περισσότερα1 ΔΙΑΝΥΣΜΑΤΑ. Εισαγωγή
1 ΙΝΥΣΜΤ Εισαγωγή Το διάνυσμα είναι ένα χαρακτηριστικό παράδειγμα έννοιας που αναπτύχθηκε μέσα από τη στενή αλληλεπίδραση Μαθηματικών και Φυσικής. κανόνας του παραλληλόγραμμου, σύμφωνα με τον οποίο το
Διαβάστε περισσότεραΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι
Διαβάστε περισσότερα2.5 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
1 5 ΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΩΡΙ αθµωτά ή µονόµετρα µεγέθη : ίναι τα µεγέθη τα οποία προσδιορίζονται πλήρως αν δοθεί µόνο το µέτρο τους και η µονάδα µέτρησης πχ η θερµοκρασία, η µάζα, το µήκος κλπ ιανυσµατικά
Διαβάστε περισσότεραΜαθηματικά. Β'Λυκείου. Προσανατολισµού Θετικών Σπουδών. Μαρίνος Παπαδόπουλος
Μαθηματικά 'Λυκείου Προσανατολισµού Θετικών Σπουδών Μαρίνος Παπαδόπουλος ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΟΣ 5 Σελ. ΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΙΣΜΟΣ Ενότητα 1 Η έννοια του διανύσµατος 7 Πράξεις διανυσµάτων 11 Ενότητα 2 Πολλαπλασιασµός
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ. Να σηµειώσετε το σωστό (Σ) ή το λάθος (Λ) στους παρακάτω ισχυρισµούς:. Αν ΑΒ + ΒΓ = ΑΓ, τότε τα σηµεία Α, Β, Γ είναι συνευθειακά.. Αν α = β, τότε
Διαβάστε περισσότεραΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΘΗΜΤΙΚ ΠΡΟΣΝΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ ΙΝΥΣΜΤ Φροντιστήριο Μ.Ε. "ΙΧΜΗ" 2 ΕΙΣΩΗ Ευκλείδεια εωμετρία (σημείο, ευθεία, επίπεδο, χώρος) Μονόμετρα μεγέθη (αρκεί μόνο το μέτρο τους) ιανυσματικά μεγέθη (θέλουμε επιπλέον
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΣΑΝΑΤΛΙΣΜΥ Β ΛΥΚΕΙΥ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΥ Να δώσετε τους ορισμούς: διάνυσμα, μηδενικό διάνυσμα, μέτρο διανύσματος, μοναδιαίο διάνυσμα Διάνυσμα AB ονομάζεται ένα ευθύγραμμο
Διαβάστε περισσότεραΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ Όπως είναι γνωστό από τη φυσική, τα διάφορα µεγέθη διακρίνονται σε βαθµωτά και διανυσµατικά. αθµωτά είναι τα µεγέθη τα οποία χαρακτηρίζονται µόνο από το µέτρο τους. Τέτοια µεγέθη είναι
Διαβάστε περισσότεραΜαθηματικά Θετικής και Τεχνολογικής κατεύθυνσης Διανύσματα
Μαθηματικά Θετικής και Τεχνολογικής κατεύθυνσης Διανύσματα Περιεχόμενα Η Εννοια του διανύσματος Ομόρροπα-Αντίρροπα Διανύσματα Ισα Αντίθετα διανύσματα Πρόσθεση και Αφαίρεση Διανυσμάτων Διάνυσμα θέσεως Συντεταγμένες
Διαβάστε περισσότερα1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ
4 13 ΠΛΛΠΛΣΙΣΣ ΡΙΘΥ ΙΝΥΣ ρισμός Πολλαπλασιασμού ριθμού με ιάνυσμα Έστω λ ένας πραγματικός αριθμός με λ 0 και α ένα μη μηδενικό διάνυσμα νομάζουμε γινόμενο του λ με το α και το συμολίζουμε με λ α ή λ α
Διαβάστε περισσότεραΚεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς
Κεφάλαιο 2: Διανυσματικός λογισμός συστήματα αναφοράς 2.1 Η έννοια του διανύσματος Ο τρόπος που παριστάνομε τα διανυσματικά μεγέθη είναι με τη μαθηματική έννοια του διανύσματος. Διάνυσμα δεν είναι τίποτε
Διαβάστε περισσότεραιάνυσµα ονοµάζεται το µαθηµατικό µέγεθος που περιγράφεται από µιατριάδαστοιχείων: το
Φρ. Κουτελιέρης Επίκουρος Καθηγητής Παν/µίου Ιωαννίνων ΜΑΘΗΜΑΤΙΚΑ Ι Μαθηµατικά Ι Ακαδ. Έτος 2008-9 1/44 1. Ορισµοί 2. Είδη διανυσµάτων 3. Πράξεις διανυσµάτων 4. Εσωτερικό, εξωτερικό και µικτό γινόµενο
Διαβάστε περισσότερακαι ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και
ΣΤΡΟΦΗ ΙΝΥΣΜΤΟΣ Νίκος Ιωσηφίδης, Μαθηµατικός Φροντιστής, έροια e-mail: iossifid@yahoo.gr Στο άρθρο που ακολουθεί, όλα τα αναφερόµενα σηµεία θα θεωρούµε ότι βρίσκονται στο ίδιο επίπεδο. Ορισµοί: 1) Ονοµάζουµε
Διαβάστε περισσότεραΜαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης
Μαθηματικά Προσανατολισμού Β Λυκείου Στάμου Γιάννης Αναλυτική θεωρία Λυμένα παραδείγματα Ερωτήσεις κατανόησης Ασκήσεις Επαναληπτικά διαγωνίσματα ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο ο : Διανύσματα Ενότητα I: Η έννοια
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Διαβάστε περισσότεραΕισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότεραΠαρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ. Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση
ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Θετική και Τεχνολογική Κατεύθυνση ΣΤΟΙΧΕΙΑ ΑΡΧΙΚΗΣ ΕΚ ΟΣΗΣ ΣΥΓΓΡΑΦΕΙΣ: Αδαμόπουλος Λεωνίδας Βισκαδουράκης Βασίλειος Γαβαλάς Δημήτριος Πολύζος Γεώργιος Σβέρκος Ανδρέας
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
1ο κεφάλαιο: Διανύσματα Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος
Διαβάστε περισσότεραΑγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :
Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για τα Μαθηματικά Θετικού Προσανατολισμού της Β Λυκείου, που είναι ένα από τα σημαντικότερα μαθήματα, καθώς περιέχει χρήσιμες γνώσεις για
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ
2 ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΔΙΑΝΥΣΜΑΤΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΠΙΜΕΛΕΙΑ ΠΑΥΛΟΣ ΧΑΛΑΤΖΙΑΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟ ΔΙΑΝΥΣΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Διάνυσμα λέγεται ένα προσανατολισμένο ευθύγραμμο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε
Διαβάστε περισσότερα1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.
1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1. Διανύσματα Ισότητα διανυσμάτων Πρόσθεση διανυσμάτων Ερωτήσεις 1. Τ ι ονομάζουμε διάνυσμα;. Τι λέμε μέτρο ενός διανύσματος ;. Τι λέμε μηδενικό διάνυσμα; 4. Τι λέμε φορέα διανύσματος;
Διαβάστε περισσότερα2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ - ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Περιέχει: Όλη την ύλη της Β Λυκείου, σύµφωνα µε το αναλυτικό πρόγραµµα του Υπουργείου Παιδείας σε (3) ΒΙΒΛΙΟµαθήµατα που το καθένα περιέχει: Α. Απαραίτητες
Διαβάστε περισσότερα3 η δεκάδα θεµάτων επανάληψης
3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο
Διαβάστε περισσότερα1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ
34 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι ώστε το διάνυσμα OI να έχει μέτρο και να βρίσκεται στην ημιευθεία O Λέμε τότε ότι έχουμε έναν άξονα με αρχή
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης
0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β
Διαβάστε περισσότεραAB. Αν το διάνυσμα AB έχει μέτρο 1, τότε λέγεται
ΔΙΑΝΥΣΜΑΤΑ Στη Γεωμετρία το διάνυσμα ορίζεται ως ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ως ένα ευθύγραμμο τμήμα του οποίου τα άκρα θεωρούνται διατεταγμένα Αν η αρχή και το πέρας ενός διανύσματος
Διαβάστε περισσότεραΑσκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις 5 ου Κεφαλαίου (1) (2) (1)
σκήσεις σχ. ιβλίου σελίδας 6 7 ενικές ασκήσεις 5 ου Κεφαλαίου. ίνεται τρίγωνο (β γ) µε Â = 60 ο, τα ύψη του, και τα µέσα Μ, Ν των, αντίστοιχα. Να αποδείξετε ότι Μ = Ν. Τρ. ορθογώνιο µε Â = 60 ο M N ˆB
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; Το άθροισμα ενός φυσικού αριθμού με το 0 ισούται με τον ίδιο αριθμό. α+0=α Αντιμεταθετική ιδιότητα. Με βάση την οποία
Διαβάστε περισσότεραΣτοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος
3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες
Διαβάστε περισσότεραΑσκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)
σκήσεις σχ. ιβλίου σελίδας 5 5 ενικές ασκήσεις. ανονικό εξάγωνο ΕΖ είναι εγγεγραµµένο σε κύκλο (Ο, ) και έστω, Λ,, Ν, Ρ, Σ τα µέσα των πλευρών του. Να αποδείξετε ότι το ΛΝΡΣ είναι κανονικό εξάγωνο µε κέντρο
Διαβάστε περισσότεραΙΑΝΥΣΜΑΤΑ. Σ Λ + α = α
Κεφάλαιο 3ο: ΙΑΝΥΜΑΤΑ Ερωτήσεις του τύπου «ωστό-άθος» 1. * Αν α =, τότε α =. 2. * Αν α, µη µηδενικά διανύσµατα και θ η γωνία τους, τότε 0 θ π 3. * Ισχύει α + 0 = 0 + α = α 4. * Κάθε διάνυσµα µπορεί να
Διαβάστε περισσότεραΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ
ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΙΑΝΥΣΜΑΤΟΣ Άξονας Έστω η ευθεία x x (σχ. 21) και τα σηµεία Ο, Ι πάνω σ αυτή, ώστε ΟΙ= i όπου i το µοναδιαίο διάνυσµα, δηλαδή ένα διάνυσµα που θεωρούµε ότι η φορά του είναι θετική και το µέτρο
Διαβάστε περισσότεραΑσκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Αντιστοιχίστε κάθε µέγεθος της στήλης Α µε την τιµή του στην στήλη Β
1 11.6 11.8 σκήσεις σχολικού βιβλίου σελίδας 50 51 Ερωτήσεις Κατανόησης 1. ντιστοιχίστε κάθε µέγεθος της στήλης µε την τιµή του στην στήλη Στήλη Στήλη Εµβαδόν κυκλικού δίσκου ακτίνας Εµβαδόν κυκλικού τοµέα
Διαβάστε περισσότεραΜαθηματικά προσανατολισμού Β Λυκείου
Μαθηματικά προσανατολισμού Β Λυκείου Συντεταγμένες Διανύσματος wwwaskisopolisgr wwwaskisopolisgr Συντεταγμένες στο επίπεδο Άξονας Πάνω σε μια ευθεία επιλέγουμε δύο σημεία Ο και Ι, έτσι το διάνυσμα i OI
Διαβάστε περισσότερα6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
Διαβάστε περισσότεραΕρωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΝΥΣΜΑΤΑ Επιμέλεια: Άλκης Τζελέπης ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΝΝΟΙΑ - ΠΡΑΞΕΙΣ. Αν τα διανύσματα,, σχηματίζουν τρίγωνο, να αποδείξετε ότι το ίδιο συμβαίνει
Διαβάστε περισσότερα1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ
ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ορισμός : αν λ πραγματικός αριθμός με 0 και μη μηδενικό διάνυσμα τότε σαν γινόμενο του λ με το ορίζουμε ένα διάνυσμα
Διαβάστε περισσότεραΘωμάς Ραϊκόφτσαλης 01
0 Α. ΕΙΑΓΩΓΗ ΘΕΜΑ Α Γ_Μ_Μ_ΑΘΡ_ΕΙ_Β_ΕΚ_9 Έστω ο μιγαδικός αριθμός i,,. Τι καλούμε:. Πραγματικό μέρος του.. Φανταστικό μέρος του.. υζυγή του. 4. Εικόνα του μιγαδικού στο μιγαδικό επίπεδο. 5. Διανυσματική
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότερα5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότερα3.4 Ι ΙΟΤΗΤΕΣ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
1 3.4 ΙΙΤΗΤΕΣ ΠΡΛΛΗΛΡΜΜΥ ΡΘΩΝΙΥ ΡΜΥ ΤΕΤΡΩΝΥ ΤΡΠΕΖΙΥ ΙΣΣΚΕΛΥΣ ΤΡΠΕΖΙΥ ΘΕΩΡΙ 1. Ιδιότητες παραλληλογράµµου Το σηµείο τοµής των διαγωνίων του είναι κέντρο συµµετρίας (Το κέντρο συµµετρίας) ι διαγώνιες διχοτοµούνται,
Διαβάστε περισσότερα2.6 ΑΘΡΟΙΣΜΑ ΚΑΙ ΔΙΑΦΟΡΑ ΔΙΑΝΥΣΜΑΤΩΝ
ΜΕΡΟΣ 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ 293 2.6 ΘΡΟΙΣΜ ΚΙ ΙΦΟΡ ΙΝΥΣΜΤΩΝ Άθροισμα διανυσμάτων Το άθροισμα διανυσμάτων ρίσκεται με δύο τρόπους. Η μέθοδος του πολυγώνου Μεταφέρουμε τα διανύσµατα που χρειάζεται
Διαβάστε περισσότεραΕνότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 1 Εισαγωγη : Πραξεις επι Συνολων και Σωµατα Αριθµων
Διαβάστε περισσότεραΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
Διαβάστε περισσότεραΓεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Διαβάστε περισσότεραΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 1 ο ΚΕΦΑΛΑΙΟ
Ο ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΟΡΕΣΤΙΑΔΑΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΩΝ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΚΕΦΑΛΑΙΟ Διάνυσμα ορίζεται ένα ευθύγραμμο τμήμα στο οποίο έχει ορισθεί ποια είναι η αρχή, ή σημείο εφαρμογής του
Διαβάστε περισσότερα1.5. Ασκήσεις σχολικού βιβλίου σελίδας A Oµάδας ( )
.5 Ασκήσεις σχολικού ιλίου σελίδας 47 50 A Oµάδας. Αν α (, 3) και (, 5), τότε Να ρείτε τα εσωτερικά γινόµενα α, (α ).(-3 ) και (α ). (3α + ) Να ρείτε τη σχέση που συνδέει τους κ, λ R, ώστε το εσωτερικό
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Διαβάστε περισσότερα1.3 ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ
. ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΙΑΝΥΣ ΘΕΩΡΙΑ. Ορισµός Γινόµενο πραγµατικού αριθµού λ µε διάνυσµα α 0 λέγεται νέο διάνυσµα λα, που έχει µέτρο λα = λ α και είναι οµόρροπο του α όταν λ > 0 αντίρροπο του α όταν
Διαβάστε περισσότερα2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Πρόλογος... 7 Περιεχόµενα... 9 Κεφάλαιο ο (του σχολικού βιβλίου) Μάθηµα 1 ο : Βασικά γεωµετρικά σχήµατα... 11 Μάθηµα ο : Γωνίες - κύκλος... 3 Κεφάλαιο 3 ο Μάθηµα 3
Διαβάστε περισσότερα11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο
Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου
Διαβάστε περισσότερα1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Διαβάστε περισσότεραΤο τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.
5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και
Διαβάστε περισσότεραΟνοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)
3. Η ΠΑΡΑΒΟΛΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ). Εξίσωση παραβολής p, όπου
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ. Επιμέλεια Αυγερινός Βασίλης
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Επιμέλεια Αυγερινός Βασίλης ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ο ΔΙΑΝΥΣΜΑΤΑ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΕ ΑΠΑΝΤΗΣΕΙΣ, ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΚΑΙ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ ΣΕΛΙΔΕΣ 3-36 ΜΕΡΟΣ ο ΕΥΘΕΙΕΣ ΕΡΩΤΗΣΕΙΣ
Διαβάστε περισσότεραΦυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3
Φυλλάδιο 1 - Σημεία Προσοχής στις Παραγράφους 1.1, 1.2 και 1.3 1. Σπάμε ένα Διάνυσμα Έστω ότι έχουμε ένα διάνυσμα. Τότε αυτό μπορούμε να το σπάσουμε σε δύο (ή περισσότερα), παρεμβάλλοντας ανάμεσα στα γράμματα
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΕΡΙΕΧΟΜΕΝΑ
: Έκδοση 016-1 Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΠΕΡΙΕΧΟΜΕΝΑ ΣΕΛΙ Α ΚΕΦΑΛΑΙΟ 1 - ΙΑΝΥΣΜΑΤΑ 1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 Μέτρο διανύσµατος 1 ιεύθυνση διανύσµατος Φορά διανύσµατος Ίσα διανύσµατα 3 Αντίθετα
Διαβάστε περισσότερα1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε εσωτερικό γινόµενο των διανυσµάτων α, και συµολίζουµε µε α τον πραγµατικό αριθµό : α = ( α συν α ) αν α και α = αν α = ή =. Ιδιότητες α = α Αν α τότε Αν
Διαβάστε περισσότερα2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1Ο : ΔΙΑΝΥΣΜΑΤΑ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Διάνυσμα Θέσης ενός σημείου Αν θεωρήσουμε ένα οποιοδήποτε σημείο Ο του επιπέδου ως σημείο αναφοράς (ακόμα
Διαβάστε περισσότεραΑν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο(0,0) τότε έχει εξίσωση της μορφής : x y και αντίστροφα. Ειδικότερα Ο κύκλος με κέντρο Ο(0,0)
. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν γνωρίζουμε το κέντρο του, και την ακτίνα του ρ. Αν ο κύκλος έχει κέντρο την αρχή των αξόνων Ο, τότε έχει εξίσωση της μορφής : και αντίστροφα. Ειδικότερα
Διαβάστε περισσότεραΕπαναληπτικά συνδυαστικα θέµατα
Επαναληπτικά συνδυαστικα θέµατα A. Αν α, β i. αβ Θέµα ο µη µηδενικά διανύσµατα και ισχύει α+ β + α β =, τότε να δείξετε ότι: και ii. Αν α β τότε ισχύει α + β =. B. Να βρεθούν οι τιµές του λ ώστε η εξίσωση
Διαβάστε περισσότεραΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
2ο κεφάλαιο: Ευθείες Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Μαθηµατικά Προσανατολισµού Β Λυκείου Αποστόλου Γιώργος Μαθηµατικός Copyright 2015 Αποστόλου Γιώργος Αποστόλου
Διαβάστε περισσότεραΕρωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΠΡΟΛΟΓΟΣ Αγαπητοί συνάδελφοι, Φίλοι µαθητές και µαθήτριες Η καινούργια µας σειρά βιβλίων µε τον τίτλο ΒΙΒΛΙΟµαθήµατα δηµιουργήθηκε από µια ιδέα µας για το περιοδικό
Διαβάστε περισσότερα1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Διαβάστε περισσότεραΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
Διαβάστε περισσότεραΣχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2
A. ΠΡΟΤΑΣΕΙΣ Στα Μαθηµατικά χρησιµοποιούµε προτάσεις οι οποίες µπορούν να χαρακτηριστούν ως αληθείς (α) ή ψευδείς (ψ). Τις προτάσεις συµβολίζουµε µε τα τελευταία µικρά γράµµατα του Λατινικού αλφαβήτου:
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ. Επανάληψη Επιμέλεια Αυγερινός Βασίλης. Επιμέλεια : Αυγερινός Βασίλης
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Επανάληψη Επιμέλεια Αυγερινός Βασίλης ΚΕΦΑΛΑΙΟ ο ΔΙΑΝΥΣΜΑΤΑ SOS ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ Θέμα ο Να γράψετε και να αποδείξετε την σχέση της διανυσματικής ακτίνας του μέσου ενός τμήματος
Διαβάστε περισσότερα5 Γενική µορφή εξίσωσης ευθείας
5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.
Διαβάστε περισσότερα1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
Διαβάστε περισσότερα5 η εκάδα θεµάτων επανάληψης
5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7
ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε
Διαβάστε περισσότερα2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΑπέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
Διαβάστε περισσότερα1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ
1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.
Διαβάστε περισσότεραΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑ ΙΑ ΣΗΜΕΙΩΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ 1 Θέµα: Τα διανύσµατα ❶ ❷ ❸ ❹ ❺ Η έννοια του διανύσµατος Πρόσθεση και αφαίρεση διανυσµάτων Πολλαπλασιασµός αριθµού µε διάνυσµα Συντεταγµένες
Διαβάστε περισσότερα10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β
0.5 σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης. ( ) ύο τρίγωνα και έχουν υ β = υ β και =. ( ) β ποιος είναι ο λόγος β : : : 9 : 4 5 4 4 9 Κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε
Διαβάστε περισσότεραΕπαναληπτικά Θέµατα Εξετάσεων
Επαναληπτικά Θέµατα Εξετάσεων Καθηγητές : Νικόλαος Κατσίπης 25 Απριλίου 2014 Στόχος του παρόντος ϕυλλαδίου είναι να αποτελέσει µια αφορµή για επανάληψη πριν τις εξετάσεις. Σας ευχόµαστε καλό διάβασµα και...
Διαβάστε περισσότεραΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Διαβάστε περισσότερα1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι:
Ερωτήσεις ανάπτυξης 1. ** ίνεται τρίγωνο ΑΒΓ. Αν Μ και Ν είναι τα µέσα των πλευρών ΒΓ και ΓΑ να αποδείξετε ότι: α) ΑΜ = 1 2 ( ΑΒ + ΑΓ ) β) ΜΝ = 1 2 ΒΑ 2. ** ίνονται τα διανύσµατα ΑΒ και Α Β. Αν Μ και Μ
Διαβάστε περισσότερα5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :
5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5
Διαβάστε περισσότεραΓενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 140
ενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 40. ίνεται τρίγωνο ορθογώνιο στο. πό τα άκρα, της υποτείνουσας φέρουµε κάθετες x και y στη και προς το ίδιο µέρος της. πό το µέσο Μ της φέρουµε κάθετη στην, που τέµνει
Διαβάστε περισσότεραΑ. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ
8 Παραβολή Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ορισµός Παραβολή είναι ο γεωµετρικός τόπος των σηµείων Μ του επιπέδου τα οποία ισαπέχουν από µια σταθερή ευθεία (δ) που λέγεται διευθετούσα της παραβολής και από
Διαβάστε περισσότερα