Ερωτήσεις ανάπτυξης. 1. Τα σηµεία Β και Γ είναι σηµεία του επιπέδου p, η ΒΓ είναι ευθεία του p. Η ΒΓ τέµνει την ΑΜ στον
|
|
- Κρειος Κασιδιάρης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ερωτήσεις ανάπτυξης 1. Τα σηµεία και είναι σηµεία του επιπέδου, η είναι ευθεία του. Η τέµνει την Μ στον Μ Ν Ν. Το Ν σαν σηµείο της ανήκει στο, άρα και το Μ σαν σηµείο της Ν ανήκει στο. B. Έστω ε µια ευθεία που ορίζεται ε από ένα σηµείο ενός επιπέδου B και από ένα άλλο σηµείο που βρίσκεται έξω από το. Η ε δεν έχει άλλο κοινό σηµείο µε το παρά µόνο το. ιατί αν είχε και άλλο κοινό σηµείο θα ανήκε στο και συνεπώς το θα ήταν σηµείο του Ρ. 3. α) Επειδή και ασύµβατες το σηµείο δεν θα είναι σηµείο της ευθείας. Εποµένως (, ) ορίζουν ένα επίπεδο. β) Είναι = {} γιατί αν υπήρχε και άλλο κοινό σηµείο εκτός από το, η θα ήταν ευθεία του. Τούτο είναι άτοπο, διότι, ασύµβατες. 34
2 4. Οι ευθείες Ο 1 Ο και τέµνονται, άρα ορίζουν ένα επίπεδο. Ο κυκλικός δίσκος (Ο 1, R 1 ) έχει µε το επίπεδο, κοινά τα µη συνευθειακά σηµεία,, Ο 1. Όµοια ο κυκλικός δίσκος (Ο, R ) έχει µε το κοινά Ο 1 Ο τα µη συνευθειακά σηµεία Ο,,. Άρα οι κύκλοι (Ο 1, R 1 ) και (Ο, R ) βρίσκονται πάνω στο ίδιο επίπεδο. 5. α) Επειδή το σηµείο δεν βρίσκεται πάνω στην το ζεύγος (, ) ορίζει επίπεδο. Όµοια και το ζεύγος (, ) ορίζει επίπεδο q. β) Τα επίπεδα αυτά δεν ταυτίζονται, γιατί οι ευθείες και είναι ασύµβατες. Άρα τα επίπεδα και q, επειδή έχουν κοινά τα σηµεία B και, τέµνονται κατά την ευθεία. q 6. α) ν η ευθεία ε 3 έτεµνε την t στο σηµείο Ο, αυτό θα ήταν ε 3 O και σηµείο της. Εποµένως οι και θα περνούσαν από το Ο. Τούτο είναι άτοπο, άρα q ε 3 //. Όµοια ε 3 //. β) ν η ε 3 είχε µε το επίπεδο έστω και ένα κοινό σηµείο, αυτό θα ήταν και σηµείο της. Τούτο είναι άτοπο, αφού ε 3 // (βλ. (α) ερώτηµα). 35
3 7. Τα επίπεδα (Κ,, ) και (Κ,, ) έχουν κοινό το σηµείο Κ. Επίσης τα επίπεδα (Κ,, ) και (Κ,, ) τέµνουν το επίπεδο κατά τις µη παράλληλες ευθείες και αντίστοιχα. Έστω Ε το σηµείο τοµής των,. Το Ε είναι διαφο- Κ Ε A ρετικό από το Κ αφού το Ε ανήκει στο. Το Ε είναι κοινό σηµείο των επιπέδων (Κ,, ) και (Κ,, ). Εποµένως η ζητούµενη τοµή των επιπέδων (Κ,, ) και (Κ,, ) είναι η ευθεία ΚΕ. ε 8. Το Κ ως περίκεντρο του τριγώνου, Ο ισαπέχει από τις κορυφές του δηλαδή Κ = Κ = Κ. Έτσι για τα πλάγια τµήµατα Ο, Ο, Ο (Ο τυχόν σηµείο της ε) ισχύει Ο = Ο = Ο λόγω της ισότητας των Κ ορθογωνίων τριγώνων ΟΚ, ΟΚ, ΟΚ. 36
4 9. Έστω ΜΚ = λ. πό το ορθογώνιο τρίγωνο ΜΟΚ έχουµε ΟΜ = Κ λ - α κύκλου. Άρα το Μ είναι σηµείο του λ α (Ο, λ - α ). ντιστρόφως: Έστω Μ σηµείο του κύκλου (Ο, λ - α ). Μ Ο Τότε ΟΜ = λ - α οπότε ΜΚ = λ. Άρα το Μ είναι σηµείο του γεωµετρικού τόπου. Έτσι ο ζητούµενος γεωµετρικός τόπος είναι ο κύκλος (Ο, λ - α ) επί του επιπέδου. 10. α) πό το ορθογώνιο τρίγωνο Ο έχουµε = Ο + Ο ή = R + 6R = 7R A = R 7 β) Επειδή Ο και Ο από το θεώρηµα τριών καθέτων είναι. Έτσι από το ή ορθογώνιο τρίγωνο έχουµε = + ή = R + 7R = 9R ή = 3R Ο R 37
5 Κ Κ 11. α) Επειδή είναι = σύµφωνα µε ΚΟ Κ το θεώρηµα του Θαλή έχουµε ότι // Ο. Κ ΚE β) Όµοια, αφού =, έχουµε ΚΟ ΚB Ε // Ο. γ) Επειδή ΚΟ έχουµε ότι ΚΟ Ο και ΚΟ Ο. Άρα ΚΟ και ΚΟ Ε, αφού // Ο και Ε // Ο, οπότε η ΚΟ είναι κάθετη στο επίπεδο (,, Ε). 1. Επειδή το τρίγωνο είναι ορθογώνιο, Μ µέσο της και ε (,, ) έχουµε ότι Μ = Μ = Μ. ν Κ είναι οποιοδήποτε σηµείο της ε τότε για τα πλάγια προς το επίπεδο (,, ) τµήµατα Κ, Κ, Κ ισχύει Κ = Κ = Κ λόγω της ισότητας των τριγώνων Κ, ΚΜ, ΚΜ. K E Ο ε Κ Μ 38
6 13. Είναι και Ζ. Τότε, σύµφωνα µε το θεώρηµα τριών καθέτων, έχουµε ότι Ζ. Άρα Ζ, Ζ ύψη των τριγώνων και αντίστοιχα. πό το ορθογώνιο τρίγωνο Ζ έχουµε Ζ = Ζ - Ζ = = 36 cm ή Ζ = 6 cm. Εποµένως () () = 1 Ζ = 1 Ζ ή 6 cm 10 cm = 3 5 Ζ 14. α) Είναι x. Επειδή, σύµφωνα µε το θεώρηµα τριών καθέτων, έχουµε x ή. β) Επειδή = 60 άρα = 30 οπότε από το ορθογώνιο τρίγωνο έχουµε ότι = 6 ή = = 3 cm και = - = 36-9 = 7. πό το ορθογώνιο τρίγωνο έχουµε = + = = 17 ή = 17 cm 11,6 cm. 60 ε y x 39
7 15. Έστω Σ το µέσο του και ΜΟ. Τότε κατά το δεύτερο θεώρηµα διαµέσων στο τρίγωνο Μ έχουµε ότι Σ O Μ - Μ = ΣΟ. Έτσι η ισότητα Μ - Μ = λ γράφεται ΣΟ = λ λ ή ΣΟ =. Επειδή τα, είναι δε- M δοµένα το Ο προσδιορίζεται, οπότε το Μ είναι σηµείο του επιπέδου που είναι κάθετο στην στο Ο. λ ντιστρόφως: ια κάθε σηµείο Μ του ισχύει ΣΟ = και λόγω της ισότητας Μ - Μ = ΣΟ προκύπτει ότι Μ - Μ =λ δηλαδή το Μ είναι σηµείο του γεωµετρικού τόπου. Άρα ο ζητούµενος γεωµετρικός τόπος είναι το επίπεδο. 16. Θεωρούµε δύο ασύµβατες ευθείες και και ένα σηµείο της. Στο επίπεδο (, ) φέρνουµε την x //. Το επίπεδο (, Ax) περιέχει την και είναι παράλληλο της, αφού // x. Κάθε άλλο επίπεδο q, που περιέχει την και είναι x παράλληλο της περιέχει και την x, αφού το ανήκει στο q και x //. Άρα το q ταυτίζεται µε το (, Ax) και εποµένως ένα µόνο επίπεδο περιέχει την και είναι παράλληλο της. Όµοια ένα µόνο επίπεδο περιέχει την και είναι παράλληλο προς την. 40
8 17. Έστω σηµείο Σ και οι δύο ασύµβατες ευθείες,. πό το Σ άγονται δύο µόνο ευθείες και ώστε να είναι ορίζουν το επίπεδο (ε, // ε1 και // 1. Οι τεµνόµενες ευθείες ε, ε 1 ) το οποίο είναι παράλληλο προς τις ε ε και, αφού // και // ε. Εκτός 1 του ( ε, 1 ) δεν υπάρχει άλλο επίπεδο το οποίο να περιέχει το Σ και να είναι παράλληλο προς τις ε1,, διότι ένα τέτοιο επίπεδο θα περιείχε τις, ε και εποµένως θα ταυτιζόταν µε το ( ε, ). 1 Σ 18. Στο επίπεδο (, ) θεωρούµε την Ax // και στο (, ) την y //. Τότε το επίπεδο των x, Ay είναι y x παράλληλο προς τις, αφού // x και // y. Έστω ότι και ένα άλλο επίπεδο διέρχεται από το και είναι παράλληλο προς τις και. Τότε στο περιέχονται οι x, y. q ιατί αν π.χ. η x δεν περιεχόταν στο τότε θα υπήρχε ευθεία x του παράλληλη της και από το θα είχαµε δύο παράλληλες προς την τις x, Ax. 41
9 υτό όµως είναι άτοπο, οπότε οι x, Ay περιέχονται στο που σηµαίνει ότι το ταυτίζεται µε το και άρα ένα µόνο επίπεδο διέρχεται από το και είναι παράλληλο προς τις και. 19. α) Έστω Μ το µέσο της τότε το Θ είναι Θ το σηµείο της διαµέσου Μ µε = ΘΜ και το Θ είναι το σηµείο της διαµέσου Μ µε έχουµε Θ =. Έτσι στο τρίγωνο Μ ΘΜ Θ ΘΜ Θ = οπότε ΘΘ //. ΘΜ β) Η ΘΘ // που είναι η τοµή των επιπέδων (,, ) και (,, ) χωρίς να περιέχεται σε κανένα από αυτά αφού περιέχεται στο (,, Μ). Άρα ΘΘ // (,, ). γ) Όµοια µε το (β), ΘΘ // (,, ). Μ Θ Θ 0. Έστω το ίχνος της πάνω στο επίπεδο. To επίπεδο (, ) έχει µε το κοινό το και άρα τέµνει το κατά ευθεία x. πό το φέρνουµε πάνω στο επίπεδο (, ) την // x η οποία τέµνει την σε σηµείο, αφού και η παράλληλή της x τέµνεται από την. Έτσι η ζητούµενη ευθεία είναι η αφού τέµνει την x B και είναι παράλληλη του γιατί // Bx. Άλλη ευθεία // x από το δεν υπάρχει, διότι τότε θα υπήρχαν από το σηµείο δύο παράλληλες προς τη x. 4
10 1. α) Επειδή οι ευθείες και είναι αντίστοιχα παράλληλες προς τις ευθείες ΕΖ και ΗΖ του επιπέδου (Ε, Ζ, Η) (γνωστό θεώρηµα επιπεδοµετρίας) και βρίσκονται έξω από αυτό, άρα είναι παράλληλες προς το επίπεδο (Ε, Ζ, Η). β) Ονοµάζουµε Θ το µέσο του ευθύγραµµου τµήµατος και φέρνουµε την ευθεία ΗΘ. Είναι ΗΘ // (ενώνει τα µέσα των, στο τρίγωνο ) και // (Ε, Ζ, Η), άρα η ευθεία ΗΘ βρίσκεται πάνω στο επίπεδο (Ε, Ζ, Η). Θ E H Z Άρα το ευθύγραµµο τµήµα, επειδή δεν βρίσκεται πάνω στο επίπεδο (Ε, Ζ, Η) τέµνεται από αυτό στο µέσο του Θ.. α) πό τα παραλληλόγραµµα, και έχουµε αντίστοιχα // =, // = και // =. Άρα τα τρίγωνα και είναι ίσα. β) Τα επίπεδά τους είναι διαφορετικά και παράλληλα (διαφορετικά εκ κατασκευής, παράλληλα λόγω του (α)). A 43
11 3. φού το είναι εσωτερικό σηµείο του ευθύγραµµου τµήµατος θα έχουµε = - = 6,5-4 =,5 cm. πό το θεώρηµα του Θαλή έχουµε = = = 10,5 = 4 ή A Άρα = 4 = 4 Έχουµε όµως = 6,5 cm και = 4 cm. q r α) Άρα = 4 ή = 6 cm. 6,5 β) Άρα = 4 ή = 16 cm. 4 44
12 4. Φέρνουµε τις ευθείες ΜΚ και ΜΝ. Επειδή η ευθεία ΜΚ περνάει από τα µέσα των Ο πλευρών Ο και Ο του τριγώνου Ο θα έχουµε ΜΚ //. Όµοια ΜΝ //. Εποµένως α) Το επίπεδο που ορίζεται από Μ Ν K τα σηµεία Μ, Ν και Κ, όταν τα, και δεν βρίσκονται σε µία ευθεία είναι παράλληλο προς το επίπεδο. Άρα τα σηµεία Μ, Ν και Κ ισαπέχουν από το. β) Η ευθεία που ορίζεται από τα Ο σηµεία Μ, Ν και Κ όταν τα, και βρίσκονται πάνω σε µία ευθεία είναι Μ Ν Κ παράλληλη προς το επίπεδο. Άρα τα σηµεία Μ, Ν και Κ ισαπέχουν από το. 5. α) Είναι (, ) // (, ) αφού δύο τεµνόµενες ευθείες, του επιπέδου (, ) είναι παράλληλες προς τις ευθείες, αντίστοιχα του επιπέδου (, ). β) Όµοια (, ) // (, ). 45
13 6. α) Επειδή οι γωνίες xoy, περιέχονται στα διαφορετικά επίπεδα, q και έχουν τις πλευρές τους παράλληλες είναι // q ( παράλληλο σε δύο τεµνόµενες ευθείες του q και αντίστροφα). xoy β) Φέρνουµε την ΟΟ και από τα, της xoy φέρνουµε // ΟΟ //. Τα τρίγωνα Ο, Ο έχουν τις πλευρές τους ίσες µία προς µία όπως φαίνεται από τα παραλληλόγραµµα ΟΟ (ΟΟ // = ), q O O B x B y ΟΟ (ΟΟ // = ) και ( // = ). πό την ισότητα των τριγώνων αυτών έχουµε O = O = xoy. y A x K 7. Οι ηµιευθείες Kx, Ky επειδή τέµνονται ορίζουν τη θέση του επιπέδου (x, K, y). Έχουµε // Ε ως τοµές των παραλλήλων επιπέδων και q από το τρίτο επίπεδο (x, K, y). ια τον ίδιο λόγο έχουµε // ΕΖ και // Ζ. Παρατηρούµε ότι τα τρίγωνα και ΕΖ έχουν τις οµόλογες πλευρές τους παράλληλες, οπότε είναι όµοια. Z q E x y Z 46
14 8. α) πό τα τυχαία σηµεία και αντίστοιχα των ευθειών και φέρνουµε τις κάθετες ευθείες n 1 και n στο επίπεδο. Ονοµάζουµε q και r τα επίπεδα, που ορίζονται αντίστοιχα από τις ευθείες n 1, και n,. Τα επίπεδα αυτά τέµνουν το κατά τις ευθείες και που είναι αντίστοιχα οι προβολές των ευθειών ε1 και πάνω στο. Είναι όµως n 1 // n και // άρα q // r. Εποµένως και οι τοµές τους µε το θα είναι παράλληλες δηλαδή θα 1 έχουµε ε //. β) Στην περίπτωση που οι // ανήκουν σε επίπεδο q, τότε οι προβολές ταυτίζονται σε µια ευθεία. Στην περίπτωση που οι, είναι (n ) 1 Λ q r κάθετες στο επίπεδο, τότε οι προβολές είναι δύο διαφορετικά σηµεία. n 47
15 ε ε 9. πό το σηµείο της ε που είναι διαφορετικό από τα και φέρνουµε την ευθεία ε. Τότε η ε θα είναι κάθετη και στο q. Έστω 1 και τα σηµεία τοµής της ε αντίστοιχα ω 1 µε τα και q. Επειδή οι ευθείες 1 και είναι παράλληλες θα έχουµε ω = φ (οι ω, φ ανήκουν στο επίπεδο (,, )). φ q 30. Έστω,, και οι προβολές των,, και πάνω στο. Τότε το τετράπλευρο είναι η προβολή του πάνω στο. Επειδή έχουµε // και // συµπεραίνουµε ότι το είναι παραλληλόγραµµο. 48
16 31. Έστω το ευθύγραµµο τµήµα και Μ το µέσο του. Ονοµάζουµε, και Μ αντίστοιχα τις προβολές των, και Μ πάνω στο. Τότε το Μ είναι σηµείο του ευθύγραµµου τµήµατος που είναι η προβολή του πάνω στο. πό το θεώρηµα Θαλή για τις παράλληλες ευθείες, και ΜΜ που τέµνονται από τις ευθείες και έχουµε: AM M =. Μ Μ Μ Μ Είναι όµως Μ = Μ. Άρα Μ = Μ, δηλαδή Μ µέσο του. 3. = 6 cm BB = 36 cm ν στο επίπεδο φέρουµε την // έχουµε τότε =, = και = - = 38-6 = 1 cm. πό το ορθογώνιο τρίγωνο έχουµε = + = = = 400 AB = 0 cm. 49
17 Ε 33. Έχουµε και ΕΖ. Εποµένως η (τοµή των δύο ρόµβων, ΕΖ) είναι κάθετη στο επίπεδο (ΟΕ) που ορίζουν οι Ο και ΕΖ. Άρα τελικά προκύπτει ότι το επίπεδο αυτό είναι κάθετο στα επίπεδα των δύο ρόµβων. Ζ 34. Έστω x µία ευθεία του γεωµετρικού τόπου. Τότε η Ax είναι ορθογώνια προς την ε. Φέρνουµε την ε ε. Τότε το επίπεδο (, x) είναι κάθετο στην ε αφού ε και ε ορθογώνια προς την x. Άρα η x περιέχεται στο επίπεδο που διέρχεται από το και είναι κάθετο της ε. λλά και κάθε ευθεία που B x A διέρχεται από το και ανήκει στο πλην της είναι ορθογώνια προς την ε αφού ε. Άρα ο ζητούµενος γεωµετρικός τόπος είναι το επίπεδο (πλην της ). 50
18 35. Έστω AB η κοινή κάθετη των ασυµβάτων,. Τότε το επίπεδο (, ), αφού και ορθογώνια της. Οµοίως το (, ). Το αντίστροφο είναι προφανές αφού όταν π.χ. η περιέχεται σε επίπεδο κάθετο της, τότε η είναι ορθογώνια προς όλες τις ευθείες που δεν διέρχονται από το ίχνος της και άρα και προς την. A B q 36. ν από ένα σηµείο του q φέρουµε x // ε, τότε η x θα είναι ευθεία του q αφού ε // q. Επειδή όµως ε και x // ε είναι και x. Άρα είναι q αφού το q περιέχει την x που είναι κάθετη στο. 51
Ερωτήσεις ανάπτυξης 1. ** 2. ** 3. ** 4. ** 5. ** 6. **
Ερωτήσεις ανάπτυξης 1. ** ίνονται επίπεδο p και τρία µη συνευθειακά σηµεία του Α, Β και Γ καθώς και ένα σηµείο Μ, που δεν συµπίπτει µε το Α. Αν η ευθεία ΑΜ τέµνει την ευθεία ΒΓ, να δείξετε ότι το Μ είναι
Ορισµοί. Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου.
6.5 6.6 ΘΩΡΙ. Ορισµοί Ένα τετράπλευρο λέγεται εγγεγραµµένο σε κύκλο, αν οι κορυφές του είναι σηµεία του κύκλου. Ένα τετράπλευρο λέγεται εγγράψιµο σε κύκλο, όταν µπορεί να γραφεί κύκλος που να διέρχεται
5.10 5.11. 2 η ιδιότητα της διαµέσου. 4. Ορισµός Ισοσκελές τραπέζιο λέγεται το τραπέζιο του οποίου οι µη παράλληλες πλευρές είναι ίσες.
5.0 5. ΘΕΩΡΙ. Ορισµοί Τραπέζιο λέγεται το τετράπλευρο που έχει µόνο δύο πλευρές παράλληλες. άσεις τραπεζίου λέγονται οι παράλληλες πλευρές του. Ύψος τραπεζίου λέγεται η απόσταση των βάσεων. ιάµεσος τραπεζίου
Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις 5 ου Κεφαλαίου (1) (2) (1)
σκήσεις σχ. ιβλίου σελίδας 6 7 ενικές ασκήσεις 5 ου Κεφαλαίου. ίνεται τρίγωνο (β γ) µε Â = 60 ο, τα ύψη του, και τα µέσα Μ, Ν των, αντίστοιχα. Να αποδείξετε ότι Μ = Ν. Τρ. ορθογώνιο µε Â = 60 ο M N ˆB
Σε κάθε ισοσκελές τρίγωνο η διχοτόµος της γωνίας της κορυφής είναι και διάµεσος και ύψος.
ΙΩΝΙΣΜ ΕΩΜΕΤΡΙΣ ΥΚΕΙΟΥ 3/0/0 ΕΝΕΙΚΤΙΚΕΣ ΠΝΤΗΣΕΙΣ ΘΕΜ ο ) Να αποδείξετε ότι δύο χορδές ενός κύκλου είναι ίσες αν και µόνο αν τα αποστήµατά τους είναι ίσα. Θεωρία, σελίδα 46 σχολικού βιβλίου Θεώρηµα III
(1) (2) A ΑE Α = AΒ (ΑΒΕ) (Α Ε)
9. Τα τρίγωνα και έχουν κοινή γωνία, άρα: () () A E AB A E A (1) Όµοια τα τρίγωνα και, άρα: () () A E AB A A () E Όµως από το θεώρηµα του Θαλή: A A () ( // ) () () πό (1), (), () έχουµε. () () Άρα () ()
3 η δεκάδα θεµάτων επανάληψης
3 η δεκάδα θεµάτων επανάληψης. ίνεται το ισοσκελές τραπέζιο µε ɵ = = 45 ο. Έστω Ε, Ζ τα µέσα των και αντίστοιχα και Η. πό το Z φέρνουµε παράλληλη στην που τέµνει την στο Θ. Να δείξετε ότι Το τετράπλευρο
4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και Μ το µέσο του. Η Μ τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i ΟΜ = 4 Τα ορθογώνια τρίγωνα Μ και Μ έχουν Μ =
5.6 5.9. 1. Θεώρηµα, Ε µέσα των ΑΒ, ΑΓ Ε = //
1 5.6 5.9 ΘΩΡΙ 1., µέσα των, = //. µέσο της και // µέσο της 3. = και ////Ζ = Ζ Ζ. Ο γ. τόπος της µεσοπαράλληλης Έστω ε η µεσοπαράλληλη των ε 1, ε. Τότε ισχύουν : i) άθε σηµείο της ε ισαπέχει από τις ε
5.6 5.9. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 110 112. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ. Απάντηση Στο σχήµα (α) :
5.6 5.9 σκήσεις σχολικού βιβλίου σελίδας 0 ρωτήσεις Κατανόησης. Στα παρακάτω σχήµατα να υπολογίσετε τα x και ψ (α ) ( β ) A x x, 5 ( γ) ψ x +, 5 x, 5 ε ε ε ε 4 δ δ ε ε B ε ε 4 (δ ) ψ ψ x 60 o 4 (ε) B 5
6.5 6.6. Ασκήσεις σχολικού βιβλίου σελίδας 134. Ερωτήσεις Κατανόησης
6.5 6.6 σκήσεις σχολικού βιβλίου σελίδας 34 ρωτήσεις Κατανόησης. Σε ένα εγγεγραµµένο τετράπλευρο i) Τα αθροίσµατα των απέναντι γωνιών του είναι ίσα Σ Λ ii) Κάθε πλευρά φαίνεται από τις απέναντι κορυφές
ΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
3.5 3.6. Ασκήσεις σχολικού βιβλίου σελίδας 48. Ερωτήσεις κατανόησης
.5.6 σκήσεις σχολικού βιβλίου σελίδας 48 ρωτήσεις κατανόησης. Έστω ευθεία ε και σηµείο εκτός αυτής. ν ε και ε (, σηµεία της ε) τότε i) Σ Λ ii) Σ Λ iii) = Σ Λ ιτιολογήστε την απάντηση σας i) ιότι από ένα
1 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. ίνεται ορθογώνιο τρίγωνο µε υποτείνουσα την και ɵ = 30 ο. Έστω διάµεσος του και, Ζ, Η τα µέσα των, και αντίστοιχα. Στην προέκταση του Ζ παίρνουµε τµήµα ΖΚ= Ζ. Να δείξετε ότι
4 η εκάδα θεµάτων επανάληψης
4 η εκάδα θεµάτων επανάληψης 3. ίνεται τετράγωνο µε κέντρο Ο και το µέσο του. Η τέµνει την στο. είξτε ότι = Το τρίγωνο είναι ορθογώνιο και ισοσκελές i Ο = 4 Τα ορθογώνια τρίγωνα και έχουν = και = άρα είναι
Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί;
5. 5.2 σκήσεις σχολικού βιβλίου σελίδας 99 00 ρωτήσεις ατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι παραλληλόγραµµα ποια όχι και γιατί; 3 Π 5 4 Π 2 5 5 Ο 3 4 Ο 4 Π 3 Ν 3 3 Μ 3,5 3,5 Λ Ρ φ Π 4 φ ω
Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο µε το µισό της.
5.3 Εφαρµογές των παραλληλογράµµων 155 5.3 Εφαρµογές των παραλληλογράµµων Α Εφαρµογές στα τρίγωνα Α1 Θεώρηµα 1 Το τµήµα που ενώνει τα µέσα δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και
1. Οµόλογες πλευρές : Στα όµοια τρίγωνα οι οµόλογες πλευρές βρίσκονται απέναντι από τις ίσες γωνίες και αντίστροφα.
1 1.5. ΟΜΟΙ ΤΡΙΩΝ ΘΩΡΙ 1. Όµοια τρίγωνα : ια τα όµοια τρίγωνα ισχύουν όλα όσα αναφέραµε στα όµοια πολύγωνα. 2. ποκλειστικά για τα τρίγωνα : ύο τρίγωνα είναι όµοια όταν έχουν δύο γωνίες ίσες ΣΧΟΛΙ 1. Οµόλογες
Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης
0. 0.3 σκήσεις σχολικού βιβλίου σελίδας 7 8 Ερωτήσεις κατανόησης. Να γράψετε τους τύπους υπολογισµού του εµβαδού Τετραγώνου Ορθογωνίου i Παραλληλογράµµου iν) Τριγώνου ν) Τραπεζίου πάντηση Ε = α Ε = α β
Απέναντι πλευρές παράλληλες
5. 5.5 ΘΩΡΙ. Παραλληλόγραµµο πέναντι πλευρές παράλληλες. Ιδιότητες παραλληλογράµµου πέναντι πλευρές ίσες πέναντι γωνίες ίσες Οι διαγώνιοι διχοτοµούνται Το σηµείο τοµής των διαγωνίων είναι κέντρο συµµετρίας
3.3 ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟ ΟΡΘΟΓΩΝΙΟ
1 3 ΠΛΛΗΛΟΜΜΟ ΟΘΟΩΝΙΟ ΤΤΩΝΟ ΟΜΟΣ ΤΠΙΟ ΙΣΟΣΛΣ ΤΠΙΟ ΘΩΙ Παραλληλόγραµµο Λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές παράλληλες. ( // και // ) άσεις και ύψη στο παραλληλόγραµµο άθε πλευρά του µπορεί
1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του. 2. Είδη τριγώνων από την άποψη των γωνιών : A
1 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου : Είναι οι πλευρές του και οι γωνίες του 2. Είδη τριγώνων από την άποψη των γωνιών : A Οξυγώνιο τρίγωνο, όλες οι γωνίες οξείες B A µβλυγώνιο τρίγωνο,
Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ
ΠΝΠΤΙΣ ΣΣΙΣ > 90. 1. ίνεται ισοσκελές τρίγωνο µε = και 0 πό την κορυφή φέρνουµε τις ηµιευθείες x κάθετη στην πλευρά και y κάθετη στην πλευρά που τέµνουν την στα σηµεία και αντίστοιχα. Να αποδείξετε α)
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Γενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 140
ενικές ασκήσεις 6 ου Κεφαλαίου σελίδας 40. ίνεται τρίγωνο ορθογώνιο στο. πό τα άκρα, της υποτείνουσας φέρουµε κάθετες x και y στη και προς το ίδιο µέρος της. πό το µέσο Μ της φέρουµε κάθετη στην, που τέµνει
1.2 ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ
1 1. ΛΟΟΣ ΥΘΥΡΜΜΩΝ ΤΜΗΜΤΩΝ ΘΩΡΙ 1. Παραλληλία και ισότητα ν τρεις τουλάχιστον παράλληλες ορίζουν ίσα ευθύγραµµα τµήµατα σε µία ευθεία τότε θα ορίζουν ίσα ευθύγραµµα τµήµατα και σε οποιαδήποτε άλλη ευθεία
Γενικές ασκήσεις 7 ου Κεφαλαίου σελίδας 164
1 ενικές ασκήσεις 7 ου Κεφαλαίου σελίδας 164 1. ίνονται δύο κύκλοι (Κ, R) και (Λ, ρ) που εφάπτονται εξωτερικά στο. φέρουμε το κοινό εφαπτόμενο τμήμα τους και την κάθετη στη. Να αποδείξετε ότι = R R. Φέρουμε
ΑΓ=ΑΔ(υπόθεση) ΒΔ = ΓΕ υποθεση
ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ Άσκηση 1.Συγκρίνουμε τα τρίγωνα και. 2 1 =(υπόθεση) = (υπόθεση) = 2 1 κατακορυφήν γωνίες πό το κριτήριο Π--Π τα τρίγωνα είναι ίσα άρα και = Άσκηση 2 Χαράζουμε τις και επειδή τα, είναι σημεία
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες Β ευθεία (2 ) οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 )
γεωµετρία του ευκλείδη µε λίγα λόγια για µαθητές α λυκείου (www.sonom.gr) 1 γωνίες µη κυρτή ευθεία ( ) πλήρης (4 ) κυρτή, οξεία (< 1 ) ορθή ( =1 ) αµβλεία ( > 1 ) συµπληρωµατικές παραπληρωµατικές φ ω ω
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
5 η εκάδα θεµάτων επανάληψης
5 η εκάδα θεµάτων επανάληψης 4. ίνεται παραλληλόγραµµο και έστω, Μ τα µέσα των και αντίστοιχα Οι προεκτάσεις των τµηµάτων Μ και τέµνονται στο Ζ. Να αποδείξετε ότι Τα τρίγωνα Μ και ΜΖ είναι ίσα i Το τετράπλευρο
2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ
1 ΛΕΞΙΚΟ ΓΕΩΜΕΤΡΙΚΩΝ ΟΡΩΝ Α Ακτίνιο Ακτίνα κύκλου Ακτίνα σφαίρας Άκρα ευθύγραµµου τµήµατος Αµβλεία γωνία Αµβλυγώνιο Ανάλογα ευθύγραµµα τµήµατα Αντιδιαµετρικό σηµείο Αντικείµενες ηµιευθείες Άξονας συµµετρίας
2 η εκάδα θεµάτων επανάληψης
η εκάδα θεµάτων επανάληψης. Έστω τρίγωνο µε + Ένα πρόχειρο σχήµα είναι το διπλανό
ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
7.7 Ασκήσεις σχολικού βιβλίου σελίδας 156
1 7.7 σκήσεις σχολικού βιβλίου σελίδας 156 ρωτήσεις ατανόησης 1. Στα παρακάτω σχήματα να βρείτε τα x, ψ (α) ε 1 ε x 1 2 ε 2 ψ 6 ε 2 3 3 ε 4 ε 1 ε 2 ε 3 ε 4 ε 3 ε 2 ε 1 ε 2 4 x 1,5 ψ 3 4 ε 3 (β) (γ) ε 1
Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος
3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΕΠΙΜΕΛΕΙΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΠΙΜΕΛΕΙΑ: ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ
ΩΜΤΡΙ ΛΥΚΙΟΥ ΠΝΛΗΠΤΙΚΟ ΦΥΛΛΙΟ ΠΙΜΛΙ ΥΡΙΝΟΣ ΣΙΛΗΣ ΠΙΜΛΙ: ΥΡΙΝΟΣ ΣΙΛΗΣ ΘΜΤ ΘΩΡΙΣ ΚΦΛΙΟ ο Τ ΣΙΚ ΩΜΤΡΙΚ ΣΧΗΜΤ ΘΜ ο Τι καλείται μέσο ενός ευθυγράμμου τμήματος και τι ισχύει γι αυτό ; ΠΝΤΗΣΗ Μέσο ενός ευθύγραμμου
Ερωτήσεις κατανόησης σελίδας 114. Ασκήσεις σχολικού βιβλίου σελίδας Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ
5.0 5. σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης σελίδας 4. Στα παρακάτω τραπέζια να βρείτε τα x, ψ ω, και θ 3 3 (α) x 0 ψ 4 (β) x ψ 7 (γ) x (δ) θ x+ 3x ω 0 ο πάντηση + 0 Στο σχήµα (α) το
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρηµα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήµα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν Α ΒΓ, Ε ΑΒ τότε το τρίγωνο
ΜΑΘΗΜΑ 7. 2.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων ΑΣΚΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑ 7.3 Μέτρο µιγαδικού Ασκήσεις Γεωµετρικών τόπων. Να βρείτε το γεωµετρικό τόπο των µιγαδικών z, για τους οποίους οι εικόνες των µιγαδικών z, i, iz είναι συνευθειακά σηµεία. Έστω z = x + i,
24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ 1 Ο. ΘΕΜΑ 2 Ο : Δίνεται ΑΒΓ ισοσκελές (ΑΒ=ΑΓ) τρίγωνο.αν ΒΔ και ΓΕ οι διχοτόμοι των γωνιών Β και
ΔΙΩΝΙΣΜ 1 Ο ΘΕΜ 1 Ο : ) Να αποδείξετε ότι : Το ευθύγραμμο τμήμα που ενώνει τα μέσα τα των δύο πλευρών τριγώνου είναι παράλληλο προς την τρίτη πλευρά και ίση με το μισό της.(13 μονάδες) ) Να χαρακτηρίσετε
6.1 6.4. 1. Εγγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο. 2. Γωνία δύο χορδών και γωνία δύο τεµνουσών
6. 6.4 ΘΩΡΙ. γγεγραµµένη γωνία, αντίστοιχη επίκεντρη και τόξο Το µέτρο της επίκεντρης ισούται µε το µέτρο του αντίστοιχου τόξου. Η εγγεγραµµένη ισούται µε το µισό της αντίστοιχης επίκεντρης. Η εγγεγραµµένη
ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;
ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται
ΕΙ Η ΤΕΤΡΑΠΛΕΥΡΩΝ. ( Παραλληλόγραµµα Τραπέζια ) Παραλληλόγραµµο, λέγεται το τετράπλευρο
Παραλληλόγραµµο, λέγεται το τετράπλευρο ΕΙΗ ΤΕΤΡΠΛΕΥΡΩΝ ( Παραλληλόγραµµα Τραπέζια ) που έχει τις απέναντι πλευρές του παράλληλες δηλ. // και //. ΙΙΟΤΗΤΕΣ ΠΡΛΛΗΛΟΡΜΜΟΥ: 1. Οι απέναντι πλευρές του είναι.
8.1 8.2. Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας 177 179
8. 8. σκήσεις σχολικού βιβλίου σελίδας 77 79 ρωτήσεις Κατανόησης. i) ν δύο τρίγωνα είναι ίσα τότε είναι όµοια; ii) ν δύο τρίγωνα είναι όµοια προς τρίτο τότε είναι µεταξύ τους όµοια πάντηση i) Προφανώς
ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΠΑΡΑΛΛΗΛΕΣ 1. είχνω ότι τέµνονται από τρίτη ευθεία και σχηµατίζονται γωνίες
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΧΟΛΙΑ στη γεωµετρία της Α τάξης ΠΩΣ ΕΙΧΝΩ ΟΤΙ ΥΟ ΕΥΘΕΙΕΣ ΕΙΝΑΙ ΚΑΘΕΤΕΣ 1. είχνω ότι η γωνία τους είναι 90 ο 2. είχνω ότι είναι διχοτόµοι δύο εφεξής και παραπληρωµατικών γωνιών. 3. είχνω ότι
Άλλοι τύποι για το εµβαδόν τριγώνου και λόγος εµβαδών
0. 0.5 Άλλοι τύποι γι το εµβδόν τριγώνου κι λόγος εµβδών ΘΕΩΡΙ. Ε= τ( τ )( τ β)( τ γ ) Ε = τ ρ Ε = β γ R Ε = β γ ηµ = γ ηµ = β ηµ ηµ = β ηµ = γ ηµ = R. ν δύο τρίγων έχουν ίσες βάσεις, τότε ο λόγος των
Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ
Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά
Ερωτήσεις ανάπτυξης. (ΑΒΓ) = 4 ( ΕΖ) ή ( ΕΖ) = (ΑΒΓ) Θα δείξουµε ότι (ΑΒΓ ) = ΑΓ. Πράγµατι είναι: (Α Γ) = (ΑΒΓ) = Εποµένως (Α Γ) + (ΑΒΓ) =
Ερωτήσεις ανάπτυξης. α) Επειδή τα Ζ,, Ε είναι µέσα των πλευρών τριγώνου είναι Ζ // Ε και Ε // Ζ. Άρα το τετράπλευρο Ζ Ε είναι παραλληλόγραµµο. Η διαγώνιος ΖΕ του παραλληλογράµµου το χωρίζει σε δύο ισοδύναµα
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ
ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ
1=45. β) Να υπολογίσετε τη γωνία φ.
1. Στο σχήµα που ακολουθεί, η Αx είναι εφαπτοµένη του κύκλου (Ο, ρ) σε σηµείο του Α και επιπλέον ισχύουν ΓΑ x =85 0 και BA =40 0. α) Να αποδείξετε ότι ˆΒ 1=45. β) Να υπολογίσετε τη γωνία φ. 2. Στο ακόλουθο
ΚΕΦΑΛΑΙΟ 5ο ΠΑΡΑΛΛΗΛOΓΡΑΜΜΑ - ΤΡΑΠΕΖΙΑ. Εισαγωγή
ΚΦΛΙΟ 5ο ΠΡΛΛΗΛOΡΜΜ - ΤΡΠΙ ισαγωγή. Τι καλείται τετράπλευρο ; Πόσες διαγώνιες έχει ένα κυρτό τετράπλευρο ; Τι καλείται παραλληλόγραμμο και τι τραπέζιο ; Το ευθύγραμμο σχήμα που έχει τέσσερις πλευρές λέγεται
5 η δεκάδα θεµάτων επανάληψης
1 5 η δεκάδα θεµάτων επανάληψης 1. Σε κύκλο (Ο, R) προεκτείνουµε µία διάµετρο του εκατέρωθεν των και και στις προεκτάσεις παίρνουµε τµήµατα = = R. Έστω ΕΜ τέµνουσα του κύκλου τέτοια ώστε Μ = R 7 Να αποδείξετε
Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη
1. Γενικά για τα τετράπλευρα
1. ενικά για τα τετράπλευρα Ένα τετράπλευρο θα λέγεται κυρτό αν η προέκταση οποιασδήποτε πλευράς του αφήνει το σχήμα από το ίδιο μέρος (στο ίδιο ημιεπίπεδο, όπως λέμε καλύτερα). κορυφές γωνία εξωτερική
10.5. Ασκήσεις σχολικού βιβλίου σελίδας Ερωτήσεις κατανόησης. ΑΒΓ =λ. ύο τρίγωνα ΑΒΓ και Α Β Γ έχουν υ β = υ β και =. β ποιος είναι ο λόγος β
0.5 σκήσεις σχολικού βιβλίου σελίδας 4 5 ρωτήσεις κατανόησης. ( ) ύο τρίγωνα και έχουν υ β = υ β και =. ( ) β ποιος είναι ο λόγος β : : : 9 : 4 5 4 4 9 Κυκλώστε το γράµµα της σωστής απάντησης και αιτιολογήστε
Λ υ μ ε ν ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1
υ μ ε ν ε ς σ κ η σ ε ι ς ( Π α ρ α λ λ η λ o γ ρ α μ μ α ) 1 Προεκτεινουµε τις πλευρες και παραλληλογραμμου κατα τμηματα = και = αντιστοιχως. Να αποδειξετε οτι τα σημεια, και ειναι συνευθειακα. = παραλληλογραμμο
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 Ο Βασικές Γεωμετρικές Έννοιες ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Μια τεντωμένη κλωστή με άκρα δύο σημεία Α και Β μας δίνει μια εικόνα της έννοιας του.. Τα σημεία Α και Β λέγονται.. 2. Τι ονομάζεται ευθεία;..
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
Ευθείες. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Κατεύθυνση Κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 1 1 /
Ευθείες Κώστας Γλυκός ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr / / 0 8 Κατεύθυνση Κεφάλαιο 59 ασκήσεις και τεχνικές σε 6 σελίδες εκδόσεις Καλό πήξιμο
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1 / 11 / 09 ΘΕΜΑ 1 ο
ΥΣΕΙΣ ΙΩΝΙΣΜΤΣ ΕΩΜΕΤΡΙΣ ΥΚΕΙΥ 1 / 11 / 09 ΘΕΜ 1 ο ) Χαρακτηρίστε ως σωστή (Σ) ή ως λάθος () καθεµία από τις επόµενες προτάσεις. ύο τόξα ενός κύκλου είναι ίσα, όταν οι αντίστοιχες χορδές τους είναι ίσες.
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Γενικό Ενιαίο Λύκειο Γεωμετρία - Τάξη Α
ενικό νιαίο Λύκειο εωμετρία - Τάξη 61 Θέματα εξετάσεων περιόδου Μαΐου-Ιουνίου στην εωμετρία Τάξη! Λυκείου ενικό νιαίο Λύκειο εωμετρία - Τάξη 6. Να αποδείξετε ότι διάμεσος τραπεζίου είναι παράλληλη προς
Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x
1. Οι Πρωταρχικές Γεωμετρικές Έννοιες Σημείο Γραμμή Δεν έχει διαστάσεις!! Υπάρχει μόνο στο μυαλό μας. Συμβολίζεται με κεφαλαίο γράμμα. Κάθε γραμμή αποτελείται από άπειρα σημεία. Ευθεία Δεν είναι εύκολο
ΠΑΡΑΛΛΗΛΟΓΡΑΜΜA. Ιδιότητες παραλληλογράμμων
εωμετρία και Λυκείου ΠΡΛΛΗΛΟΡΜΜA Ορισμός Παραλληλόγραμμο λέγεται το τετράπλευρο που έχει τις απέναντι πλευρές του παράλληλες. ηλαδή το τετράπλευρο είναι παραλληλόγραμμο, όταν // και //. Ιδιότητες παραλληλογράμμων
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ 08/04/10
ΥΣΙΣ ΙΑΩΝΙΣΜΑ ΩΜΤΡΙΑ Α ΥΚΙΟΥ ΘΜΑ ο 08/04/0 Α. Να αποδείξετε ότι η διάµεσος ορθογωνίου τριγώνου που φέρουµε από την κορυφή της ορθής γωνίας είναι ίση µε το µισό της υποτείνουσας. Θεωρία σχολικό βιβλίο σελ.09
Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
Ασκήσεις σχ. Βιβλίου σελίδας Γενικές ασκήσεις (3) (4)
σκήσεις σχ. ιβλίου σελίδας 5 5 ενικές ασκήσεις. ανονικό εξάγωνο ΕΖ είναι εγγεγραµµένο σε κύκλο (Ο, ) και έστω, Λ,, Ν, Ρ, Σ τα µέσα των πλευρών του. Να αποδείξετε ότι το ΛΝΡΣ είναι κανονικό εξάγωνο µε κέντρο
Μαθηµατικά Κατεύθυνσης Β Λυκείου Ευθεία. Ασκήσεις Ευθεία
Ασκήσεις Ευθεία 1. Να βρεθεί η εξίσωση της ευθείας η οποία διέρχεται από το σηµείο τοµής των ευθειών 3x + 4y 11 = 0 και 2x 3y + 21 = 0 και να γίνει η γραφική της παράσταση όταν είναι: i) παράλληλη στην
ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. ΘΕΜΑ 3 ο
ΕΚΕΜΒΡΙΟΣ 2011 ΘΕΜΑ 1 ο (α) Να αποδειχθεί ότι στον ίδιο ή σε ίσους κύκλους, ίσα αποστήµατα αντιστοιχούν σε ίσες χορδές. (β) Να αποδειχθεί ότι κάθε σηµείο της µεσοκαθέτου ενός ευθύγραµµου τµήµατος ισαπέχει
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΑΠΟ ΤΗΝ ΘΕΩΡΙΑ ΔΙΑΝΥΣΜΑΤΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΔΙΑΝΥΣΜΑΤΟΣ Αρχή και Πέρας Φορέας Διεύθυνση (Συγγραμμικά διανύσματα) Μέτρο Κατεύθυνση (Ομόρροπα Αντίρροπα διανύσματα)
ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ
ΚΕΦΑΛΑΙΟ 1 ΕΡΩΤΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΓΥΜΝΑΣΙΟΥ Τι είναι ένα ευθύγραμμο τμήμα ΑΒ; Πώς ονομάζονται τα σημεία Α και Β; 1 ος ορισμός : Είναι η «ίσια» γραμμή που ενώνει τα δύο σημεία Α και Β. 2 ος ορισμός : Είναι
Ερωτήσεις Κατανόησης. Ασκήσεις σχολικού βιβλίου σελίδας
5. 5.5 σκήσεις σχολικού βιβλίου σελίδας 0 04 ρωτήσεις Κατανόησης. Ποια από τα παρακάτω τετράπλευρα είναι Ορθογώνια, ρόµβοι, i τετράγωνα, ποια όχι και γιατί; (α) 5 (β) 5 (γ) (δ) (ε) (ζ) φ 5 φ 5 φ φ (η)
Τάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
3.1 ΣΤΟΙΧΕΙΑ ΤΡΙΓΩΝΟΥ ΕΙ Η ΤΡΙΓΩΝΩΝ
1 3.1 ΣΤΟΙΧΕΙ ΤΡΙΩΝΟΥ ΕΙΗ ΤΡΙΩΝΩΝ ΘΕΩΡΙ 1. Κύρια στοιχεία τριγώνου Τα κύρια στοιχεία ενός τριγώνου είναι οι πλευρές, οι γωνίες και οι κορυφές. Ονοµασία : Πλευρές είναι οι,, Κορυφές είναι τα σηµεία,, ωνίες
Γ ε ω μ ε τ ρ ι α. A Λ υ κ ε ι ο υ. Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς
ε ω μ ε τ ρ ι α A Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς ε ω μ ε τ ρ ι α A Λ υ κ ε ι ο υ ασικα εωμετρικα Σχηματα Τριγωνα Παραλληλες Ευθειες Παραλληλογραμμα - Τραπεζια Εγγεγραμμενα
Βασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
ΚΕΦΑΛΑΙΟ 3ο ΤΡΙΓΩΝΑ. Στοιχεία και είδη τριγώνων. Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ;
ΚΕΦΛΙΟ 3ο ΤΡΙΩΝ Στοιχεία και είδη τριγώνων Τι καλούμαι κύρια στοιχεία ενός τριγώνου και συμβολίζεται η περίμετρος ενός τριγώνου ; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου.
ΘΕΜΑΤΑ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ
ΘΕΜΤ & ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΣ ΜΘΗΜΤΙΚΩΝ ΥΜΝΣΙΟΥ ΘΕΜ 1. α) Να συµπληρώσετε τις παρακάτω ισότητες. α+0=.. α 1=. α-α=.. α:α=. 0 α=. 0:α=. Το α είναι ένας αριθµός διαφορετικός του 0. β) Στις παρακάτω προτάσεις να
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ
ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει
2 η δεκάδα θεµάτων επανάληψης
1 η δεκάδα θεµάτων επανάληψης 11. Σε κάθε τρίγωνο να αποδείξετε ότι το τετράγωνο µιας πλευράς που βρίσκεται απέναντι από οξεία γωνία, ισούται µε το άθροισµα των τετραγώνων των δύο άλλων πλευρών ελαττωµένο
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γ ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ Α. ύο τρίγωνα είναι ίσα όταν µε κατάλληλη µετατόπιση, το ένα συµπίπτει µε το άλλο. Β. Κριτήρια ισότητας τριγώνων Πρώτο κριτήριο Αν όλες οι πλευρές του ενός τριγώνου
Ασκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
ΚΕΦΑΛΑΙΟ 4ο ΠΑΡΑΛΛΗΛΕΣ ΕΥΘΕΙΕΣ. Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ;
ΚΦΛΙΟ 4ο ΠΡΛΛΗΛΣ ΥΘΙΣ Ποιες οι σχετικές θέσεις δύο ευθειών στο επίπεδο ; Πως ορίζονται οι παράλληλες ευθείες και πως συμβολίζονται ; Οι σχετικές θέσεις δυο ευθειών ε και ε, οι οποίες βρίσκονται στο ίδιο
Τρίγωνα. Αθανασίου Δημήτρης (Μαθηματικός)
Τρίγωνα Αθανασίου Δημήτρης (Μαθηματικός) www.peira.gr asepfreedom@yahoo.gr 1 3.1 Στοιχεία και είδη τριγώνων 2 Ένα τρίγωνο ΑΒΓ έχει τρεις κορυφές Α, Β, Γ, τρεις πλευρές ΒΓ, ΓΑ, ΑΒ και τρεις γωνίες Β ΑΓ,
ΛΥΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 05/01/10
ΥΕΙ ΙΑΩΝΙΜΑ ΕΩΜΕΤΡΙΑ Α ΥΚΕΙΟΥ 05/0/0 ΘΕΜΑ ο Α. Να αποδειχτεί ότι σε κάθε παραλληλόγραµµο οι απέναντι πλευρές είναι ίσες. Θεωρία σελίδα 97 B. Να χαρακτηρίσετε µε την ένδειξη σωστό () ή λάθος () καθεµιά
Γεωμετρία. 63. Σε περίπτωση που η αρχή, το σημείο Ο, βρίσκεται πάνω σε μια ευθεία χχ τότε η
Γεωμετρία Κεφάλαιο 1: Βασικές γεωμετρικές έννοιες Β.1.1 61.Η ευθεία είναι βασική έννοια της γεωμετρίας που την αντιλαμβανόμαστε ως την γραμμή που αφήνει ο κανόνας (χάρακας).συμβολίζεται με μικρά γράμματα
Γεωµετρία Γενικής Παιδείας Β Λυκείου 2001
Γεωµετρία Γενικής Παιδείας Β Λυκείου Ζήτηµα ο Α. Να αποδείξετε ότι, σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσά του, ισούται µε το γινόµενο των προβολών των κάθετων
Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ)
3. Η ΠΑΡΑΒΟΛΗ ΘΕΩΡΙΑ. Ορισµός Ονοµάζουµε παραβολή µε εστία σηµείο Ε και διευθετούσα ευθεία (δ) το γεωµετρικό τόπο των σηµείων του επιπέδου τα οποία ισαπέχουν από το Ε και τη (δ). Εξίσωση παραβολής p, όπου
Μετρικές σχέσεις στο ορθογώνιο τρίγωνο. γ Αν δίνονται δύο οποιαδήποτε από τα τµήµατα του σχήµατος, µπορούµε να υπολογίζουµε τα υπόλοιπα.
1 9.1 9. Μετρικές σχέσεις στο ορθογώνιο τρίγωνο ΘΕΩΡΙ 1. προβολή του στην ε προβολή του στην ε προβολή του στην ε ε. Τρίγωνο ορθογώνιο στο κι ύψος. Τότε = = = = β + γ κι ντίστροφ = 1 υ = 1 β + 1 γ ν δίνοντι
ΓΕΩΜΕΤΡΙΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Τι ονοµάζουµε γωνία σε ένα επίπεδο; Tι ονοµάζουµε κορυφή µιας γωνίας και τι πλευρά µιας γωνίας; Πότε δύο σχήµατα λέγονται ίσα; Τι ονοµάζουµε απόσταση δύο σηµείων; Τι ονοµάζουµε µέσο ενός ευθυγράµµου τµήµατος;
ΦΡΟΝΤΙΣΤΗΡΙΑ «άµιλλα»
1 ΜΕΤΡΙΚΕ ΧΕΕΙ ΘΕΩΡΙΑ Μετρικές σχέσεις στο ορθογώνιο τρίγωνο το ορθογώνιο τρίγωνο το τετράγωνο κάθε κάθετης πλευράς είναι ίσο µε το γινόµενο της υποτείνουσας επί την προβολή της κάθετης στην υποτείνουσα.
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ
Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο
ΕΥΘΕΙΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
Κεφάλαιο ο: ΕΥΘΕΙΑ Ερωτήσεις του τύπου «Σωστό-Λάθος». * Συντελεστής διεύθυνσης µιας ευθείας (ε) είναι η εφαπτοµένη της γωνίας που σχηµατίζει η ευθεία (ε) µε τον άξονα x x. Σ Λ. * Ο συντελεστής διεύθυνσης
2.3 ΜΕΣΟΚΑΘΕΤΟΣ ΕΥΘΥΓΡΑΜΜΟΥ ΤΜΗΜΑΤΟΣ
1 3 ΜΕΣΚΘΕΤΣ ΕΥΘΥΡΜΜΥ ΤΜΗΜΤΣ ΘΕΩΡΙ Μεσοκάθετος ευθυγράµµου τµήµατος Λέγεται η ευθεία που διέρχεται από το µέσο του ευθυγράµµου τµήµατος και είναι κάθετη σ αυτό. Ιδιότητα : Κάθε σηµείο της µεσοκαθέτου ενός
3 η δεκάδα θεµάτων επανάληψης
1 η δεκάδ θεµάτων επνάληψης 1. Ν ποδείξετε ότι το εµβδόν κάθε τριγώνου δίνετι πό τον τύπο Ε τρ, όπου τ η ηµιπερίµετρος του τριγώνου κι ρ η κτίν του εγγεγρµµένου κύκλου Ν χρκτηρίσετε τις πρκάτω προτάσεις
3.2. Ασκήσεις σχολικού βιβλίου σελίδας A Οµάδας
3. Ασκήσεις σχολικού βιβλίου σελίδας 99 A Οµάδας. Να βρεθεί η εξίσωση της παραβολής που έχει κορυφή την αρχή των αξόνων και άξονα συµµετρίας τον άξονα σε καθεµιά από τις παρακάτω περιπτώσεις : (i) Όταν