Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το"

Transcript

1 ΜΑΘΗΜΑ 9ο

2 ΣΥΝΟΛΟΚΛΗΡΩΣΗ (Έννοιες, Ορισµοί) Είδαµε στο προηγούµενο κεφάλαιο ότι, όταν τα δεδοµένα που χρησιµοποιούνται σε ένα υπόδειγµα, δεν προέρχονται από στάσιµες χρονικές σειρές έχουµε το πρόβληµα της κίβδηλης παλινδρόµησης. Το πρόβληµα της κίβδηλης παλινδρόµησης µπορεί επίσης να συµβεί όταν δύο χρονικές σειρές σε µια παλινδρόµηση έχουν σε µεγάλο βαθµό υψηλή συσχέτιση, ενώ δεν έχουν καµιά πραγµατική σχέση µεταξύ τους. Η υψηλή συσχέτιση οφείλεται στην ύπαρξη χρονικών τάσεων και στις δύο χρονικές σειρές (Granger and Newbold 1974). Στις περιπτώσεις αυτές έχει προταθεί να χρησιµοποιούνται οι πρώτες διαφορές και όχι τα επίπεδα των χρονικών σειρών. Τις περισσότερες φορές, αυτό που ενδιαφέρει τους ερευνητές είναι οι µακροχρόνιες σχέσεις ανάµεσα στα επίπεδα των χρονικών σειρών, και όχι στις διαφορές τους, όπου οι χρονικές σειρές αναφέρονται σε βραχυχρόνιες καταστάσεις για το φαινόµενο που ερευνούν.

3 Ιδιαίτερο επίσης ενδιαφέρον παρουσιάζει ο προσδιορισµός της τάξης ολοκλήρωσης ενός γραµµικού συνδυασµού δύο ή περισσοτέρων χρονικών σειρών, όπως είδαµε και στην προηγούµενη ανάλυση της στασιµότητας. Πάνω στην ιδέα αυτή της ολοκλήρωσης βασίζεται η έννοια των συνολοκληρωµένων διαδικασιών. Εποµένως αν οι χρονικές σειρές (µεταβλητές) είναι µη στάσιµες στα επίπεδά τους, µπορούν να ολοκληρωθούν µε βαθµό ολοκλήρωσης 1 όταν οι πρώτες διαφορές τους είναι στάσιµες. Οι µεταβλητές αυτές µπορούν επίσης να συνολοκληρωθούν αν υπάρχει ένας ή περισσότεροι γραµµικοί συνδυασµοί µεταξύ των µεταβλητών που να είναι στάσιµοι. Αν οι µεταβλητές συνολοκληρώνονται, τότε υπάρχει µια σταθερή µακρο-πρόθεσµη γραµµική σχέση µεταξύ τους.

4 Ένα σύνολο µη στάσιµων χρονικών σειρών λέµε ότι είναι συνολοκληρωµένο (cointegrated) αν υπάρχει ένας γραµµικός συνδυασµός των χρονικών αυτών σειρών ο οποίος είναι στάσιµος, πράγµα που σηµαίνει ότι ο συνδυασµός αυτός δεν παρουσιάζει µία στοχαστική τάση. Ο γραµµικός αυτός συνδυασµός των χρονικών σειρών ονοµάζεται εξίσωση συνολοκλήρωσης. Η εξίσωση αυτή παριστά την µακροχρόνια σχέση ισορροπίας που υπάρχει µεταξύ των χρονικών αυτών σειρών. Η οικονοµική θεωρία ασχολείται µε την εξέταση της αλληλεπίδρασης και των αιτιωδών σχέσεων µεταξύ αυτών των οικονοµικών µεταβλητών, καθώς και µε την εξέταση της διαχρονικής συγκριτικής εξέλιξής τους. Οι οικονοµικές µεταβλητές µπορεί να έχουν µια ανεξάρτητη πορεία µεταξύ τους σε βραχυχρόνιο επίπεδο (να είναι µη στάσιµες) µπορεί όµως να υπάρχουν και κοινές µακροχρόνιες πορείες (αν είναι συνολοκληρωµένες) που αυτές πρέπει να τις λαµβάνουµε υπόψη µας µέσω της εξειδίκευσης της διόρθωσης σφάλµατος.

5 ύο ή περισσότερες χρονικές σειρές είναι δυνατόν να είναι συνολοκληρωµένες όταν είναι ολοκληρωµένες τις ίδιας τάξης. Η εξίσωση της συνολοκλήρωσης είναι: Y t = ax t + u t Ο γραµµικός συνδυασµός των δύο αυτών µεταβλητών είναι στάσιµος είναι δηλαδή Ι(0). u t = Y t - ax t Στην περίπτωση αυτή οι παλινδροµήσεις µεταξύ των µεταβλητών αυτών εκφράζονται σε πραγµατικές τιµές και όχι σε διαφορές για να έχουν νόηµα και δεν είναι πλασµατικές αν και οι αρχικές τους µεταβλητές είναι µη στάσιµες.

6 Γενικά αν δύο ή περισσότερες µη στάσιµες µεταβλητές είναι του ίδιου βαθµού ολοκληρωµένες έστω d τότε λέµε ότι αυτές συνολοκληρώνονται αν υπάρχει γραµµικός τους συνδυασµός ή διάνυσµα γραµµικών τους συνδυασµών, που να είναι βαθµού ολοκλήρωσης b µικρότερου βαθµού ολοκλήρωσης d (b<d) των µεταβλητών αυτών. ηλαδή αν Υ t ~ Ι(1), και Χ t ~ Ι(1) τότε λέµε ότι αυτές είναι συνολοκληρωµένες όταν ο γραµµικός τους συνδυασµός u t είναι στάσιµος Ι(0). Στην περίπτωση που υπάρχει ένας τέτοιος γραµµικός συνδυασµός µπορούµε να πούµε ότι υπάρχει και µια µακροχρόνια σχέση µεταξύ των µεταβλητών αυτών, αν και οι βραχυχρόνιες διακυµάνσεις τους µπορεί να µη συσχετίζονται µεταξύ τους. ηλαδή σε µακροχρόνιο επίπεδο, αυτές οι µεταβλητές συνδιακυµαίνονται, παρουσιάζουν µακροχρόνιες τάσεις.

7 Έλεγχοι συνολοκλήρωσης Αφού διαπιστωθεί πως οι εξεταζόµενες µεταβλητές είναι ολοκληρωµένες της ίδιας τάξης, τότε εκτελείται ο έλεγχος για τη συνολοκλήρωση. Η υπόθεση που ελέγχεται είναι η µηδενική της µη συνολοκλήρωσης έναντι της εναλλακτικής που είναι η ύπαρξη συνολοκλήρωσης. Ho: εν υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών Ηα: Υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών Για τον έλεγχο της συνολοκλήρωσης µεταξύ δύο ή περισσοτέρων µεταβλητών υπάρχουν δύο βασικές κατηγορίες µεθόδων (βλέπε Harris 1995, Maddala and Kim 1998). Η πρώτη αναφέρεται στις µεθόδους της µίας εξίσωσης και βασίζεται στην εκτίµηση των ελαχίστων τετραγώνων και η δεύτερη σε σύστηµα εξισώσεων η οποία βασίζεται στη µέθοδο της µέγιστης πιθανοφάνειας.

8 Στην πρώτη κατηγορία έχουµε τους ελέγχους συνολοκλήρωση µε δύο µεταβλητές και τους ελέγχους µε περισσότερες από δύο µεταβλητές. Στη δεύτερη κατηγορία έχουµε τους ελέγχους που στηρίζονται στη µεθοδολογία των VAR υποδειγµάτων, όπου µπορούµε να προσδιορίσουµε το µέγιστο αριθµό των σχέσεων συνολοκλήρωσης που µπορούν να έχουν οι µεταβλητές του υποδείγµατος που εξετάζουµε, πράγµα που δεν µπορούµε να κάνουµε µε την πρώτη κατηγορία της µίας εξίσωσης. Η πιο διαδεδοµένη µέθοδος από την κατηγορία αυτή είναι η µέθοδος του Johansen (1988).

9 Υποδείγµατα συνολοκλήρωσης µε δύο µεταβλητές (Ελεγχος των Engle Granger) Η µέθοδος των Engle Granger (1987) η οποία ονοµάζεται και µέθοδος συνολοκλήρωσης βάσει των καταλοίπων στηρίζεται στον έλεγχο της στασιµότητας των κατάλοίπων. Για τον έλεγχο αυτό οι Engle Granger πρότειναν τα παρακάτω βήµατα: Βήµα 1: Βρίσκουµε την τάξη ολοκλήρωσης των δύο µεταβλητών. Αν η τάξη ολοκλήρωσης των δύο µεταβλητών είναι ίδια τότε συνεχίζουµε τη διαδικασία της συνολοκλήρωσης. Αν η τάξη ολοκλήρωσης των δύο µεταβλητών δεν είναι ίδια τότε λέµε ότι δεν υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών που εξετάζουµε.

10 Αν οι δύο µεταβλητές είναι ολοκληρωµένες της ίδιας τάξης εκτιµούµε µε τη µέθοδο των ελαχίστων τετραγώνων την εξίσωση (εξίσωση συνολοκλήρωσης) για τη µακροχρόνια σχέση ισορροπίας. Y t = β 0 + β 1 X t + u t Από την παραπάνω εξίσωση αποθηκεύουµε τα κατάλοιπα Βήµα 2: Εφαρµόζουµε τη µεθοδολογία των µοναδιαίων ριζών για τη στασιµότητα των καταλοίπων (σφάλµατα ισορροπίας) στην παρακάτω εξίσωση:

11 Η παραπάνω εξίσωση δεν περιλαµβάνει σταθερό όρο διότι τα κατάλοιπα που προκύπτουν από τη µέθοδο των ελαχίστων τετραγώνων είναι γύρω από το µηδέν. Για τον έλεγχο της στασιµότητας των καταλοίπων οι Engle Granger παρουσίασαν έναν πίνακα µε κρίσιµες τιµές για τον έλεγχο αυτό διαφορετικό από αυτό µε τα στατιστικά των ελέγχων των Dickey Fuller. Οι υποθέσεις που ελέγχουµε για την παραπάνω εξίσωση είναι οι παρακάτω: Ηο: δ 2 = 0 (όταν δεν υπάρχει στασιµότητα στα κατάλοιπα δηλαδή δεν υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών) Ηα: δ 2 < 0 (όταν υπάρχει στασιµότητα στα κατάλοιπα δηλαδή υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών) Η µηδενική υπόθεση απορρίπτεται όταν t δ2 < τ (κρίσιµη τιµή του πίνακα των Engle Granger).

12 Έλεγχος του στατιστικού των Durbin Watson για την παλινδρόµηση της συνολοκλήρωσης Ο έλεγχος των Durbin - Watson στηρίζεται στα παρακάτω βήµατα: Βήµα 1: Εκτιµούµε την παλινδρόµηση της συνολοκλήρωσης Y t = β 0 + β 1 X t + u t και από τα σφάλµατα της παλινδρόµησης αυτής υπολογίζουµε το στατιστικό των Durbin Watson (CRDW) από τον παρακάτω τύπο:

13 όπου η είναι το µέγεθος του δείγµατος και u ο αριθµητικός µέσος των σφαλµάτων της παλινδρόµησης της συνολοκλήρωσης. Βήµα 2: Αν η τιµή των CRDW < d τότε δεχόµαστε τη µηδενική υπόθεση για τη µη συνολοκλήρωση των µεταβλητών που εξετάζουµε. Οι κρίσιµες τιµές d έχουν υπολογιστεί από τους Sargan and Bhargava (1983) και Engel and Granger (1987) και είναι 0.511, 0.386, και για επίπεδα σηµαντικότητας 1%, 5%, και 10% αντίστοιχα και για 100 παρατηρήσεις (βλέπε Engel and Granger (1987) Vol. 55 No.2 σελίδα 269).

14 Υποδείγµατα συνολοκλήρωσης µε περισσότερες από δύο µεταβλητές Η µέθοδος των Engle Granger (1987) µπορεί να επεκταθεί και σε περισσότερες από δύο µεταβλητές. Για τον έλεγχο αυτό οι Engle Granger πρότειναν τα παρακάτω βήµατα: Βήµα 1: Βρίσκουµε την τάξη ολοκλήρωσης όλων των µεταβλητών χρησιµοποιώντας τη µεθοδολογία των µοναδιαίων ριζών. Αν η τάξη ολοκλήρωσης όλων των µεταβλητών είναι ίδια τότε συνεχίζουµε τη διαδικασία της συνολοκλήρωσης. Αν η τάξη ολοκλήρωσης των µεταβλητών δεν είναι ίδια για όλες τις µεταβλητές τότε λέµε ότι δεν υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών που εξετάζουµε ή υπάρχει συνολοκλήρωση µεταξύ εκείνων των µεταβλητών µόνο που έχουν την ίδια τάξη ολοκλήρωσης οπότε συνεχίζουµε τη διαδικασία µε τις µεταβλητές αυτές.

15 Αν όλες µεταβλητές είναι ολοκληρωµένες της ίδιας τάξης εκτιµούµε µε τη µέθοδο των ελαχίστων τετραγώνων την εξίσωση (εξίσωση συνολοκλήρωσης) για τη µακροχρόνια σχέση ισορροπίας. Y t = β 0 + β 1 X 1t + β 2 Χ 2 t..β κ Χ κ t + u t Από την παραπάνω εξίσωση αποθηκεύουµε τα κατάλοιπα Βήµα 2: Εφαρµόζουµε τη µεθοδολογία των µοναδιαίων ριζών για τη στασιµότητα των καταλοίπων (σφάλµατα ισορροπίας) στην παρακάτω εξίσωση:

16 Η παραπάνω εξίσωση δεν περιλαµβάνει σταθερό όρο διότι τα κατάλοιπα û t που προκύπτουν από τη µέθοδο των ελαχίστων τετραγώνων είναι γύρω από το µηδέν. Για τον έλεγχο της στασιµότητας των καταλοίπων û t οι Engle Granger παρουσίασαν έναν πίνακα µε κρίσιµες τιµές για τον έλεγχο αυτό διαφορετικό από αυτό µε τα στατιστικά των ελέγχων των Dickey Fuller.

17 Οι υποθέσεις που ελέγχουµε για την παραπάνω εξίσωση είναι οι παρακάτω: Ηο: δ 2 = 0 (όταν δεν υπάρχει στασιµότητα στα κατάλοιπα δηλαδή δεν υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών) Ηα: δ 2 < 0 (όταν υπάρχει στασιµότητα στα κατάλοιπα δηλαδή υπάρχει συνολοκλήρωση µεταξύ των µεταβλητών) Η µηδενική υπόθεση απορρίπτεται όταν t δ2 < τ (κρίσιµη τιµή του πίνακα των Engle - Granger).

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 10ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 10ο Έλεγχοι συνολοκλήρωσης Αφού διαπιστωθεί πως οι εξεταζόμενες μεταβλητές είναι ολοκληρωμένες της ίδιας τάξης, τότε εκτελείται ο έλεγχος

Διαβάστε περισσότερα

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος

Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος ΜΑΘΗΜΑ 10 ο Συνολοκλήρωση και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε τη μακροχρόνια σχέση ισορροπίας που υπάρχει μεταξύ δύο ή

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 11ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 11ο Συνολοκλήρωσης και μηχανισμός διόρθωσης σφάλματος Η μέθοδος της συνολοκλήρωσης είναι ένας τρόπος με τον οποίο μπορούμε να εκτιμήσουμε

Διαβάστε περισσότερα

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις)

Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) ΜΑΘΗΜΑ 6ο Προσδιοριστικοί όροι και μοναδιαία ρίζα (από κοινού υποθέσεις) Είδαμε στους παραπάνω ελέγχους (DF και ADF) που κάναμε προηγουμένως ότι εξετάζουμε στη μηδενικήυπόθεσημόνοτοσυντελεστήδ 2. Δεν αναφερόμαστε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες

ΜΑΘΗΜΑ 3ο. Βασικές έννοιες ΜΑΘΗΜΑ 3ο Βασικές έννοιες Εισαγωγή Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγματα αυτά η τρέχουσα τιμή μιας οικονομικής

Διαβάστε περισσότερα

Ογενικός(πλήρης) έλεγχος των Dickey Fuller

Ογενικός(πλήρης) έλεγχος των Dickey Fuller ΜΑΘΗΜΑ 7ο Ογενικός(πλήρης) έλεγχος των Dickey Fuller Είδαμε προηγουμένως ότι οι τιμές της στατιστικής Τ 2δ0, Τ 3δ0 και Τ 3δ1 που χρησιμοποιήθηκαν στην παραπάνω παράγραφο εξαρτώνται από τη μορφή της εξίσωσης

Διαβάστε περισσότερα

ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ

ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΜΟΝΑΔΙΑΙΕΣ ΡΙΖΕΣ ΚΑΙ ΜΕΘΟΔΟΙ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ (ΣΤΗ ΜΑΚΡΟΟΙΚΟΝΟΜΙΑ) ΣΑΜΑΝΗ ΜΑΡΙΑ-ΑΝΝΑ 2012 ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ 0 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΛΗΨΗ..ΣΕΛ

Διαβάστε περισσότερα

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο

Πολλαπλή παλινδρόµηση. Μάθηµα 3 ο Πολλαπλή παλινδρόµηση Μάθηµα 3 ο Πολλαπλή παλινδρόµηση (Multivariate regression ) Η συµπεριφορά των περισσότερων οικονοµικών µεταβλητών είναι συνάρτηση όχι µιας αλλά πολλών µεταβλητών Y = f ( X, X 2, X

Διαβάστε περισσότερα

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν

Αν έχουμε δύο μεταβλητές Χ και Υ και σύμφωνα με την οικονομική θεωρία η μεταβλητή Χ προσδιορίζει τη συμπεριφορά της Υ το ερώτημα που τίθεται είναι αν ΜΑΘΗΜΑ 12ο Αιτιότητα Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή προκαλεί μία άλλη σε μία εξίσωση παλινδρόμησης. Στην

Διαβάστε περισσότερα

Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών Πρόγραμμα Μεταπτυχιακών Σπουδών στη Λογιστική & Χρηματοοικονομική Γ Εξάμηνο Εξειδίκευση Χρηματοοικονομικής Έτος Κατάθεσης: 2009 ΔΙΠΛΩΜΑΤΙΚΗ

Διαβάστε περισσότερα

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή

Στασιμότητα χρονοσειρών Νόθα αποτελέσματα-spurious regression Ο έλεγχος στασιμότητας είναι απαραίτητος ώστε η στοχαστική ανάλυση να οδηγεί σε ασφαλή Χρονικές σειρές 12 Ο μάθημα: Έλεγχοι στασιμότητας ΑΝΑΚΕΦΑΛΑΙΩΣΗ: Εκτίμηση παραμέτρων γραμμικών μοντέλων Συνάρτηση μερικής αυτοσυσχέτισης Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 3ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 3ο Κίβδηλες παλινδρομήσεις Μια από τις υποθέσεις που χρησιμοποιούμε στην ανάλυση της παλινδρόμησης είναι ότι οι χρονικές σειρές που χρησιμοποιούμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα

ΜΑΘΗΜΑ 4 ο. Μοναδιαία ρίζα ΜΑΘΗΜΑ 4 ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης. Ένας άλλος τρόπος που χρησιμοποιείται ευρύτατα στην ανάλυση

Διαβάστε περισσότερα

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008

Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 Χρονολογικές Σειρές (Time Series) Lecture notes Φ.Κουντούρη 2008 1 Τύποι Οικονομικών Δεδομένων Τα οικονομικά δεδομένα που χρησιμοποιούνται για την εξέταση οικονομικών φαινομένων μπορεί να έχουν τις ακόλουθες

Διαβάστε περισσότερα

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration )

ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ. (TEST: Unit Root-Cointegration ) ΧΡΟΝΟΣΕΙΡΕΣ & ΠΡΟΒΛΕΨΕΙΣ-ΜΕΡΟΣ 7 ΕΛΕΓΧΟΙ (TEST: Unit Root-Cointegration ) ΦΑΙΝΟΜΕΝΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ Η στασιμότητα των δεδομένων (χρονοσειρών) είναι θεωρητική προϋπόθεση για την παλινδρόμηση, δηλ. την εκτίμηση

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΙΕΘΝΩΝ ΚΑΙ ΕΥΡΩΠΑΪΚΩΝ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥ ΩΝ Μάθηµα: Εφαρµοσµένη Οικονοµετρία (Aκαδηµαϊκό έτος: 2008-2009) Σπύρος Σκούρας Ονοµατεπώνυµο: ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΙΟΥΛΙΟΥ 2009

Διαβάστε περισσότερα

Έλεγχος των Phillips Perron

Έλεγχος των Phillips Perron ΜΑΘΗΜΑ 8ο Έλεγχος των Phillip Perron Είδαμε στον έλεγχο των Dickey Fuller ότι για το πρόβλημα της αυτοσυσχέτισης των καταλοίπων προτείνουν την επαύξηση της εξίσωσης με επιπλέον όρους τωνδιαφορώντηςεξαρτημένηςμεταβλητής.

Διαβάστε περισσότερα

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο

Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Εργαστήριο Οικονομετρίας Προαιρετική Εργασία 2016 Χειμερινό Εξάμηνο Χρήσιμες Οδηγίες Με την βοήθεια του λογισμικού E-views να απαντήσετε στα ερωτήματα των επόμενων σελίδων, (οι απαντήσεις πρέπει να περαστούν

Διαβάστε περισσότερα

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2

Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Επαναληπτικές Ερωτήσεις για Οικονοµετρία 2 Κεφάλαιο 8 1) Τι είναι ετεροσκεδαστικότητα και τι είδους προβλήµατα παρουσιάζονται; ( 2, 4, σελίδες 370-372). 2) Γράψτε τον τύπο της διακύµανσης της κλίσης όταν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ

ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΗ ΕΚΤΙΜΗΣΗ ΤΡΑΠΕΖΙΚΩΝ ΧΟΡΗΓΗΣΕΩΝ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΜΑΡΙΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΕΡΩΤΟΚΡΙΤΟΣ ΒΑΡΕΛΑΣ ΘΕΣΣΑΛΟΝΙΚΗ 2005 Διπλωματική εργασία στα πλαίσια του Διατμηματικού Προγράμματος

Διαβάστε περισσότερα

Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s

Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s Έλεγχος της σταθερότητας των συντελεστών της παλινδρόµησης (πρώτος έλεγχος του Chow) (Testing for stability of the regression coefficients ) (Chow s first test) Σε πολλές περιπτώσεις µας ενδιαφέρει να

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 5ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 5ο Μοναδιαία ρίζα Είδαμε προηγουμένως πως ο έλεγχος της στασιμότητας μιας χρονικής σειράς μπορεί να γίνει με τη συνάρτηση αυτοσυσχέτισης.

Διαβάστε περισσότερα

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Εξέταση Φεβρουαρίου (2011/12) στο Μάθηµα: Γεωργικός Πειραµατισµός. Ζήτηµα 1 ο (2 µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή Σειρά Β Εξέταση Φεβρουαρίου (0/) στο Μάθηµα: Γεωργικός Πειραµατισµός Θεσσαλονίκη: 4/0/0 Επώνυµο Όνοµα Αρ. Μητρώου Κατεύθυνση Ζήτηµα ο ( µονάδες) Για κάθε λανθασµένη απάντηση δεν λαµβάνεται υπόψη µία σωστή

Διαβάστε περισσότερα

Ονοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010

Ονοµατεπώνυµο : Σίσκου Σταµατίνα Ειρήνη. Υπεύθυνοςκαθηγητής: ΑναστάσιοςΒ. Κάτος. Θεσσαλονίκη, Ιανουάριος 2010 Π.Μ.Σ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Ο προσδιορισµός του επιπέδου της ιδιωτικής κατανάλωσης, των επενδύσεων και των συνολικών εισαγωγών. Mία εµπειρική µελέτη για την Νορβηγία, την

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ ΣΤΗΝ ΟΙΚΟΝΟΜΕΤΡΙΑ II ΗΜΗΤΡΙΟΣ ΘΩΜΑΚΟΣ Ερώτηση : Εξηγείστε τη διαφορά µεταξύ του συντελεστή προσδιορισµού και του προσαρµοσµένου συντελεστή προσδιορισµού. Πώς µπορεί να χρησιµοποιηθεί

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ

ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ ΒΑΣΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΣΕΙΡΩΝ ΚΑΝΟΝΙΚΟΤΗΤΑ απόκλιση από την κανονικότητα µπορεί να σηµαίνει Ύπαρξη θετικής ή αρνητικής ασυµµετρίας Ύπαρξη λεπτοκύρτωσης, δηλαδή παρουσία ακραίων τιµών που δεν είναι συµβατές

Διαβάστε περισσότερα

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model)

Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) ΜΑΘΗΜΑ 4 ο 1 Παραβίασητωνβασικώνυποθέσεωντηςπαλινδρόμησης (Violation of the assumptions of the classical linear regression model) Αυτοσυσχέτιση (Serial Correlation) Lagrange multiplier test of residual

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες

Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Γιώργος Αλογοσκούφης, Θέµατα Δυναµικής Μακροοικονοµικής, Αθήνα 0 Παράρτηµα 3 Εξισώσεις Διαφορών και Στοχαστικές Διαδικασίες Στο παράρτηµα αυτό εξετάζουµε τις ιδιότητες και τους τρόπους επίλυσης των εξισώσεων

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7ο μάθημα: Πολυμεταβλητή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Αυτοσυσχέτιση Αν τα σφάλµατα δεν συσχετίζονται µεταξύ τους, Corr(u t, u s ) = 0 για κάθε t s, t, s

Διαβάστε περισσότερα

ΚΑΤΗΓΟΡΙΕΣ ΦΟΡΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ

ΚΑΤΗΓΟΡΙΕΣ ΦΟΡΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ.99-108 ΚΑΤΗΓΟΡΙΕΣ ΦΟΡΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ Χάιδω Δριτσάκη Τμήμα Εφαρμοσμένης

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Επαυξημένος έλεγχος Dickey - Fuller (ADF)

Επαυξημένος έλεγχος Dickey - Fuller (ADF) ΜΑΘΗΜΑ 5ο Επαυξημένος έλεγχος Dickey - Fuller (ADF) Στον έλεγχο των Dickey Fuller (DF) και στα τρία υποδείγματα που χρησιμοποιήσαμε προηγουμένως κάνουμε την υπόθεση ότι ο διαταρακτικός όρος e είναι μια

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΣΧΗΜΑΤΟΣ. ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. ( Παλινδρόµηση στον Πληθυσµό και Παλινδρόµηση στο είγµα).

ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΣΧΗΜΑΤΟΣ. ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. ( Παλινδρόµηση στον Πληθυσµό και Παλινδρόµηση στο είγµα). ΣΤΑΤΙΣΤΙΚΗ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΣΧΗΜΑΤΟΣ. ΑΛΛΗΛΕΞΑΡΤΗΣΕΩΝ. ( Παλινδρόµηση στον Πληθυσµό και Παλινδρόµηση στο είγµα). Στην Στατιστική Εξειδίκευση ένα Σχήµα Αλληλεξάρτησης εξειδικεύεται στον Πληθυσµό και το

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τμήμα Τραπεζικής & Χρηματοοικονομικής Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Τα υποδείγματα του απλού γραμμικού υποδείγματος της παλινδρόμησης (simple linear regression

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Η σχέση χρηµατοοικονοµικής ρύθµισης και ισοζυγίου τρεχουσών συναλλαγών

Η σχέση χρηµατοοικονοµικής ρύθµισης και ισοζυγίου τρεχουσών συναλλαγών Περίληψη ΤΕΤΡΑ ΙΑ ΑΝΑΛΥΣΗΣ Ε ΟΜΕΝΩΝ, ΤΕΥΧΟΣ 15 (σσ. 66-80) DATA ANALYSIS BULLETIN, ISSUE 15 (pp. 66-80) Η σχέση χρηµατοοικονοµικής ρύθµισης και ισοζυγίου τρεχουσών συναλλαγών Αργυρώ Ευαγ. ηµήτογλου Πανεπιστήµιο

Διαβάστε περισσότερα

Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας. Κατιρτζόγλου Σοφία

Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας. Κατιρτζόγλου Σοφία Χρηματιστηριακή και Οικονομική Ανάπτυξη: Μια εμπειρική έρευνα για τις Η.Π.Α. με την ανάλυση της αιτιότητας Κατιρτζόγλου Σοφία Στόχος της εργασίας Διεξαγωγή συμπερασμάτων για τις οικονομικές και χρηματιστηριακές

Διαβάστε περισσότερα

Απλή Παλινδρόμηση και Συσχέτιση

Απλή Παλινδρόμηση και Συσχέτιση Απλή Παλινδρόμηση και Συσχέτιση Πωλήσεις, Δαπάνες Διαφήμισης και Αριθμός Πωλητών Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) Έτος Πωλήσεις (χιλ ) Διαφήμιση (χιλ ) Πωλητές (Άτομα) 98 050 6 3 989

Διαβάστε περισσότερα

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β

Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στατιστική για Πολιτικούς Μηχανικούς Λυμένες ασκήσεις μέρους Β Κουγιουμτζής Δημήτρης Τμήμα Πολιτικών Μηχανικών Α.Π.Θ. Θεσσαλονίκη, Μάρτιος 4 Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ & ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΘΕΩΡΙΑΣ-ΥΠΟΔΕΙΓΜΑΤΑ ΚΙΝΗΤΟΥ ΜΕΣΟΥ MA(q) ΚΑΙ ΜΙΚΤΑ ΥΠΟΔΕΙΓΜΑΤΑ ARMA (p,q) ΕΠΙΧ - Τεχνικές Προβλέψεων & Ελέγχου

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ

ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ ΕΛΕΓΧΟΙ ΠΡΟΣΑΡΜΟΓΗΣ & ΥΠΟΘΕΣΕΩΝ Μετά από την εκτίµηση των παραµέτρων ενός προσοµοιώµατος, πρέπει να ελέγχουµε την αλήθεια της υποθέσεως που κάναµε. Είναι ορθή η υπόθεση που κάναµε? Βεβαίως συνήθως υπάρχουν

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21

Πρόλογος Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης Αντικείμενο της οικονομετρίας... 21 Περιεχόμενα Πρόλογος... 15 Μέρος Ι: Απλό και πολλαπλό υπόδειγμα παλινδρόμησης... 19 1 Αντικείμενο της οικονομετρίας... 21 1.1 Τι είναι η οικονομετρία... 21 1.2 Σκοποί της οικονομετρίας... 24 1.3 Οικονομετρική

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΤΙΣ ΒΙΟΜΗΧΑΝΙΚΕΣ ΧΩΡΕΣ

Διαβάστε περισσότερα

Πίνακας Εικόνων Πίνακας Πινάκων Πρόλογος Ευχαριστίες ΜΕΡΟΣ ΠΡΩΤΟ. Στατιστικό υπόβαθρο και βασικός χειρισµός δεδοµένων

Πίνακας Εικόνων Πίνακας Πινάκων Πρόλογος Ευχαριστίες ΜΕΡΟΣ ΠΡΩΤΟ. Στατιστικό υπόβαθρο και βασικός χειρισµός δεδοµένων Περιεχόμενα Πίνακας Εικόνων... 21 Πίνακας Πινάκων... 23 Πρόλογος... 27 Ευχαριστίες... 30 ΜΕΡΟΣ ΠΡΩΤΟ. Στατιστικό υπόβαθρο και βασικός χειρισµός δεδοµένων ΚΕΦΑΛΑΙΟ 1. Βασικές έννοιες... 33 Εισαγωγή... 34

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης

ΜΑΘΗΜΑ 3ο. Υποδείγματα μιας εξίσωσης ΜΑΘΗΜΑ 3ο Υποδείγματα μιας εξίσωσης Οι βασικές υποθέσεις 1. Ο διαταρακτικός όρος u t είναι μια τυχαία μεταβλητή με μέσο το μηδέν. Eu t = 0 για t = 1,2,3..n 2. Η διακύμανση της τυχαίας μεταβλητής u t είναι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΔΙΠΛΩΜΑΤΙΚΗ ΔΙΑΤΡΙΒΗ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ Θέμα: ΟΙΚΟΝΟΜΕΤΡΙΚΗ

Διαβάστε περισσότερα

ΕΞΑΓΩΓΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: Μια εµπειρική έρευνα για δύο νέα µέλη της Ε.Ε

ΕΞΑΓΩΓΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: Μια εµπειρική έρευνα για δύο νέα µέλη της Ε.Ε ΕΞΑΓΩΓΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: Μια εµπειρική έρευνα για δύο νέα µέλη της Ε.Ε Νικόλαος ριτσάκης Αναπληρωτής Καθηγητής Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστήµιο Μακεδονίας Περίληψη Η εργασία αυτή προσπαθεί

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ΣΤΗΝ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ

ΜΕΛΕΤΗ ΚΑΙ ΕΚΤΙΜΗΣΗ ΠΟΛΥΜΕΤΑΒΛΗΤΩΝ ΥΠΟΔΕΙΓΜΑΤΩΝ ΣΤΗΝ ΑΝΑΛΥΣΗ ΧΡΟΝΟΣΕΙΡΩΝ Π Α Ν Ε Π Ι Σ Τ Η Μ Ι Ο Π Ε Ι Ρ Α Ι Ω Σ ΤΜΗΜΑ Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ Ε Π Ι Σ Τ Η Μ Η Σ Μ Ε Τ Α Π Τ Υ Χ Ι Α Κ Ο ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ Ε Φ Α Ρ Μ Ο Σ Μ Ε Ν Η Σ Τ Α Τ Ι Σ Τ Ι Κ Η ΜΕΛΕΤΗ ΚΑΙ

Διαβάστε περισσότερα

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 5 Ο μάθημα: Γραμμικά στοχαστικά μοντέλα (1) Αυτοπαλίνδρομα μοντέλα Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή,

Διαβάστε περισσότερα

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική

ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ. Παπάνα Αγγελική ΧΡΟΝΙΚΕΣ ΣΕΙΡΕΣ 7o Μάθημα: Απλή παλινδρόμηση (ΕΠΑΝΑΛΗΨΗ) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & ΠΑΜΑΚ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana

Διαβάστε περισσότερα

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ]

cov(x, Y ) = E[(X E[X]) (Y E[Y ])] cov(x, Y ) = E[X Y ] E[X] E[Y ] Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-317: Εφαρµοσµένες Στοχαστικές ιαδικασίες-εαρινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Συνδιασπορά - Συσχέτιση Τυχαίων Μεταβλητών Επιµέλεια : Κωνσταντίνα

Διαβάστε περισσότερα

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης

Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών. Εξίσωση παλινδρόμησης. Πρόβλεψη εξέλιξης Γραμμική Παλινδρόμηση και Συσχέτιση Αντικείμενο του κεφαλαίου είναι: Ανάλυση συσχέτισης μεταξύ δύο μεταβλητών Εξίσωση παλινδρόμησης Πρόβλεψη εξέλιξης Διμεταβλητές συσχετίσεις Πολλές φορές χρειάζεται να

Διαβάστε περισσότερα

x y max(x))

x y max(x)) ΚΕΦΑΛΑΙΟ 0 Απλή Γραµµική Παλινδρόµηση Μωυσιάδης Χρόνης 6 o Εξάµηνο Μαθηµατικών Ένα Πρόβληµα εδοµένα.6 3. 3.8 4. 4.4 5.8 6.0 6.7 7. 7.8 y 5.6 7.9 8.0 8. 8. 9. 9.5 9.4 9.6 9.9 Έχει σχέση το yµε το ; Ειδικότερα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ 1. Ν'αποδειχθεί η σχέση : σ 2 =Ε(Χ 2 )-µ 2 ΑΣΚΗΣΗ 2 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ ΜΕΡΟΣ ΙΙ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι Ι ΑΣΚΩΝ : ΤΣΕΡΚΕΖΟΣ ΙΚΑΙΟΣ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : σ =Ε(Χ )-µ ΑΣΚΗΣΗ Ν'αποδειχθεί η σχέση : Cov(X,Υ)=Ε(ΧΥ)-Ε(Χ)Ε(Υ) ΑΣΚΗΣΗ 3 Να δείξετε ότι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n

ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ. nn n n ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ 3 Ο αλγόριθµος Gauss Eστω =,3,, µε τον όρο γραµµικά συστήµατα, εννοούµε συστήµατα εξισώσεων µε αγνώστους της µορφής: a x + + a x = b a x + + a x = b a

Διαβάστε περισσότερα

1.2 Βασικές έννοιες. Στοχαστική διαδικασία

1.2 Βασικές έννοιες. Στοχαστική διαδικασία .2 Βασικές έννοιες Ένας από τους βασικότερους σκοπούς της ανάλυσης των χρονικών σειρών είναι η διενέργεια των προβλέψεων. Στα υποδείγµατα αυτά η τρέχουσα τιµή µιας οικονοµικής µεταβλητής, εκφράζεται ως

Διαβάστε περισσότερα

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές

Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Μάθημα 5-6: Στάσιμες πολυμεταβλητές χρονοσειρές και μοντέλα Διασυσχέτιση Διανυσματικά αυτοπαλίνδρομα μοντέλα Δίκτυα από πολυμεταβλητές χρονοσειρές Αιτιότητα κατά Granger Ασκήσεις Ανάλυση μονομεταβλητής

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών

ΟΙΚΟΝΟΜΕΤΡΙΑ. Βιολέττα Δάλλα. Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών ΟΙΚΟΝΟΜΕΤΡΙΑ Βιολέττα Δάλλα Τµήµα Οικονοµικών Επιστηµών Εθνικό και Καποδιστριακό Πανεπιστήµιο Αθηνών 1 Εισαγωγή Οικονοµετρία (Econometrics) είναι ο τοµέας της Οικονοµικής επιστήµης που περιγράφει και αναλύει

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ& ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΕΝΔΕΚΑΤΟ ΘΕΩΡΙΑΣ-ΑΥΤΟΣΥΣΧΕΤΙΣΗ(AUTOCORELLATION) Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2008-2009 ΕΠΙΧ Οικονοµετρικά

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 13: Επανάληψη Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Γιατί μελετούμε την Οικονομετρία;

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 11: Αυτοσυσχέτιση Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana 1 Περιεχόμενο ενότητας

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝΣΥΣΤΗΜΑΤΩΝ ΤΕΧΝΙΚΕΣ ΠΡΟΒΛΕΨΕΩΝ& ΕΛΕΓΧΟΥ ΜΑΘΗΜΑ ΤΕΤΑΡΤΟ ΑΥΤΟΠΑΛΙΝΔΡΟΜΑ ΥΠΟΔΕΙΓΜΑΤΑ AR(p) Δρ. Κουνετάς Η Κωνσταντίνος ΕΠΙΧ Τεχνικές Προβλέψεων & Ελέγχου ιαφάνεια

Διαβάστε περισσότερα

Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7)

Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) Επιτόκια, Πληθωρισμός και Έλλειμμα (10.2, 12.6, 18.2, 18.6, 18.7) 1 Dependent Variable: T_BILLS3 Method: Least Squares Sample: 1948-2003 C 1.25 0.44 2.83 0.01 INFLATION 0.61 0.08 8.09 0.00 DEFICIT 0.70

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 5: Ανάλυση γραμμικού υποδείγματος Πολυμεταβλητή παλινδρόμηση (1 ο μέρος) Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: ageliki.papaa@gmail.com, agpapaa@auth.gr Webpage: http://users.auth.gr/agpapaa

Διαβάστε περισσότερα

Η ΑΙΤΙΑΚΗ ΣΧΕΣΗ ΤΗΣ ΕΓΧΩΡΙΑΣ Ι ΙΩΤΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΩΣ ΠΡΟΣ ΤΙΣ ΤΙΜΕΣ ΧΟΝ ΡΙΚΗΣ ΠΩΛΗΣΗΣ: Η περίπτωση της Ευρωπαϊκής Ένωσης.

Η ΑΙΤΙΑΚΗ ΣΧΕΣΗ ΤΗΣ ΕΓΧΩΡΙΑΣ Ι ΙΩΤΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΩΣ ΠΡΟΣ ΤΙΣ ΤΙΜΕΣ ΧΟΝ ΡΙΚΗΣ ΠΩΛΗΣΗΣ: Η περίπτωση της Ευρωπαϊκής Ένωσης. Η ΑΙΤΙΑΚΗ ΣΧΕΣΗ ΤΗΣ ΕΓΧΩΡΙΑΣ Ι ΙΩΤΙΚΗΣ ΚΑΤΑΝΑΛΩΣΗΣ ΩΣ ΠΡΟΣ ΤΙΣ ΤΙΜΕΣ ΧΟΝ ΡΙΚΗΣ ΠΩΛΗΣΗΣ: Η περίπτωση της Ευρωπαϊκής Ένωσης. Νίκος ριτσάκης Αντώνης Αδαµόπουλος Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστήµιο

Διαβάστε περισσότερα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα

Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση. Διδάσκουσα: Κοντογιάννη Αριστούλα Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Μάθημα: Οικονομετρία Διάλεξη 2η: Απλή Γραμμική Παλινδρόμηση Διδάσκουσα: Κοντογιάννη Αριστούλα Πώς συσχετίζονται δυο μεταβλητές; Ένας απλός τρόπος για να αποκτήσουμε

Διαβάστε περισσότερα

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια)

Στόχος µαθήµατος: ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. 1. Απλή γραµµική παλινδρόµηση. 1.2 Παράδειγµα 6 (συνέχεια) ΠΜΣ ΕΠΑΓΓΕΛΜΑΤΙΚΗ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΥΓΕΙΑ, ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΠΟΤΙΜΗΣΗ ΑΚ. ΕΤΟΣ 2006-2007, 3ο εξάµηνο ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΙΙ. Απλή γραµµική παλινδρόµηση Παράδειγµα 6: Χρόνος παράδοσης φορτίου ΜΑΘΗΜΑ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΟΜαθηµατικός Προγραµµατισµός είναι κλάδος των εφαρµοσµένων µαθηµατικών που ασχολείται µε την εύρεση άριστης λύσης. ιαφέρει από την κλασική αριστοποίηση στο ότι προσπαθεί να

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική

ΟΙΚΟΝΟΜΕΤΡΙΑ. Η μέθοδος των βοηθητικών μεταβλητών. Παπάνα Αγγελική ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 12: Σφάλματα μέτρησης στις μεταβλητές Η μέθοδος των βοηθητικών μεταβλητών Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage:

Διαβάστε περισσότερα

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ

Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο Τμήμα Μαθηματικών ΑΠΘ Χρονικές σειρές 10 Ο μάθημα: Μη στάσιμα μοντέλα ARIMA Μεθοδολογία Box-Jenkins Εαρινό εξάμηνο 2018-2019 Τμήμα Μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα Μεταδιδακτορική Ερευνήτρια Πολυτεχνική σχολή, Α.Π.Θ.

Διαβάστε περισσότερα

Η ΕΠΙ ΡΑΣΗ ΤΟΥ ΟΓΚΟΥ ΤΩΝ ΣΥΝΑΛΛΑΓΩΝ ΣΤΗ ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΕΙΚΤΗ ΤΙΜΩΝ ΤΟΥ Χ.Α.Α

Η ΕΠΙ ΡΑΣΗ ΤΟΥ ΟΓΚΟΥ ΤΩΝ ΣΥΝΑΛΛΑΓΩΝ ΣΤΗ ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΕΙΚΤΗ ΤΙΜΩΝ ΤΟΥ Χ.Α.Α Η ΕΠΙ ΡΑΣΗ ΤΟΥ ΟΓΚΟΥ ΤΩΝ ΣΥΝΑΛΛΑΓΩΝ ΣΤΗ ΙΑΜΟΡΦΩΣΗ ΤΟΥ ΕΙΚΤΗ ΤΙΜΩΝ ΤΟΥ Χ.Α.Α ριτσάκης Νικόλαος, Στεφανίδης Γεώργιος Πανεπιστήµιο Μακεδονίας Τµήµα Εφαρµοσµένης Πληροφορικής ΠΕΡΙΛΗΨΗ Στόχος της εργασίας αυτής

Διαβάστε περισσότερα

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x.

x 2 = x 2 1 + x 2 2. x 2 = u 2 + x 2 3 Χρησιµοποιώντας το συµβολισµό του ανάστροφου, αυτό γράφεται x 2 = x T x. = x T x. Κεφάλαιο 4 Μήκη και ορθές γωνίες Μήκος διανύσµατος Στο επίπεδο, R 2, ϐρίσκουµε το µήκος ενός διανύσµατος x = (x 1, x 2 ) χρησιµοποιώντας το Πυθαγόρειο ϑεώρηµα : x 2 = x 2 1 + x 2 2. Στο χώρο R 3, εφαρµόζουµε

Διαβάστε περισσότερα

Μπακαλάκος Ευάγγελος

Μπακαλάκος Ευάγγελος Μπακαλάκος Ευάγγελος Σχεση πραγματικής και χρηματιστηριακής οικονομίας 2003-2012 Δυο περιόδοι προ και κατά διάρκεια της κρίσης 4 μεταβλητές 5 στατιστικά υποδείγματα Χρηματοπιστωτικής-τραπεζικής κρίσης

Διαβάστε περισσότερα

ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ

ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ ΗΜΟΣΙΕΣ ΑΠΑΝΕΣ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΣΥΝΟΛΟΚΛΗΡΩΣΗΣ Νικόλαος ριτσάκης Αθανάσιος Βαζακίδης Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστηµίου Μακεδονίας

Διαβάστε περισσότερα

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ

1.1 A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ . A. ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΚΑΙ ΟΙ ΠΡΑΞΕΙΣ ΤΟΥΣ ΘΕΩΡΙΑ. Τα σύνολα των αριθµών Το σύνολο των φυσικών αριθµών. Το σύνολο των ακεραίων αριθµών. N {0,,, 3 } Z { 3,,, 0,,, 3 } Το σύνολο των ρητών αριθµών. Q

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής

ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής ΤΕΙ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ Μεταπτυχιακό Τραπεζικής & Χρηματοοικονομικής Υποθέσεις του Απλού γραμμικού υποδείγματος της Παλινδρόμησης Η μεταβλητή ε t (διαταρακτικός όρος) είναι τυχαία μεταβλητή με μέσο όρο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ

ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ ΚΕΦΑΛΑΙΟ 6 ΧΡΗΣΗ ΓΡΑΜΜΙΚΩΝ ΜΟΝΤΕΛΩΝ ΚΑΙ ΓΡΑΜΜΙΚΗΣ ΠΑΛΙΝ ΡΟΜΗΣΗΣ 6.1 Εισαγωγή Σε πολλές στατιστικές εφαρµογές συναντάται το πρόβληµα της µελέτης της σχέσης δυο ή περισσότερων τυχαίων µεταβλητών. Η σχέση

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Ειδικά Θέµατα Οικονοµετρίας. Νικόλαος ριτσάκης Καθηγητής

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Ειδικά Θέµατα Οικονοµετρίας. Νικόλαος ριτσάκης Καθηγητής ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Ειδικά Θέµατα Οικονοµετρίας Νικόλαος ριτσάκης Καθηγητής Περιγραφή της ιδακτέας Ύλης Στασιµότητα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΧΕΣΗ ΜΕΤΑΒΛΗΤΟΤΗΤΑΣ ΚΑΙ ΑΠΟΔΟΣΗΣ ΤΩΝ ΧΡΗΜΑΤΙΣΤΗΡΙΩΝ ΝΕΑΣ ΥΟΡΚΗΣ-ΤΟΚΥΟ-ΛΟΝΔΙΝΟ Διπλωματική Εργασία της Οικονομίδου

Διαβάστε περισσότερα

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές

Κ. Ι. ΠΑΠΑΧΡΗΣΤΟΥ. Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ. Ιδιότητες & Εφαρµογές Κ Ι ΠΑΠΑΧΡΗΣΤΟΥ Τοµέας Φυσικών Επιστηµών Σχολή Ναυτικών οκίµων ΟΡΙΖΟΥΣΕΣ Ιδιότητες & Εφαρµογές ΠΕΙΡΑΙΑΣ 2013 ΟΡΙΖΟΥΣΕΣ Έστω 2 2 πίνακας: a b A= c d Όπως γνωρίζουµε, η ορίζουσα του Α είναι ο αριθµός a

Διαβάστε περισσότερα

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων

Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων Συλλογή,, αποθήκευση, ανανέωση και παρουσίαση στατιστικών δεδοµένων 1. Αναζήτηση των κατάλληλων δεδοµένων. 2. Έλεγχος µεταβλητών και κωδικών για συµβατότητα. 3. Αποθήκευση σε ηλεκτρονική µορφή (αρχεία

Διαβάστε περισσότερα

ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΑΙΤΙΟΤΗΤΑΣ

ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΑΙΤΙΟΤΗΤΑΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑ Α ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΑΙΤΙΟΤΗΤΑΣ Νίκος ριτσάκης Αντώνης Αδαµόπουλος Τµήµα Εφαρµοσµένης Πληροφορικής Πανεπιστήµιο Μακεδονίας ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x)

όπου είναι γνήσια. ρητή συνάρτηση (δηλαδή ο βαθµός του πολυωνύµου υ ( x) ΟΛΟΚΛΗΡΩΣΗ ΡΗΤΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στην παράγραφο αυτή θα εξετάσουµε την ολοκλήρωση ρητών συναρτήσεων, δηλαδή συναρτήσεων της µορφής p f ( ( q(, όπου p( και q ( είναι πολυώνυµα µιας µεταβλητής του µε συντελεστές

Διαβάστε περισσότερα

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών Τμήμα Εφαρμοσμένης Πληροφορικής

Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών Τμήμα Εφαρμοσμένης Πληροφορικής Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών Τμήμα Εφαρμοσμένης Πληροφορικής Η εγκληματικότητα στην Ελλάδα: Μια εμπειρική ανάλυση με την χρήση των μεθόδων της συνολοκλήρωσης και της αιτιότητας

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex

Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Γραµµικός Προγραµµατισµός - Μέθοδος Simplex Η πλέον γνωστή και περισσότερο χρησιµοποιηµένη µέθοδος για την επίλυση ενός γενικού προβλήµατος γραµµικού προγραµµατισµού, είναι η µέθοδος Simplex η οποία αναπτύχθηκε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Η ΕΠΙΔΡΑΣΗ ΤΟΥ ΟΓΚΟΥ ΣΥΝΝΑΛΑΓΩΝ ΣΤΗ ΤΙΜΗ ΚΛΕΙΣΙΜΑΤΟΣ ΣΤΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ ΤΗΣ ΝΕΑΣ ΥΟΡΚΗΣ, DOW JONES. Διπλωματική

Διαβάστε περισσότερα