Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition.
|
|
- Μαία Μοσχοβάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 04-05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΣ ΕΞΙΣΩΣΕΙΣ: Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: --04 Ημερομηνία παράδοσης εργασίας: Επιμέλεια απαντήσεων: Ι. Λυχναρόπουλος Οι παρακάτω ασκήσεις είναι από το βιβλίο των S. C. Chapra και R. P. Canale με τίτλο Numerical Methods for Engineers, 6 th edition. Α) ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΑΣΚΗΣΗ : Σελ Πρόβλημα 5.7, έχουμε να λύσουμε το σύστημα: dy( x) x y4 e f(x, y, z), y0 dx dz( x) yz f(x, y, z), z04 dx Επίλυση συστήματος με Μathematica: DSolve[{y'[x] == - y[x] + 4 Exp[-x], z'[x] == -((y[x] z[x]^)/), y[0]==, z[0]==4}, {y[x], z[x]}, x], z Μέθοδος Euler (h=0.) Από αρχικές συνθήκες έχουμε για x0 0, x x0 h 0. : x xh : y e y0 y( x0) y(0) z z( x ) z(0) () 4 (4 ) z x 0. y y h y 4e 0. () 4e.855 yz (.8667 ) z z h Συνεχίζουμε με τον ίδιο τρόπο μέχρι το x
2 Μέθοδος RK4 (h=0.) () k f ( x, y, z ) y 4e i i i i () yz i k f( xi, yi, zi) i xi h () h h () h () h xi () ( i, i, i ) i 4 k f x y k z k y k e h () h () yi k zi k () h h () h () k f( xi, yi k, zi k ) k h () h h () h () h xi () f( xi, yi k, zi k ) yi k 4e h () h () yi k zi k () h h () h () k f( xi, yi k, zi k ) () () () () 4 i i i i () () () 4 i i i ( xi h) () () yi hk zi hk k f ( x h, y hk, z hk ) y hk 4e k f ( x h, y hk, z hk ) h () () () () yi yi k k k k4 6 h () () () () zi zi k k k k4 6 x x0 h 0. : () x0 0 k y 4e () 4e 0 k 0 () 0 0 h () h x () 0. 0 () yz (4 ) k y k 4e 04e 0.8 k h () h () y0 k z0 k 04 ( 0.667) 5.76 h () h x () 0. 0 k y k 4e ( 0.8) 4e k () h () h () y0 k z0 k ( 0.8) 4 ( 5.76) ( x0 h ) () () y0 hk z0 hk 0.( 0.045) k y hk 4e 0.( 0.045) 4e 0.60 () () (0 0.) 4 0 () k4.96 h () () () () 0. y y0 k k k k4 0 ( 0.8) ( 0.045) h () () () () 0. z z0 k k k k ( 5.76) ( 7.678) Συνεχίζουμε με τον ίδιο τρόπο μέχρι x=.
3 Πρόγραμμα Fortran: program initial_value_problems_system implicit none real::h real,allocatable,dimension(:)::z,z,x integer::i,method,n=5! number of iterations allocate(x(n),z(n),z(n)) do method=,!=euler, =rk, =rk, 4=rk4 x()=0!starting point z()=!initial value z()=4!initial value h=0. select case (method) case () call euler(x,z,z,h,n) case () call rk(x,z,z,h,n) case () call rk(x,z,z,h,n) case (4) call rk4(x,z,z,h,n) end select print*, ' ',method,' ' do i=,n print*,i-,x(i),z(i),f_an(x(i)),abs(f_an(x(i))- z(i)),z(i),g_an(x(i)),abs(g_an(x(i))-z(i)) end do contains subroutine euler(x,z,z,h,n) real::x(:),z(:),z(:),h integer::i,n do i=,n- z(i+)=z(i)+h*f(x(i),z(i),z(i)) z(i+)=z(i)+h*g(x(i),z(i),z(i)) x(i+)=x(i)+h end subroutine euler subroutine rk(x,z,z,h,n) real::x(:),z(:),z(:),h,k,k,k,k integer::i,n do i=,n- k=f(x(i),z(i),z(i)) k=g(x(i),z(i),z(i))
4 k=f(x(i)+h,z(i)+h*k,z(i)+h*k) k=g(x(i)+h,z(i)+h*k,z(i)+h*k) x(i+)=x(i)+h z(i+)=z(i)+(h/)*(k+k) z(i+)=z(i)+(h/)*(k+k) end subroutine rk subroutine rk(x,z,z,h,n) real::x(:),z(:),z(:),h,k,k,k,k,k,k integer::i,n do i=,n- k=f(x(i),z(i),z(i)) k=g(x(i),z(i),z(i)) k=f(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k=g(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k=f(x(i)+h,z(i)+h*k,z(i)+h*k) k=g(x(i)+h,z(i)+h*k,z(i)+h*k) x(i+)=x(i)+h z(i+)=z(i)+(h/6)*(k+4*k+k) z(i+)=z(i)+(h/6)*(k+4*k+k) end subroutine rk subroutine rk4(x,z,z,h,n),k4 real::x(:),z(:),z(:),h,k,k,k,k4,k,k,k integer::i,n do i=,n- k=f(x(i),z(i),z(i)) k=g(x(i),z(i),z(i)) k=f(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k=g(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k=f(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k=g(x(i)+0.5*h,z(i)+0.5*h*k,z(i)+0.5*h*k) k4=f(x(i)+h,z(i)+h*k,z(i)+h*k) k4=g(x(i)+h,z(i)+h*k,z(i)+h*k) x(i+)=x(i)+h z(i+)=z(i)+(h/6)*(k+*k+*k+k4) z(i+)=z(i)+(h/6)*(k+*k+*k+k4) end subroutine rk4 real function f(x,x,x) result(z) real,intent(in)::x,x,x z=-*x+4*exp(-x) end function f
5 real function g(x,x,x) result(z) real,intent(in)::x,x,x z=-x*x**/ end function g real function f_an(t) result(y)!analytic solution real,intent(in)::t y=*(- + *Exp(t))/Exp(*t) end function f_an real function g_an(t) result(y)!analytic solution real,intent(in)::t y=(*exp(*t))/(4-6*exp(t) + 5*Exp(*t)) end function g_an end program initial_value_problems_system Παίρνουμε τα ακόλουθα αποτελέσματα (Aν. = Αναλυτική λύση, Abs Err = Απόλυτο σφάλμα): Εuler Βήμα x y(x) y(x) Aν. Abs Err z(x) z(x) Αν. Abs Err E E E E E E E E E E E E+00 RK4 Βήμα x y(x) y(x) Aν. Abs Err z(x) z(x) Αν. Abs Err E E E E E E E E E E E E-04 Παρατηρούμε ότι η μέθοδος RK4 δίνει πολύ καλύτερα αποτελέσματα (μικρότερο απόλυτο σφάλμα). ΑΣΚΗΣΗ : Σελ Πρόβλημα 5.6. Επίσης εξετάστε το κριτήριο ευστάθειας και εάν οι μέθοδοι που θα εφαρμόστε συγκλίνουν. Έχουμε να λύσουμε την ακόλουθη διαφορική εξίσωση ης τάξης: d x() t dx() t dx c x t x dt dt dt t0 0 0 ( ) 0, (0), 0 () με c 5, 40, 00 Θα πρέπει αρχικά να δημιουργήσουμε ένα σύστημα δύο διαφορικών εξισώσεων ης τάξης θέτοντας dx dg g x και g dt dt
6 Έτσι παίρνουμε το σύστημα: dg g, g0 dt dg c g g 0, g 00 dt 0 το οποίο φέρνουμε στη μορφή: dg g ft, g, g dt dg c g g ft, g, g dt 0 Αναλυτική λύση της () και γραφική παράσταση με Mathematica: c = 5; s = DSolve[{0 x''[t] + c x'[t] + 0 x[t] == 0, x[0] ==, x'[0] == 0}, x[t], t]; s= x[t] /. s //Expand Plot[s, {t, 0, 5}, PlotRange -> All, AxesOrigin -> {0, 0}] c=5: Cos c=40:
7 c=00: Ο κώδικας Fortran που επιλύει το πρόβλημα δόθηκε στην προηγούμενη άσκηση. Οι μόνες αλλαγές είναι στη δήλωση των αρχικών τιμών: cc=5!dumping constant Values:5,40,00 x()=0!starting point z()=!initial value z()=0!initial value h=!step καθώς και στον ορισμό των συναρτήσεων: real function f(x,x,x) result(z) real,intent(in)::x,x,x z=x end function f real function g(x,x,x) result(z) real,intent(in)::x,x,x z=-x-cc/0.*x end function g real function f_an(t) result(y)!analytic solution real,intent(in)::t select case (cc) case (5): y=cos((*sqrt(7.)*t)/8.)/exp(t/8.) + & Sin((*Sqrt(7.)*t)/8.)/(.*Sqrt(7.)*Exp(t/8.)) case (40): y=exp(-t) + t/exp(t) case (00): y=exp((-5 - *Sqrt(6.))*t)/. - (5*Exp((-5- *Sqrt(6.))*t))/(4.*Sqrt(6.)) + & Exp((-5 + *Sqrt(6.))*t)/. + (5*Exp((- 5+*Sqrt(6.))*t))/(4.*Sqrt(6.)) end select c=5: Euler (h=)
8 Euler, h= (c=5) Βήμα t x(t) x(t)αν. AbsErr E E E E E E E E E E E E E E E E+0 Η αριθμητική λύση χάνει σε ακρίβεια καθώς το x αυξάνει. Αυτό οφείλεται στο μεγάλο βήμα h. Η γραφική παράσταση της αναλυτικής (συμπαγής γραμμή) και της αριθμητικής λύσης (κόκκινες κουκκίδες) δίνονται στο επόμενο γράφημα (μέχρι x=6.5) Δοκιμάζουμε ένα μικρότερο βήμα με τη μέθοδο Euler, έστω h=0., και παίρνουμε Euler, h=0. (c=5) Βήμα t x(t) x(t)αν. AbsErr E E E E E E E E E E-0
9 E E E E E E E E E E E E E E E Παρατηρούμε σαφή βελτίωση των αποτελεσμάτων. Παρόλα αυτά όσο το x αυξάνει οι αποκλίσεις από τα αναλυτικά αποτελέσματα είναι σημαντικές. Μέθοδος RK4 (h=): RK4, h= (c=5) Βήμα t x(t) x(t)αν. AbsErr E E E E E E E E E E E E E E E E-0
10 Παρατηρούμε ότι η μέθοδος RK4 δίνει αρκετά ακριβή λύση παρόλο το μεγάλο βήμα που χρησιμοποιήθηκε, όπως φαίνεται και στο ακόλουθο γράφημα: Για τις άλλες δύο περιπτώσεις του c (δηλ. 40 και 00), παρουσιάζουμε στη συνέχεια την λύση, που παίρνουμε με τη μέθοδο RK4 και βήμα h= για c=40 και βήμα h=0. για c=00. RK4, h= (c=40) Βήμα t x(t) x(t)αν. AbsErr E E E E E E E E E E E E E E E E
11 RK4, h=0. (c=00) Βήμα t x(t) x(t)αν. AbsErr E E E E E E E E E E E E E E E E E E E E E E E E E Κριτήριο Ευστάθειας μεθόδου Euler dg () () () () () () g g i gi hg i gi gi hgi dt c c dg c g g h g g g hg h g 0 0 dt 0 () () () () () () () i i i i i i i g g
12 () h () g i g i () c () gi h h gi 0 G Θέλουμε η φασματική ακτίνα του πίνακα G να είναι <. Αυτή υπολογίζεται στο Mathematica με τις ακόλουθες εντολές:, Re,Re, Re Eigenvalues ReduceMaxAbs, Τα αποτελέσματα συνοψίζονται στον ακόλουθο πίνακα: c h 5 0 h h 00 0 h 0.0 ΑΣΚΗΣΗ : Σελ. 75. Πρόβλημα 5. dp Θέλουμε να επιλύσουμε τη διαφορική εξίσωση: 0.06( p/000) p, p(950) 555 dt Αναλυτική λύση με Mathematica: 0.06;pmx 000; DSolve mx, ,, Μέθοδος RK4 (h=5) k f( ti, pi) 0.06( pi /000) pi h h h h k f( ti, pi k) 0.06 /000 pi k i p k h h h h k f( ti, pi k) 0.06 pi k /000 pi k k4 f( ti h, pi hk) 0.06 pi hk/000pi hk h pi pi kk kk4 6 Κώδικας Fortran: program initial_value_problems_system implicit none real::h real,allocatable,dimension(:)::z,x integer::i,method,n=! number of iterations allocate(x(n),z(n))
13 do method=4,4!=euler, =rk, =rk, 4=rk4 if (method==.or. method==) cycle x()=950!starting point z()=555!initial value h=5 select case (method) case () call euler(x,z,h,n) case () call rk(x,z,h,n) case () call rk(x,z,h,n) case (4) call rk4(x,z,h,n) end select print*, ' ',method,' ' do i=,n print '(i,",",(f8.0,","),e5.4)',i,x(i),z(i),f_an(x(i)),abs(f _an(x(i))-z(i)) end do read* contains subroutine euler(x,z,h,n) real::x(:),z(:),h integer::i,n do i=,n- z(i+)=z(i)+h*f(x(i),z(i)) x(i+)=x(i)+h end subroutine euler subroutine rk(x,z,h,n) real::x(:),z(:),h,k,k integer::i,n do i=,n- k=f(x(i),z(i)) k=f(x(i)+h,z(i)+h*k) z(i+)=z(i)+(h/.)*(k+k) x(i+)=x(i)+h end subroutine rk subroutine rk(x,z,h,n) real::x(:),z(:),h,k,k,k
14 integer::i,n do i=,n- k=f(x(i),z(i)) k=f(x(i)+0.5*h,z(i)+0.5*h*k) k=f(x(i)+h,z(i)+h*k) z(i+)=z(i)+(h/6.)*(k+4*k+k) x(i+)=x(i)+h end subroutine rk subroutine rk4(x,z,h,n) real::x(:),z(:),h,k,k,k,k4 integer::i,n do i=,n- k=f(x(i),z(i)) k=f(x(i)+0.5*h,z(i)+0.5*h*k) k=f(x(i)+0.5*h,z(i)+0.5*h*k) k4=f(x(i)+h,z(i)+h*k) z(i+)=z(i)+(h/6.)*(k+*k+*k+k4) x(i+)=x(i)+h end subroutine rk4 real function f(x,x) result(z) real,intent(in)::x,x z=0.06*(-x/000.)*x end function f real function f_an(x) result(y)!analytic solution real,intent(in)::x y=(000.*exp(0.06*x))/(.8595e+ +Εxp(0.06*x)) end function f_an end program initial_value_problems_system Αποτέλεσμα: Βήμα t p(t) p(t) Αν Abs Err E E E E E E E E E E E-0 Η σύγκριση της αριθμητικής λύσης με τα δεδομένα του προβλήματος δίνεται στη συνέχεια (στην τελευταία στήλη εμφανίζεται το σχετικό σφάλμα)
15 Βήμα t p(t) p(t) από πίνακα Rel Err % % % % % % Το μοντέλο κρίνεται επαρκές. Β) ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΑΣΚΗΣΗ 4: Σελ Πρόβλημα 5.4 Έχουμε να επιλύσουμε την εξίσωση: dt dt T S S, S,0,0 dr r dr () dt με οριακές συνθήκες τις T () και 0 (συνθήκη συμμετρίας). dr r Αναλυτική λύση με Mathematica: a=dsolve[{t''[r]+/r T'[r]==-S,T[]==,T'[0]==0},T[r],r]; a=t[r]/.flatten[a] Δακριτοποιούμε το πεδίο ορισμού: Χωρίζουμε την ακτίνα σε Ν ίσα διαστήματα (Ν+ κόμβους) μήκους r / N 0 0 r N N+ r=0 i- i i+ r= Προσεγγίζουμε τη διαφορική εξίσωση () στον τυχαίο κόμβο i : T T T T T S i i i i i r ri r Ti T i T i S r ri r r, () r rir για τους εσωτερικούς κόμβους i,..., N όπου r ( i) r Για i N έχουμε: u 0 N i
16 Για i θα χρησιμοποιήσουμε την οριακή συνθήκη μαζί με την διαφορική εξίσωση: dt d T dt d T Παρατηρούμε ότι το limr 0 lim dr r 0 lim dr r0 rdr r dr dt T TT Έτσι η () γράφεται: S o S () dr r dt T T0 Η οριακή συνθήκη: 0 0To T (4) dr r0 r Ό κόμβος i 0 είναι φανταστικός. Οι () και (4) συνδυάζονται: 4T 4T S r (5) Το σύστημα που προκύπτει είναι τριδιαγώνιο και θα επιλυθεί με την μέθοδο Τhomas. Έστω ένα αραιό πλέγμα με Ν= (Δr = 0.). Τότε έχουμε να λύσουμε το σύστημα: T S / T S T S.5 T S T S T S T (από οριακή συνθήκη) 4 Πρόγραμμα Fortran: Program Poisson implicit none real,allocatable::a(:),b(:),c(:),d(:),x(:),r(:) real:: dr,pi,xor integer::n,i,status,ss SS=!source term Xor=! Oriakh synthikh (sto n+ kombo) n=!arithmos diasthmatwn -> n+ komboi allocate(a(n),b(n),c(n-),x(n+),d(n),r(n+)) dr=./n do i=,n+ r(i)=(i-)*dr end do x(n+)=0 b()=4.
17 c()=-4. do i=,n a(i)=./dr**-./(.*r(i)*dr) b(i)=-./dr** if (i<n) then c(i)=./dr**+./(.*r(i)*dr) end if end do d()=ss*dr** do i=,n- d(i)=-ss end do d(n)=-ss-xor*(./dr**+./(.*r(i)*dr)) print*, ' ' call Thomas(n,a,b,c,d,x) x(n+)=xor!arxikh synthiki do i=,n+ print '(I,F.,F.4,F.4)',i,r(i),x(i),+SS*(- r(i)**)/4. end do contains subroutine Thomas(n,a,b,c,d,x) integer,intent(in) :: n real, INTENT(INOUT) ::a(n),b(n),c(n-),d(n) real, INTENT(OUT) ::x(n) integer::i real ::t(n),u(n) t()=b() u()=d()/t() do i=,n t(i)=b(i)-a(i)*c(i-)/t(i-) u(i)=(d(i)-a(i)*u(i-))/t(i) end do x(n)=u(n) do i=n-,,- x(i)=u(i)-c(i)/t(i)*x(i+) end do end subroutine Thomas end program Δίνουμε στη συνέχεια ενδεικτικά το αποτέλεσμα του αλγορίθμου για Ν=0 και για τις τρεις τιμές του S. Δίπλα στην αριθμητική τιμή παρουσιάζεται η αναλυτική τιμή. Παρατηρούμε ότι υπάρχει απόλυτη ταύτιση. Επίσης παρουσιάζονται οι σχετικές γραφικές παραστάσεις.
18 S= Κόμβος r T(r) T(r) Αν S=0 Κόμβος r T(r) T(r) Αν
19 S=0 Κόμβος r T(r) T(r) Αν ΑΣΚΗΣΗ 5: Σελ Να επιλυθεί αριθμητικά το πρόβλημα που διατυπώνεται στη παράγραφο 7.. (επιλέξτε δικές σας τιμές για τις παραμέτρους E, I και L. Σχολιάστε τα αποτελέσματά σας. Βλέπε παράγραφο 7..
Επιλύστε αριθμητικά το με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 1-13, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Ημερομηνίες παράδοσης: Ασκήσεις 1 και : -1-1, Ασκήσεις 3 και 4: 8-1-13 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ
Διαβάστε περισσότεραπεπερασμένη ή Η αναλυτική λύση της διαφορικής εξίσωσης δίνεται με τη βοήθεια του Mathematica: DSolve u'' r 1 u' r 1, u 1 0, u' 0 0,u r,r
Άσκηση : πρόκειται για ΣΔΕ δύο οριακών τιμών με εφαρμογή του αλγόριθμου Thomas για επίλυση τριγωνικού συστήματος Έχουμε να επιλύσουμε την εξίσωση: du du u dr r dr με οριακές συνθήκες u () 0 και u(0) πεπερασμένη
Διαβάστε περισσότεραΆσκηση 1. Δίδεται η διαφορική εξίσωση dy. Λύση. Έχουμε dy
Άσκηση ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική εξίσωση dy x =
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΥΠΕΡΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0. ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Άσκηση Έστω ένα κύμα που κινείται εντός αγωγού με ταχύτητα c 0 m/s. Η κατανομή
Διαβάστε περισσότεραΕπιλύστε αριθμητικά με τη μέθοδο των πεπερασμένων διαφορών το παρακάτω πρόβλημα δύο οριακών τιμών: ( )
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, -, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Επιλύστε αριθμητικά με τη μέθοδο
Διαβάστε περισσότεραΕπιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΠΑΡΑΔΕΙΓΜΑ 17 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 005-006, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Ομάδα Α: Άσκηση Έχουμε να επιλύσουμε
Διαβάστε περισσότεραΕπιµέλεια: Γιάννης Λυχναρόπουλος Οµάδα Α: Άσκηση 2 Έχουµε να επιλύσουµε την εξίσωση: 2
Οµάδα Α: Άσκηση Έχουµε να επιλύσουµε την εξίσωση: du du u = dr + r dr = (Α) du µε οριακές συνθήκες u () = 0 και u(0) πεπερασµένη ή = 0 (συνθήκη dr r = 0 συµµετρίας). Η αναλυτική λύση της διαφορική ς εξίσωσης
Διαβάστε περισσότεραΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ
ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα
Διαβάστε περισσότερα(συνθήκη συμμετρίας) (4) Το παραπάνω πρόβλημα μπορεί να περιγράψει τη μεταβατική πλήρως ανεπτυγμένη ροή σε κυλινδρικό αγωγό.
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 00-0, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ (αρχικών και οριακών τιμών) ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..00 ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος Ζητείται να επιλυθεί η εξίσωση t
Διαβάστε περισσότεραΕφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x
Διαβάστε περισσότεραΗ διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:
ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών
Διαβάστε περισσότεραΕπιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική
Διαβάστε περισσότεραΚεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών
Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα
Διαβάστε περισσότεραΠαράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #9 ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΣΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί η εξίσωση ροής διαμέσου ενός κυλινδρικού αγωγού λόγω διαφοράς πίεσης: d u du u = + = dr r dr du με
Διαβάστε περισσότεραΠαράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta
Διαβάστε περισσότεραΚεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3
Διαβάστε περισσότεραf στον κόμβο i ενός πλέγματος ( i = 1, 2,,N
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
Διαβάστε περισσότεραΚεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών
Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι
Διαβάστε περισσότεραΕπιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια
Διαβάστε περισσότεραΣυνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΕΜΒΟΛΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση Η σχέση ανάµεσα στην τάση και στην θερµοκρασία ενός θερµοστοιχείου πλατίνας µε 0% ρόδιο δίνεται από τον
Διαβάστε περισσότεραΠαράδειγμα #5 EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης. ( k ) ( k)
Παράδειγμα # EΠΙΛΥΣΗ ΜΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΜΕΘΟΔΟ NEWTON ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Να επιλυθεί το παρακάτω μη γραμμικό σύστημα με την μέθοδο Newton: ( ) ( ) f, = + = 0 f, = + 8=
Διαβάστε περισσότεραΥπολογιστικές Μέθοδοι 2006-7
Υπολογιστικές Μέθοδοι 006-7 Άσκηση. (Επιμέλεια: Ιωάννης Λυχναρόπουλος) Θα επιλύσουμε την εξίσωση: urr ur u t, t t 0 και R i /Rout r r Έστω Ri 0.4 και Rout δηλαδή: Ri / Rout 0.4 με αρχική συνθήκη: ur (,0)
Διαβάστε περισσότεραx από το κεντρικό σημείο i: Ξεκινάμε από το ανάπτυγμα Taylor στην x κατεύθυνση για απόσταση i j. Υπολογίζουμε το άθροισμα:
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0 05, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0 Ημερομηνία παράδοσης εργασίας: 9 0 Επιμέλεια απαντήσεων:
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 2004, 3 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #5: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Δίνοντας το ολοκλήρωμα στη Mathematica παίρνουμε την τιμή του: 0 40 100 140558 z 2z 15
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ. ΜΗΤΣΟΤΑΚΗΣ ΑΘΗΝΑ 27 ΠΑΡΑ ΕΙΓΜΑ : ΜΕΘΟ ΟΣ NEWTON Πρόγραµµα Matlab για την προσέγγιση της ρίζας της εξίσωσης f(x)= µε την µέθοδο Newton. Συναρτήσεις f(x), f
Διαβάστε περισσότεραf x και τέσσερα ζευγάρια σημείων
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 014 015, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 1 11 014 Ημερομηνία παράδοσης εργασίας: 18 11 014 Επιμέλεια απαντήσεων:
Διαβάστε περισσότεραΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB
ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΣΤΗ MATLAB 1. Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (Σ.Δ.Ε.) 1 ης τάξης έχει τη μορφή dy dt f ( t, y( t)) όπου η συνάρτηση f(t, y) είναι γνωστή,
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.
Διαβάστε περισσότεραΑριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων
Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο
Διαβάστε περισσότερατην κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο
Διαβάστε περισσότεραΚεφ. 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών
Κεφ 6: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές προβλήματα οριακών τιμών 61 Εισαγωγή στη μέθοδο των πεπερασμένων διαφορών 6 Προβλήματα δύο οριακών τιμών ΣΔΕ 63 Εξισώσεις πεπερασμένων
Διαβάστε περισσότεραΗ πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό αγωγό περιγράφεται από την συνήθη διαφορική εξίσωση
Άσκηση ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ 08-09 5 Ο ΕΞΑΜΗΝΟ Ι ΑΣΚΩΝ:. Βαλουγεώργης ΕΡΓΑΣΙΑ: ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΟΡΙΑΚΩΝ ΤΙΜΩΝ (Σ Ε & Μ Ε Ηµεροµηνία παράδοσης: 8//09 Η πλήρως ανεπτυγµένη ροή λόγω διαφοράς πίεσης σε κυλινδρικό
Διαβάστε περισσότεραΕπιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος. Η μόνιμη θερμοκρασιακή κατανομή σε δύο διαστάσεις περιγράφεται από την εξίσωση: και
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ και ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η μόνιμη
Διαβάστε περισσότεραFORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017
FORTRAN & Αντικειμενοστραφής Προγραμματισμός ΣΝΜΜ 2017 Μ4. Συναρτήσεις, Υπορουτίνες, Ενότητες - Ασκήσεις Γεώργιος Παπαλάμπρου Επικ. Καθηγητής ΕΜΠ Εργαστήριο Ναυτικής Μηχανολογίας george.papalambrou@lme.ntua.gr
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2011-2012 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 26.10.2011 Άσκηση 1. Να μετατραπεί
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. με το πολυώνυμο παρεμβολής Lagrange 2 ης τάξης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Διατυπώστε τον 1 ο κανόνα ολοκλήρωσης Smpson b f ( xdx ) ( 1 3 f f f ) a, αντικαθιστώντας τη συνάρτηση f
Διαβάστε περισσότεραw 1, z = 2 και r = 1
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #4: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 0..009 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Δίδεται η διαφορική εξίσωση Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος
Διαβάστε περισσότεραδιακριτοποίηση αριθµητική παραγώγιση
Ανέκαθεν οι άνθρωποι αντιµετώπιζαν προβλήµατα υπολογισµού µη κανονικών ποσοτήτων όπως είναι για παράδειγµα το εµβαδόν ενός χωραφιού µε ακανόνιστο περίγραµµα, ή ο όγκος µιας δεξαµενής κωνικού σχήµατος κλπ.
Διαβάστε περισσότεραΑριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015
Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου
Διαβάστε περισσότεραΆσκηση 1. Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του Z στα παρακάτω κομμάτια κώδικα FORTRAN:
Άσκηση 1 Α. Υπολογίστε χωρίς να εκτελέσετε κώδικα FORTRAN τα παρακάτω: Ποιά είναι η τελική τιμή του J στα παρακάτω κομμάτια κώδικα FORTRAN: INTEGER J J = 5 J = J + 1 J = J + 1 INTEGER X, Y, J X = 2 Y =
Διαβάστε περισσότεραy 1 (x) f(x) W (y 1, y 2 )(x) dx,
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x
Διαβάστε περισσότεραΠαράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Άσκηση 1 Παράδειγμα #10 ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΕΛΛΕΙΠΤΙΚΕΣ ΜΔΕ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Να επιλυθεί η ροή ρευστού διαμέσου τετραγωνικού αγωγού η οποία εκφράζεται μέσω της διαφορικής εξίσωσης Poisson
Διαβάστε περισσότεραΠρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11
Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 4: Σφάλματα περικοπής (truncation) και η σειρά Taylor Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #4: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6--6, ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΟΛΟΚΛΗΡΩΣΗ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Βιβλίο Ν.Μ. Βραχάτη: σελίδα 6, Ασκήσεις 8. και 8.. Άσκηση 8. x I f( x) dx h f( x ah) da x aa ( )
Διαβάστε περισσότεραy 1 και με οριακές συνθήκες w
ΑΣΚΗΣΗ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Η εξίσωση Laplace σε
Διαβάστε περισσότεραΠαράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα # ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση α. Να στρογγυλοποιηθούν οι παρακάτω αριθμοί σε 4 σημαντικά ψηφία. 3 8 7.0045, 79.830, 73448,,, 7 9 3 Στρογγυλοποίηση σε 4 σημαντικά
Διαβάστε περισσότεραΚεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε
Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές
Διαβάστε περισσότεραΠαράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος
Παράδειγμα #1 ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟΔΙΑΣΤΟΛΗΣ ΕΠΙΜΕΛΕΙΑ: Ι. Λυχναρόπουλος 1. Πως ορίζεται και τι σημαίνει ο όρος flop στους επιστημονικούς υπολογισμούς. Απάντηση: Ο όρος flop σημαίνει floating point operation
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια υπορουτίνα; με υπορουτίνα ΥΠΟΡΟΥΤΙΝΕΣ. Παράδειγμα #1: η πράξη SQ. Ποια η διαφορά συναρτήσεων και υπορουτίνων;
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια υπορουτίνα; ΥΠΟΡΟΥΤΙΝΕΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν ή περισσότερους υπολογισμούς Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές φορές μέσα
Διαβάστε περισσότεραΆσκηση 1 Έχουµε να επιλύσουµε την εξίσωση κύµατος 1 ης τάξης (υπερβολική εξίσωση) (1)
Άσκηση Έχουµε να επιλύσουµε την εξίσωση κύµατος ης τάξης (υπερβολική εξίσωση) u t + cu = 0 () Θα χρησιµοποιήσουµε τις ακόλουθες µεθόδους: α) Μέθοδος FTBS (Πρόδροµη στο χρόνο, ανάδροµη στο χώρο) Το σχήµα
Διαβάστε περισσότεραΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:
ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα
Διαβάστε περισσότεραΤμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016. ΦΥΣ145 Υπολογιστικές Μέθοδοι στην Φυσική
Τμήμα Φυσικής Πανεπιστημίου Κύπρου Εαρινό Εξάμηνο 2015/2016 Διδάσκoντες: Χαράλαμπος Παναγόπουλος, Μάριος Κώστα Βαθμός: Όνομα: Α.Δ.Τ.:... ΕΝΔΙΑΜΕΣΗ ΕΞΕΤΑΣΗ 24/03/2016 Άσκηση 1 (1 μονάδα) Ποιο είναι το αποτέλεσμα
Διαβάστε περισσότεραΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Κωνσταντίνος Ξ. Τσιόκας. Αν. Καθηγήτρια Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ & ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΛΕΓΧΟΥ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΥΨΗΛΗΣ ΤΑΞΗΣ ODE ΜΕ ΥΨΗΛΗΣ ΤΑΞΗΣ
Διαβάστε περισσότεραΣυνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017. Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες. Η πρώτης τάξης διαφορική εξίσωση
Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 19/10/2017 Ακριβείς Διαφορικές Εξισώσεις-Ολοκληρωτικοί Παράγοντες Η πρώτης τάξης διαφορική εξίσωση M(x, y) + (x, y)y = 0 ή ισοδύναμα, γραμμένη στην μορφή M(x,
Διαβάστε περισσότεραΠαράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ
Παράδειγμα #4 ΑΛΓΕΒΡΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ Επιμέλεια: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ Άσκηση 1 Τα ισοζύγια µάζας του συστήµατος διανοµής ατµού σε µονάδα διυλιστηρίου δίνονται από τις παρακάτω εξισώσεις: 181.60
Διαβάστε περισσότερα11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ
11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.
Διαβάστε περισσότεραιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20
Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β
Διαβάστε περισσότερα(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ
Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ ΕΡΓΑΣΤΗΡΙΟΥ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΑΚΑΔ. ΕΤΟΣ 08-09 ΔΙΔΑΣΚΩΝ : Χ. Βοζίκης ΟΝΟΜΑΤΕΠΩΝΥΜΟ Αριθμός
Διαβάστε περισσότεραΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική. Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηματικές Μέθοδοι στη Φυσική Τελική Εξέταση 24 Μάη 2005 Group: Α Γράψτε το ονοματεπώνυμο και αριθμό ταυτότητάς σας στο πάνω μέρος της αυτής της σελίδας. Πρέπει να απαντήσετε και στα 5 προβλήματα
Διαβάστε περισσότεραΥπολογιστές Ι. Άδειες Χρήσης. Υποπρογράμματα. Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Άδειες Χρήσης Υπολογιστές Ι Υποπρογράμματα Διδάσκοντες: Αν. Καθ. Δ. Παπαγεωργίου, Αν. Καθ. Ε. Λοιδωρίκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 2: Εισαγωγή σε έννοιες προγραμματισμού με υπολογιστή Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα0.5, Μεταφορά θερμότητας ανάμεσα σε κυλίνδρους μεγάλου μήκους (χωρίς ασπίδα):
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 0-05 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 6-03-05 Ημερομηνία
Διαβάστε περισσότεραΛύσεις ασκήσεων Άσκηση 1: Cengel and Ghajar, Κεφάλαιο 13: Προβλήματα και
ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #: Μετάδοση θερμότητας με ακτινοβολία Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 0-03-06 Ημερομηνία
Διαβάστε περισσότεραΠαράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης
Παράδειγμα #4 EΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΑΛΓΕΒΡΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΜΕ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση Τα ισοζύγια μάζας του συστήματος διανομή ατμού σε μονάδα διυλιστηρίου δίνονται από τις παρακάτω
Διαβάστε περισσότεραΕνότητα 6. Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού. Σιέττος Κωνσταντίνος
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Προγραμματισμός με Εφαρμογές στην Επιστήμη του Μηχανικού Ενότητα 6 Σιέττος Κωνσταντίνος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)
ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση
Διαβάστε περισσότερα1 Επίλυση Συνήθων ιαφορικών Εξισώσεων
1 Επίλυση Συνήθων ιαφορικών Εξισώσεων Εξίσωση πρώτης τάξης µε συνθήκες αρχικών τιµών ΠΡΟΒΛΗΜΑ : Να ευρεθεί συνάρτηση y = y(x) η οποία για x [a, b] ικανοποιεί την εξίσωση y = f(x, y) υπό την αρχική συνθήκη
Διαβάστε περισσότεραΑριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 27/03/2015 1
Αριθμητική Επίλυση Συνήθων Διαφορίκών Εξισώσεων 3ο Εργαστήριο 7/3/5 Σκοπός αυτού του εργαστηρίου είναι να δούμε πως μπορούμε να επιλύσουμε συστήματα διαφορικών εξισώσεων, με την χρήση του Matlab. Συστήματα
Διαβάστε περισσότεραΕισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 9. Δυναμικά Δεδομένα Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of
Διαβάστε περισσότεραΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2008-2009 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 14.10.2008 Να μετατραπεί ο αριθμός στο δυαδικό σύστημα.! " Ο αριθμός μετατρέπεται αρχικά
Διαβάστε περισσότεραΣυνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Διαβάστε περισσότεραΚεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων
Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,
Διαβάστε περισσότεραΑσκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 5 λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : Να υπολογιστούν τα όρια 4 + n n ) n ) n n + n + ) n + 5) n 7 n+ + ) n Θεωρούµε την ακολουθία a n ), που ορίζεται
Διαβάστε περισσότεραΚεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines
Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.
Διαβάστε περισσότερα9 η ΕΝΟΤΗΤΑ Συμβολικές πράξεις, ολοκληρώματα, παράγωγοι, διαφορικές εξισώσεις
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΜΕΘΟΔΟΙ ΕΠΙΛΥΣΗΣ ΜΕ Η/Υ 9 η ΕΝΟΤΗΤΑ Συμβολικές πράξεις, ολοκληρώματα, παράγωγοι, διαφορικές εξισώσεις Ν.Δ. Λαγαρός Μ. Φραγκιαδάκης Α. Στάμος Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα4.1 Αριθμητική Ολοκλήρωση Εξισώσεων Νεύτωνα
ΚΕΦΑΛΑΙΟ 4 Κίνηση Σωματιδίου Στο κεφάλαιο αυτό μελετάται αριθμητικά η επίλυση των κλασικών εξισώσεων κίνησης μονοδιάστατων μηχανικών συστημάτων, όπως λ.χ. αυτή του σημειακού σωματιδίου σε μια ευθεία, του
Διαβάστε περισσότεραΠαράδειγμα #3 ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ
Παράδειγμα # ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΛΥΧΝΑΡΟΠΟΥΛΟΣ ) Να βρεθεί µία πραγµατική ρίζα της εξίσωσης, x xx µε τις µεθόδους α) της διχοτόµησης β) της γραµµικής παρεµβολής γ) των διαδοχικών επαναλήψεων
Διαβάστε περισσότεραΣήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Σήματα και Συστήματα Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace 1. Επίλυση Γραμμικών
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΚΑΙ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΦΑΣΗ Β- CASE STUDIES ΕΦΑΡΜΟΓΗΣ ΕΜΠΟΡΙΚΟΥ ΛΟΓΙΣΜΙΚΟΥ ΣΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2009-2010 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 13.10.2009 Άσκηση 1. Δίνονται τα
Διαβάστε περισσότεραΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 27/01/2013 ΘΕΜΑ Α Α1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
Διαβάστε περισσότεραΑ3. Ποια είναι τα πλεονεκτήματα του Δομημένου προγραμματισμού; (Μονάδες 10)
ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 08 / 02 / 2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Γ.ΝΙΤΟΔΑΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις
Διαβάστε περισσότεραΣυνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 26/10/2017. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνθεις Διαφορικές Εξισώσεις Ι Ασκσεις - 26/0/207 Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων πρώτης τάξης της
Διαβάστε περισσότεραΘέματα Εξετάσεων Σεπτεμβρίου 2012:
ο ΕΞΑΜΗΝΟ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΜΠ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: ΣΕΠΤΕΜΒΡΙΟΣ Θέματα Εξετάσεων Σεπτεμβρίου : ΘΕΜΑ (μονάδες ) Καμπύλη Bezier δημιουργείται από σημεία ελέγχου, που κατά σειρά είναι τα: (,), (?,?),
Διαβάστε περισσότεραΕισαγωγή στον Προγραμματισμό Η/Υ για Χημικούς Μηχανικούς
για Χημικούς Μηχανικούς Παρουσίαση Διαλέξεων: 8. Διαδικασίες Καθηγητής Δημήτρης Ματαράς Copyright 2014 by Prof. D. S. Mataras (mataras@upatras.gr). This work is made available under the terms of the Creative
Διαβάστε περισσότεραΚεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..
Διαβάστε περισσότεραΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική. 21 Μαίου Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας.
ΦΥΣ 145 Μαθηµατικές Μέθοδοι στη Φυσική 21 Μαίου 2009 Γράψτε το ονοµατεπώνυµο και αριθµό ταυτότητάς σας στο πάνω µέρος της αυτής της σελίδας. Επίσης γράψετε το password σας. Στο τέλος της εξέτασης θα πρέπει
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΚεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων
Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..
Διαβάστε περισσότεραΠαρουσίαση του Mathematica
Παρουσίαση του Mathematica Εργαστήριο Σκυλίτσης Θεοχάρης Καλαματιανός Ρωμανός Καπλάνης Αθανάσιος Ιόνιο Πανεπιστήμιο (www.ionio.gr)( Εισαγωγή Σύμβολα πράξεων ή συναρτήσεων: Πρόσθεση + Αφαίρεση - Πολλαπλασιασμός
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΕΣ Ι. Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ. Δήλωση συνάρτησης sq. Παράδειγμα συνάρτησης: υπολογισμός τετραγώνου
ΥΠΟΛΟΓΙΣΤΕΣ Ι Τι είναι μια συνάρτηση; ΣΥΝΑΡΤΗΣΕΙΣ Μια ομάδα εντολών, σχεδιασμένη να εκτελεί έναν υπολογισμό και να γυρνάει το αποτέλεσμα Ιδανικές για περιπτώσεις που ο υπολογισμός επαναλαμβάνεται πολλές
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ - ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 3 Ο ΕΞΑΜΗΝΟ, 2010-2011 ΔΙΔΑΣΚΩΝ: Δρ Ιωάννης Αθ. Σταυράκης 1 η Σειρά Ασκήσεων 12.10.2010 Άσκηση 1. Να μετατρέψετε
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης
ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 6-7, 3 Ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #3: ΠΑΡΕΜΒΟΛΗ ΕΠΙΜΕΛΕΙΑ: Σ. Μισδανίτης. Επιλέξτε αυθαίρετα µία συνάρτηση ( x και τέσσερα ζευγάρια σημείων ( x, ( x, έτσι ώστε τα σημεία x να μην
Διαβάστε περισσότεραΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΘΗΜΑ 3 ο ΤΕΙ ΣΕΡΡΩΝ -- ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ Μάθημα 3 ο Αριθμητική επίλυση εξισώσεων (μη
Διαβάστε περισσότεραΘερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 1: Αριθμητικές μέθοδοι στα φαινόμενα μεταφοράς και στη θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν
Διαβάστε περισσότεραΜΑΣ 371: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ. 1. Να βρεθεί το πολυώνυμο παρεμβολής Lagrange για τα σημεία (0, 1), (1, 2) και (4, 2).
ΜΑΣ 7: Αριθμητική Ανάλυση ΙI ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Να βρεθεί το πολυώνυμο παρεμβολής Lagrage για τα σημεία (, ), (, ) και (4, ) Λύση: Για τα σημεία x, x, x 4, y, y, y υπολογίζουμε x x x x () x x x x x x 4 L
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 011-01, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΕΛΛΕΙΠΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 5-1-011 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιλέξτε μία εκ των Ασκήσεων 1 και : ΑΣΚΗΣΗ 1 Να λυθεί το πρόβλημα οριακών
Διαβάστε περισσότερα