Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Άσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy"

Transcript

1 Άσκηση ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική εξίσωση dy x = y+ e dx με αρχική συνθήκη y()=. Να επιλυθεί το πρόβλημα αρχικών τιμών με τις μεθόδους Euler και Runge-Kutta ης τάξης. Να σχολιασθούν υα αποτελέσματα και να γίνει σύγκριση με τα αντίστοιχα αναλυτικά. Στη συνέχεια να αποδειχθεί το κριτήριο ευστάθειας των δύο μεθόδων για το συγκεκριμένο πρόβλημα και να υπολογισθεί το μέγιστο επιτρεπτό βήμα Δ x. Να ελεγχθεί αν τα αναλυτικά ευρήματα σχετικά με την ευστάθεια επαληθεύονται αριθμητικά. Λύση Έχουμε dy x = y + e = f( x, y) () dx Βρίσκουμε την αναλυτική λύση χρησιμοποιώντας το Mathematica. Δίνοντας την εντολή: DSolve[{y'[x] -y[x]+exp[-x],y[] },y[x],x] x παίρνουμε την αναλυτική λύση: y( x) = e ( + x) Κάνουμε το γράφημα της λύσης με την εντολή: Plot[ -x (+x),{x,,5},axesorigin {,}] 3 5 Αναλυτική λύση

2 Στη συνέχεια χρησιμοποιούμε τους αλγορίθμους Euler και Runge-Kutta ης τάξης για να βρούμε την αριθμητική λύση της εξίσωσης με βήματα h=., h=. και h=.5 και πλήθος βημάτων n= Βήμα h=. Euler....E E E E E E E E E E E- RK....E E E E E E E E E E E-5 Βήμα h=. Euler....E E E E E E E E E E E+

3 RK....E E E E E E E E E E E-5 Βήμα h=.5 Euler....E E E E E E E E E E E- RK....E E E E E E E E E E E-3 Παρατηρούμε ότι σε όλες τις περιπτώσεις η μέθοδος RK δίνει καλύτερα αποτελέσματα από την μέθοδο Euler. Επίσης, όπως ήταν αναμενόμενο, η ακρίβεια αυξάνει και στις δύο μεθόδους καθώς το βήμα h μικραίνει. Βέβαια η μέθοδος Euler ακόμη και για το σχετικά μικρό βήμα h=.5, δεν δίνει ικανοποιητικά αποτελέσματα. 3

4 Κώδικας Fortran: program initial_value_problems! Solve: y'=-y+exp(-x), y[]= implicit none real::h real,allocatable,dimension(:)::x,y integer::i,method,n=! number of iterations allocate(x(n),y(n)) x()= y()= h=.!starting point!initial value do method=,!=euler, =rk select case (method) case () call euler(x,y,h,n) print*,' euler ' case () call rk(x,y,h,n) print* print*,' rk ' end select do i=,n print '(i3,",",f.3,",",e5.5,",",e5.5,",",e5.5)',i,x(i),y(i),f(x(i)),a bs(f(x(i))-y(i)) enddo enddo contains subroutine euler(x,y,h,n) real::x(:),y(:),h integer::i,n do i=,n- y(i+)=y(i)+h*f(x(i),y(i)) x(i+)=x(i)+h enddo end subroutine euler subroutine rk(x,y,h,n) real::x(:),y(:),h,k,k,k3,k integer::i,n do i=,n- k=f(x(i),y(i)) k=f(x(i)+.5*h,y(i)+.5*h*k) k3=f(x(i)+.5*h,y(i)+.5*h*k) k=f(x(i)+h,y(i)+h*k3) y(i+)=y(i)+(h/)*(k+*k+*k3+k) x(i+)=x(i)+h enddo end subroutine rk

5 real function f(x,y) result(z) real,intent(in)::x,y z=-y+exp(-x) end function f real function f(x) result(y)!analytic solution real,intent(in)::x y=exp(-x)*(+x) end function f end program initial_value_problems Ορισμός σφάλματος Το σφάλμα ορίζεται ως ε i = yi y i () όπου y i και y i η αριθμητική και αναλυτική τιμή της συνάρτησης y στο σημείο x i. Από την () προκύπτει πως yi = yi +εi (3) Επίσης είναι από (): f ( xy, ) = y+ e x () Ανάλυση ευστάθειας μεθόδου Euler Η μέθοδος Euler γράφεται ως y = i y + + i hf( xi, yi) (5) Αντικαθιστώντας την (3) στην (5) και κάνοντας χρήση της () παίρνουμε διαδοχικά: yi+ + εi+ = yi + εi + hf( xi, yi + εi) xi yi+ + εi+ = yi + εi + h( ( yi + εi) + e ) xi yi+ + εi+ = yi + h( yi + e ) + ( h) εi εi+ εi+ = ( h) εi = h εi Επομένως για να έχουμε ευστάθεια θα πρέπει να ισχύει: h < < h< < h < Άρα για να είναι η μέθοδος Euler ευσταθής θα πρέπει να επιλέξουμε ένα βήμα h <. Βεβαίως για μεγάλα h η ακρίβεια του αριθμητικού σχήματος χειροτερεύει σημαντικά. Για h >. η αριθμητική λύση αρχίζει να διαφέρει αρκετά από την αναλυτική, όπως γίνεται φανερό στα επόμενα γραφήματα, τα οποία παρουσιάζουν την αναλυτική (μπλέ γραμμή) και την αριθμητική (κόκκινη γραμμή) λύση για διάφορες τιμές του βήματος h. h=.5 h=

6 h=. h= h=.5 h= h= Παρατηρούμε ότι για h 5. προκύπτουν αρνητικές τιμές που είναι τελείως λάθος σχετικά με τη φυσική του προβλήματος. Επομένως, τα αποτελέσματα είναι ασταθή και η κατάσταση χειροτερεύει καθώς το h αυξάνει. Για το συγκεκριμένο πρόβλημα φαίνεται ότι το αναλυτικό κριτήριο ευστάθειας είναι χαλαρό σε σχέση με τα αριθμητικά αποτελέσματα και αυτό οφείλεται στο γεγονός ότι η ανάλυση ευστάθειας βασίζεται σε ανάπτυγμα Taylor όπου η παράμετρος h πρέπει να παίρνει μικρές τιμές. Ο κώδικας σε Mathematica που χρησιμοποιήθηκε για την παραγωγή των ανωτέρω γραφημάτων είναι ο ακόλουθος: euler[f_,g_,n_,h_,t_,z_]:=module[{t,z,k,i}, t=n[t];z=n[z];i=; m[[]]={t,z,g[t],abs[z-g[t]],}; While[ i<n,

7 i=i+; k=n[f[t,z]]; z=n[z+h*k]; t=t+h; m[[i]]={t,z,g[t],abs[z-g[t]],k}; ]] eq={y'[x]==exp[-x]-y[x],y[]==}; f[x_,y_]=part[eq[[]]/.y[x] y,] g[x_]=fullsimplify[part[dsolve[eq,y[x],x],,,]] n=; h=; x=eq[[,,]]; y=eq[[,]]; m=table[,{n}]; euler[f,g,n,h,x,y] TableForm[m,TableHeadings {None,{"x","Αριθμ (y)","αναλ (g)"," Αριθμ- Αναλ ","k"}}] b=transpose[m]; c={b[[]],b[[]]}; m=transpose[c]; g=listplot[m,plotjoined True,PlotStyle RGBColor[,,],PlotRange All] g=plot[g[x],{x,x,35},plotrange All] Show[g,g,PlotRange {{,35},All},AxesOrigin {,}] Ανάλυση ευστάθειας μεθόδου RK Η μέθοδος RK γράφεται ως εξής: xi k = f( xi, yi) = yi e () h, h xi + k = f xi + yi + k = yi + k + e (7) h xi + h 3, h h k = f xi + yi + k = yi + k + e () ( xi h) k = f x + h, y + hk = y + hk + e + (9) ( ) ( ) i i 3 i 3 y = y + h i i ( 3 k + k + k + k ) () + Στα επόμενα με kj, j =,,3, εννοούμε τα kj, j =,,3, στα οποία αντί της αριθμητικής τιμής y i εμφανίζεται η αντίστοιχη αναλυτική τιμή y i Αντικαθιστώντας την (3) στις (-9) και κάνοντας χρήση της () παίρνουμε τα: x i xi k = ( y + ε ) e = y e ε = k εi i i i i h h h xi + xi h + i ε i i εi εi ( ) ( ) ( ) k = y + + k + e = y + + k + e = h h xi + h h = yi + k + e εi + εi = k εi 7

8 h h h xi + h h xi + k ( ) 3 = yi + k + e = yi + εi + k εi + e = h h xi + h h h h = yi + k + e εi εi = k3 + εi και ( ) xi + h h h ( xi + h) k = ( yi + hk 3) + e = ( yi + εi) + h k3 + εi + e = 3 ( xi + h) h h h h = ( yi + hk3) + e εi + h + εi = k h+ ε i Αντικαθιστώντας τέλος την (3) στην () και κάνοντας χρήση της () παίρνουμε διαδοχικά: h yi+ + εi+ = yi + εi + ( k + k + k 3 + k ) yi+ + εi+ = yi + εi + 3 h h h h h h k εi + k εi k3 εi k h εi h h h h h h εi+ = εi + εi εi + εi h + εi h h h h h εi+ h h h εi+ = εi + + 3h h + εi εi+ = h+ + εi = h+ + εi Επομένως για να είναι η μέθοδος ευσταθής θα πρέπει να ισχύει: Στο Mathematica δίνουμε την εντολή NBReduce BAbs B Re@hD + Re@hD Re@hD3 και παίρνουμε τη λύση της ανισότητας: < h < Re@hD F <, hff 3 h h h h + + < Έτσι το μέγιστο επιτρεπτό βήμα είναι h <.7. h=.5 h= 3 5 3

9 h=.5 h= h=.5 h= h= Στη περίπτωση του αλγορίθμου Runge Kutta ης τάξης το αναλυτικό κριτήριο ευστάθειας επαληθεύεται, δηλαδή τα αριθμητικά αποτελέσματα για μεγάλες τιμές του h εφόσον το h <.7 δεν είναι ακριβή αλλά είναι ευσταθή (δεν είναι αφύσικα) ενώ για h >.7 είναι ασταθή αφού έχουν αφύσικη συμπεριφορά. Ο κώδικας σε Mathematica που χρησιμοποιήθηκε για την παραγωγή των ανωτέρω γραφημάτων είναι ο ακόλουθος: rk[f_,g_,n_,h_,t_,z_]:=module[{t,z,k,k,k3,k,i}, t=n[t];z=n[z];i=; m[[]]={t,z,g[t],abs[z-g[t]],,,,}; While[ i<n, i=i+; k=n[f[t,z]]; 9

10 k=n[f[t+.5*h,z+.5*h*k]]; k3=n[f[t+.5*h,z+.5*h*k]]; k=n[f[t+h,z+h*k3]]; z=n[z+h/*(k+ k+ k3+k)]; t=t+h; m[[i]]={t,z,g[t],abs[z-g[t]],k,k,k3,k}; ]] eq={y'[x]==exp[-x]-y[x],y[]==}; f[x_,y_]=part[eq[[]]/.y[x] y,] g[x_]=fullsimplify[part[dsolve[eq,y[x],x],,,]] n=3; h=.; x=eq[[,,]]; y=eq[[,]]; m=table[,{n}]; rk[f,g,n,h,x,y] TableForm[m,TableHeadings {None,{"x","Αριθμ (y)","αναλ (g)"," Αριθμ- Αναλ ","k","k","k3","k"}}] b=transpose[m]; c={b[[]],b[[]]}; m=transpose[c]; g=listplot[m,plotjoined True,PlotStyle RGBColor[,,],PlotRange All] g=plot[g[x],{x,x,35},plotrange All] Show[g,g,PlotRange {{,35},All},AxesOrigin {,}]

11 Άσκηση Δίδεται το πρόβλημα αρχικών τιμών d x dx dx xt t x dt dt dt t= + + ( ) = sin( ), () =., =. Να επιλυθεί αριθμητικά με τον παρακάτω αλγόριθμο ης τάξης: h yi+ = yi + k+ k k3 k k = f( x, y ) i i h h k = f xi +, yi + k h k3 = f xi +, yi + hk hk + + k = f xi + h, yi hk + + hk3 Να συγκριθούν τα αποτελέσματα με τα αντίστοιχα αναλυτικά και να σχολιασθούν. Τέλος, περιγράψτε ένα φυσικό πρόβλημα που θα μπορούσε να μοντελοποιείται με το παραπάνω πρόβλημα αρχικών τιμών. Λύση Θα πρέπει αρχικά να δημιουργήσουμε ένα σύστημα δύο διαφορικών εξισώσεων ης τάξης θέτοντας dx dg g = x και g = = dt dt Έτσι παίρνουμε το σύστημα: dg = g, g() =. dt dg + g + g = sin( t), g() =. dt το οποίο φέρνουμε στη μορφή: dg = g = f(, t g, g) dt dg = sin( t) g g = f( t, g, g) dt Αρχικά χρησιμοποιούμε το Mathematica για να πάρουμε την αναλυτική λύση : DSolve[{x''[t]+x'[t]+x[t] Sin[t],x[].,x'[].},x[t],t] x t = Sin t e + Cos t e Cos t Cos t Sin t Cos t t/ t/ ( ).5. ( ) ( )

12 Αναλυτική λύση Το δεδομένο πρόβλημα αρχικών τιμών αποτελεί μία εξαναγκασμένη αρμονική ταλάντωση. Θα επιλύσουμε τώρα το αρχικό πρόβλημα κάνοντας χρήση της κλασσικής μεθόδου Runge Kutta ης τάξης, καθώς και της τροποποιημένης που προτείνεται στην εκφώνηση, έτσι ώστε να συγκρίνουμε τις δύο μεθόδους μεταξύ τους: Για h=. έχουμε RK....35E E E E E E E E E E E E E E E E E E E E-

13 Τροποποιημένη RK....35E E E E E E E E E E E E E E E-.5...E E E E E- Για h=.5 έχουμε RK....35E E E E E E E E E E E E E E E E E E E E-3 3

14 Τροποποιημένη RK....35E E E E E E E E E E E E E E E E E E E E-3 Όπως γίνεται φανερό τα αποτελέσματα και των δύο μεθόδων RK ταυτίζονται. Κώδικας Fortran: program initial_value_problems_system! Solve: y''+y'+y=sin(t), y[]=., y'[]=. implicit none real::h real,allocatable,dimension(:)::z,z,x integer::i,method,n=! number of iterations allocate(x(n),z(n),z(n)) do method=,!=rk, =rk_modified x()=!starting point z()=.!initial value z()=.!initial value h=.5 select case (method) case () call rk(x,z,z,h,n) case () call rk_modified(x,z,z,h,n) end select print*, ' ',method,' ' do i=,n

15 print '(i3,",",f.3,",",f.5,",",f.5,",",e5.5)',i,x(i),z(i),f(x(i)), abs(f(x(i))-z(i)) enddo end do contains subroutine rk(x,z,z,h,n) real::x(:),z(:),z(:),h,k,k,k3,k,k,k,k3,k integer::i,n do i=,n- k=f(x(i),z(i),z(i)) k=g(x(i),z(i),z(i)) enddo end subroutine rk k=f(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k=g(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k3=f(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k3=g(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k=f(x(i)+h,z(i)+h*k3,z(i)+h*k3) k=g(x(i)+h,z(i)+h*k3,z(i)+h*k3) x(i+)=x(i)+h z(i+)=z(i)+(h/)*(k+*k+*k3+k) z(i+)=z(i)+(h/)*(k+*k+*k3+k) subroutine rk_modified(x,z,z,h,n) real::x(:),z(:),z(:),h,k,k,k3,k,k,k,k3,k integer::i,n do i=,n- k=f(x(i),z(i),z(i)) k=g(x(i),z(i),z(i)) k=f(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k=g(x(i)+.5*h,z(i)+.5*h*k,z(i)+.5*h*k) k3=f(x(i)+.5*h,z(i)+(-.5+./sqrt(.))*h*k+(-./sqrt(.))*h*k,z(i)+(-.5+./sqrt(.))*h*k+(-./sqrt(.))*h*k) k3=g(x(i)+.5*h,z(i)+(-.5+./sqrt(.))*h*k+(-./sqrt(.))*h*k,z(i)+(-.5+./sqrt(.))*h*k+(-./sqrt(.))*h*k) k=f(x(i)+h,z(i)- (./sqrt(.))*h*k+(+./sqrt(.))*h*k3,z(i)- (./sqrt(.))*h*k+(+./sqrt(.))*h*k3) k=g(x(i)+h,z(i)- (./sqrt(.))*h*k+(+./sqrt(.))*h*k3,z(i)- (./sqrt(.))*h*k+(+./sqrt(.))*h*k3) x(i+)=x(i)+h z(i+)=z(i)+(h/.)*(k+*(- /sqrt(.))*k+*(+/sqrt(.))*k3+k) 5

16 z(i+)=z(i)+(h/.)*(k+*(- /sqrt(.))*k+*(+/sqrt(.))*k3+k) enddo end subroutine rk_modified real function f(x,x,x3) result(z) real,intent(in)::x,x,x3 z=x3 end function f real function g(x,x,x3) result(z) real,intent(in)::x,x,x3 z=sin(x)-x-x3 end function g real function f(t) result(y)!analytic solution real,intent(in)::t y=(.*cos((sqrt(3.)*t)/.) - Exp(t/.)*Cos(t)*Cos((Sqrt(3.)*t)/.)** *Sin((Sqrt(3.)*t)/.) - Exp(t/.)*Cos(t)*Sin((Sqrt(3.)*t)/.)**)/Exp(t/.) end function f end program initial_value_problems_system

17 Άσκηση 3 Να εξεταστεί πότε οι αλγόριθμοι ολοκλήρωσης συνήθων διαφορικών εξισώσεων Runge-Kutta ανάγονται στους κανόνες ολοκλήρωσης Newton Cotes. Λύση Οι αλγόριθμοι ολοκλήρωσης συνήθων διαφορικών εξισώσεων Runge-Kutta ανάγονται στους κανόνες ολοκλήρωσης Newton Cotes όταν η παράγωγος dy εξαρτάται μόνον από dx το x, δηλαδή όταν είναι: dy f ( x) dx = () Σε αυτή την περίπτωση η αριθμητική λύση δίνεται από τον τύπο: xi + h y = i y + + i f( x) dx xi Αν ισχύει η () τότε η μέθοδος RK γίνεται k = f( x i ), k = f ( xi + h) h h y = i y + + i ( k k ) yi ( f( xi) f( xi h) ) + = η οποία αντιστοιχεί στη μέθοδο ολοκλήρωσης του τραπεζίου: xi + h h f ( xdx ) = ( f( xi) + f( xi + h) ) xi Αν ισχύει η () τότε η μέθοδος RK3 γίνεται k = f( x i ), k = f ( xi + h/), k3 = f ( xi + h) h ( 3) h ( ) ( h yi+ = yi + k + k + k = yi + f xi + f xi + ) + f( xi + h), η οποία σχέση αντιστοιχεί στον κανόνα /3 του Simpson: xi + h' h' h f ( xdx ) = ( f( xi) + f( xi + h') + f( xi + h') ), με h ' = 3 xi Αν ισχύει η () τότε η μέθοδος RK γίνεται k = f( x i ), k = f ( xi + h/), k3 = f ( xi + h/), k = f ( xi + h) h h h yi+ = yi + ( k+ k + k3+ k) = yi + f( xi) + f( xi + ) + f( xi + h) RK3 RK 7

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:

Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition.

Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition. ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04-05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΣ ΕΞΙΣΩΣΕΙΣ: Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος:

Διαβάστε περισσότερα

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x

Διαβάστε περισσότερα

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή

Διαβάστε περισσότερα

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων

1 Επίλυση Συνήθων ιαφορικών Εξισώσεων 1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6--6, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Βιβλίο Ν.Μ. Βραχάτη: σελίδα 6, Ασκήσεις 8. και 8.. Άσκηση 8. x I f( x) dx h f( x ah) da x aa ( )

Διαβάστε περισσότερα

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση α. Να στρογγυλοποιηθούν οι παρακάτω αριθμοί σε 4 σημαντικά ψηφία. 3 8 7.0045, 79.830, 73448,,, 7 9 3 Στρογγυλοποίηση σε 4 σημαντικά

Διαβάστε περισσότερα

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

f x και τέσσερα ζευγάρια σημείων

f x και τέσσερα ζευγάρια σημείων ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f

Διαβάστε περισσότερα

w 1, z = 2 και r = 1

w 1, z = 2 και r = 1 ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015

Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015 Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου

Διαβάστε περισσότερα

Κεφάλαιο 9. Αριθμητική επίλυση Διαφορικών Εξισώσεων

Κεφάλαιο 9. Αριθμητική επίλυση Διαφορικών Εξισώσεων Κεφάλαιο 9. Αριθμητική επίλυση Διαφορικών Εξισώσεων Σύνοψη Στο κεφάλαιο αυτό παρουσιάζονται οι πιο συνηθισμένες μέθοδοι αριθμητικής επίλυσης διαφορικών εξισώσεων. Ξεκινώντας από τις διαφορικές εξισώσεις

Διαβάστε περισσότερα

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:

x από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα: ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Δομή Επανάληψης. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Δομή Επανάληψης Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Δομή Επανάληψης Επανάληψη με αρίθμηση DO = ,

Διαβάστε περισσότερα

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)

Παράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k) Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα

Διαβάστε περισσότερα

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:

Άσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN: Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =

Διαβάστε περισσότερα

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με

Διαβάστε περισσότερα

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20 Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β

Διαβάστε περισσότερα

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ

Διαβάστε περισσότερα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις)

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις) Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Να υπολογιστούν τα όρια 4 + n n ) n ) n n + n + ) n + 5) n 7 n+ + ) n Θεωρούµε την ακολουθία a n ), που ορίζεται

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

8 FORTRAN 77/90/95/2003

8 FORTRAN 77/90/95/2003 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1: Εισαγωγή... 17 1.1. Ανασκόπηση της ιστορίας των υπολογιστών... 18 1.2. Πληροφορία και δεδομένα... 24 1.3. Ο Υπολογιστής... 26 1.4. Δομή και λειτουργία του υπολογιστή... 28 1.5.

Διαβάστε περισσότερα

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.

(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό. ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. Κεφάλαιο 4 Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. 4.1 Προβλήματα αρχικών τιμών Στο κεφάλαο αυτό θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1

Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1 Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα

Διαβάστε περισσότερα

15 εκεµβρίου εκεµβρίου / 64

15 εκεµβρίου εκεµβρίου / 64 15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 1 ο 1 Εισαγωγή Έντυπα εγχειρίδια ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, ΑΚΡΙΒΗΣ Γ.Δ., ΔΟΥΓΑΛΗΣ Β.Α. Αριθμητική ανάλυση με εφαρμογές σε matlab & mathematica,

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 11 Κεφάλαιο 1o: Εισαγωγικά... 15 1.1 Με τι ασχολείται η Αριθμητική Ανάλυση... 15 1.2 Πηγές Σφαλμάτων... 17 1.2.1 Εισόδου... 17 1.2.2 Αριθμητικής Υπολογιστών... 18 1.2.3

Διαβάστε περισσότερα

Θέματα Εξετάσεων Σεπτεμβρίου 2012:

Θέματα Εξετάσεων Σεπτεμβρίου 2012: ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ

Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Διατυπώστε τον 1 ο κανόνα ολοκλήρωσης Smpson b f ( xdx ) ( 1 3 f f f ) a, αντικαθιστώντας τη συνάρτηση f

Διαβάστε περισσότερα

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,

Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 96 Αριθµητική Ολοκλήρωση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.

ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B) 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών B ttp://ecoursescemengntuagr/courses/computational_metods_or_engineers/ Επίλυση διαφορικών εξισώσεων Α Επίλυση

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 16/2/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 6//0 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ A ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Ι ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ Σωματίδιο μάζας m = Kg κινείται ευθύγραμμα και ομαλά στον

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα

4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη

Διαβάστε περισσότερα

Αριθµητική Ολοκλήρωση

Αριθµητική Ολοκλήρωση Κεφάλαιο 5 Αριθµητική Ολοκλήρωση 5. Εισαγωγή Για τη συντριπτική πλειοψηφία των συναρτήσεων f (x) δεν υπάρχουν ή είναι πολύ δύσχρηστοι οι τύποι της αντιπαραγώγου της f (x), δηλαδή της F(x) η οποία ικανοποιεί

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους

17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους ΠΠΜ 500: Εφαρμογές Μηχανικής με Ανάπτυξη Λογισμικού 17. Εισαγωγή σε αριθμητικές μεθόδους για μηχανικούς και αλγορίθμους Εαρινό εξάμηνο 2012 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 3 η Σειρά Ασκήσεων 07.12.2010 Άσκηση 1. Δίνονται τα

Διαβάστε περισσότερα

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος

Ενότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;

ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων; ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική

Διαβάστε περισσότερα

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB

ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,

Διαβάστε περισσότερα

διακριτοποίηση αριθµητική παραγώγιση

διακριτοποίηση αριθµητική παραγώγιση Ανέκαθεν οι άνθρωποι αντιµετώπιζαν προβλήµατα υπολογισµού µη κανονικών ποσοτήτων όπως είναι για παράδειγµα το εµβαδόν ενός χωραφιού µε ακανόνιστο περίγραµµα, ή ο όγκος µιας δεξαµενής κωνικού σχήµατος κλπ.

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 2 ο Μάθημα 2 ο Αριθμητική επίλυση εξισώσεων (μη γραμμικές) Μέθοδοι με διαδοχικές δοκιμές σε διάστημα (Διχοτόμησης, Regula-Falsi) Μέθοδοι με επαναληπτικούς

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 08-09 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

MEM 253. Αριθμητική Λύση ΜΔΕ * * *

MEM 253. Αριθμητική Λύση ΜΔΕ * * * MEM 253 Αριθμητική Λύση ΜΔΕ * * * 1 Ένα πρόβλημα-μοντέλο Ροή θερμότητας σε ένα ομογενές μέσο. Ζητούμε μια συνάρτηση x [0, 1] και t 0 τέτοια ώστε u(x, t) ορισμένη για u t u(0, t) u(x, 0) = u xx, 0 < x

Διαβάστε περισσότερα

Υπολογιστικές Μέθοδοι 2006-7

Υπολογιστικές Μέθοδοι 2006-7 Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,

Διαβάστε περισσότερα

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και

Λύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία

Διαβάστε περισσότερα

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός

Εργαστήριο 9 Συναρτήσεις στη PASCAL. Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός Εργαστήριο 9 Συναρτήσεις στη PASCAL Η έννοια του κατακερματισμού. Συναρτήσεις. Σκοπός 7.1 ΕΠΙΔΙΩΞΗ ΤΗΣ ΕΡΓΑΣΙΑΣ Η έννοια της συνάρτησης ως υποπρογράμματος είναι τόσο βασική σε όλες τις γλώσσες προγραμματισμού,

Διαβάστε περισσότερα

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων»

Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Μεταπτυχιακό Πρόγραμμα Φυσικού Τμήματος «Υπολογιστική Φυσική» Θέμα εργασίας στο A Μέρος του μαθήματος «Προσομοίωση Χαοτικών Συστημάτων» Οδηγίες: Σχετικά με την παράδοση της εργασίας θα πρέπει: Το κείμενο

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r

πεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1.

ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: διαφορές των αγνώστων συναρτήσεων. σύνολο τιμών. F(k,y k,y. =0, k=0,1,2, δείκτη των y k. =0 είναι 2 ης τάξης 1. ΕΞΙΣΩΣΕΙΣ ΔΙΑΦΟΡΩΝ ΟΡΙΣΜΟΙ: Οι Εξισώσεις Διαφορών (ε.δ.) είναι εξισώσεις που περιέχουν διακριτές αλλαγές και διαφορές των αγνώστων συναρτήσεων Εμφανίζονται σε μαθηματικά μοντέλα, όπου η μεταβλητή παίρνει

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

2. Η μέθοδος του Euler

2. Η μέθοδος του Euler 2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια

Διαβάστε περισσότερα

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων}

Κεφάλαιο 6. Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό και Πεδίο Συντηρητικών Δυνάμεων} Κεφάλαιο 6 ΕΡΓΟ ΚΑΙ ΕΝΕΡΓΕΙΑ Εννοια του Εργου { Εργο και Κινητική Ενέργεια, Εργο Μεταβλητής Δύναμης, Ισχύς} Συντηρητικες Δυναμεις {Ανεξαρτησία του Εργου από τη Διαδρομή, Εννοια του Δυναμικού, Δυναμικό

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1)

Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) 3.1. Εισαγωγή Είναι γνωστό ότι η δύναμη που ασκείται σε ένα ελατήριο και ονομάζεται δύναμη επαναφοράς δίνεται από τη σχέση : F = kx (3.1) Αν ϑελήσουμε να υπολογίσουμε το έργο της δύναμης αυτής μεταξύ δύο

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου / 47

Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου / 47 Introduction Ν. Παπαδάκης 21 Οκτωβρίου 2015 Ν. Παπαδάκης Introduction 21 Οκτωβρίου 2015 1 / 47 Περιεχόμενα 1 Παρουσίαση Ποβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή του ίδιου προβλήματος

Διαβάστε περισσότερα

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης

Υπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ Πρόλογος... 11 Μέρος Α: Στοιχεία Αλγοριθμικής... 15 1 Επίλυση προβλημάτων με Η/Υ... 19 1.1 Εισαγωγή... 19 1.2 Αλγόριθμοι αλγοριθμικά προβλήματα... 20 1.3 Το μαθηματικό μοντέλο... 26

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 5/9/07 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να δειχθεί ότι το πεδίο F( x, y) = y cos x + y,sin x

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση

1. ΕΙΣΑΓΩΓΗ. 1.1 Τι είναι η αριθµητική ανάλυση 1 ΕΙΣΑΓΩΓΗ 11 Τι είναι η αριθµητική ανάλυση Στα µαθητικά και φοιτητικά µας χρόνια, έχουµε γνωριστεί µε µία ποικιλία από µαθηµατικά προβλήµατα των οποίων µαθαίνουµε σταδιακά τις λύσεις Παραδείγµατος χάριν,

Διαβάστε περισσότερα

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2

Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 Μέϑοδοι Εφαρμοσμένων Μαϑηματιϰών (ΜΕΜ 274) Φυλλάδιο 2 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΝΝΟΙΑ ΤΗΣ ΑΣΥΜΠΤΩΤΙΚΗΣ ΣΕΙΡΑΣ Εστω μη ϰενά διαστήματα J, I R, με 0 Ī. Ονομάζουμε μεταβλητή το x J ϰαι ασυμπτωτιϰή (ή διαταραϰτιϰή) παράμετρο

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα